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Abstract

In this paper, we consider the Cox-type tests of non-nested hypotheses for spatial autoregressive (SAR)
models with SAR disturbances. We formally derive the asymptotic distributions of the test statistics. In
contrast to regression models, we show that the Cox-type and J-type tests for non-nested hypotheses in
the framework of SAR models are not asymptotically equivalent under the null hypothesis. The Cox test
in non-spatial setting has been found often to have large size distortion, which can be removed by the
bootstrap. Cox-type tests for SAR models with SAR disturbances may also have large size distortion. We
show that the bootstrap is consistent for Cox-type tests in our framework. Performances of the Cox-type
and J-type tests as well as their bootstrapped versions in finite samples are compared via a Monte Carlo
study. These tests are of particular interest when there are competing models with different spatial weights
matrices. Using bootstrapped p-values, the Cox tests have relatively high power in all experiments and can
outperform J-type and several other related tests in some cases.
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1. Introduction

There are three general approaches in testing non-nested hypotheses: the centered log-likelihood ratio
procedure, known as the Cox test (Cox, 1961, 1962); the comprehensive model approach, which involves
constructing artificial general models including non-nested models as special cases (Cox, 1962; Atkinson,
1970); and the encompassing approach that tests directly the ability of one model to explain features of
an alternative model (Deaton, 1982; Dastoor, 1983; Mizon and Richard, 1986; Gourieroux and Monfort,

1995).1 In a contribution related to the encompassing approach, Gourieroux et al. (1983) extend the Wald
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and score tests to non-nested hypotheses based on the difference between two estimators for the alternative
model. The comprehensive model approach suffers from the Davies’s problem (Davies, 1977), which can be
circumvented in various ways. Davidson and MacKinnon (1981)’s J test can be seen as a way to deal with
the problem. These well-established procedures may also be very useful for model specifications in spatial
econometrics.

There are many spatial econometric models, e.g., spatial autoregressive models, spatial moving average
models (Cliff and Ord, 1981) and spatial error components models (Kelejian and Robinson, 1993), that
cannot nest other models as special cases. In addition, spatial econometric models usually involve spatial
weights matrices which are assumed to be exogenous. As economic theories are often ambiguous about
spatial weights, we may construct spatial weights matrices in different ways, which also lead to non-nested
models. The J test, as the most widely used procedure for testing non-nested hypotheses due to its simplicity
(McAleer, 1995), has been discussed in spatial econometrics by several authors, while other procedures have
seldom been focused on.? Anselin (1984) illustrates the use of the .J test for spatial autoregressive (SAR)
models with an empirical example and Anselin (1986) presents Monte Carlo results of the J-type tests for
SAR models where only an intercept term is included as the exogenous variable. Kelejian (2008) formally
extends the J test to SAR models with SAR disturbances (SARAR models, for short). Piras and Lozano-
Gracia (2012) present some Monte Carlo evidence in support of Kelejian’s spatial J test. Burridge (2012)
proposes to improve Kelejian’s spatial J test by using parameter estimates constructed from the likelihood
based moment conditions. Kelejian and Piras (2011) modify Kelejian (2008)’s spatial J test so that available
information is used in a more effective way and thus may have higher power in finite samples. Liu et al.
(2011) extend Kelejian (2008)’s spatial J test to differentiate between models with a non-row-normalized
spatial weights matrix versus a row-normalized one in a social-interaction model. No formal results on other
non-nested procedures, as far as we are aware of, have been derived for spatial econometric models.

In this paper, we derive asymptotic distributions of the Cox-type tests for SARAR models and compare
them with spatial J test statistics. It is of interest to derive the Cox-type test statistics. For regression
models, it has been established that the Cox and J statistics are asymptotically equivalent under the
null hypothesis (Atkinson, 1970; Davidson and MacKinnon, 1981; Gourieroux and Monfort, 1994). For
the SARAR models, we shall show that the Cox statistics and the proposed spatial J test statistics in
Kelejian (2008) and Kelejian and Piras (2011) are, in general, not asymptotically equivalent under the null
hypothesis. The different ways that the Cox-type tests use available information might lead to distinct size
and power properties. For comparison purposes, we also present the extended Wald and extended score
tests (Gourieroux et al., 1983) for the SARAR models as supplements (in Appendix B).

For the non-spatial setting, many Monte Carlo experiments (see, e.g., Godfrey and Pesaran 1983) have

2See Anselin (1984) for a general discussion of applying tests of non-nested hypotheses in spatial econometrics.
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shown that the Cox and J tests can have large size distortion and typically reject a true null hypothesis
too frequently. Horowitz (1994) considers the use of the bootstrap in econometric testing and finds that it
can overcome the well-known problem of the excessive size of variants of the information matrix test. Fan
and Li (1995) and Godfrey (1998) have suggested bootstrapping the J test and other non-nested hypothesis
tests. Davidson and MacKinnon (2002) provides a theoretical analysis of why bootstrapping the J test often
works well. Burridge and Fingleton (2010) numerically demonstrate that Kelejian (2008)’s spatial J test
is excessively liberal in some leading cases and the bootstrap approach is superior to the asymptotic test.
For spatial econometric models, Jin and Lee (2012) have shown that the bootstrap is in general consistent
for statistics that may be approximated by a linear-quadratic form of disturbances.?> Using the result, we
show that the bootstrap is consistent for Cox-type tests in our framework. We compare the finite sample
performances of various tests as well as their bootstrapped versions by a Monte Carlo study. Our Monte
Carlo experiments show that although the Cox-type tests have larger size distortions than the J-type tests
in some cases, the bootstrap can essentially remove size distortions of both types of tests. The bootstrapped
Cox-type tests have relatively high power in all experiments and outperform the bootstrapped J-type and
several other tests in some cases.

The rest of the paper is laid out as follows. Section 2 formally derives the asymptotical distributions of
the Cox-type test statistics. Section 3 shows that the Cox-type and J-type tests for SARAR models are
not asymptotically equivalent under the null hypothesis, and also briefly compares the two types of tests.
Section 4 shows that the bootstrap is consistent for Cox-type tests. Section 5 compares the performances
of various test statistics as well as their bootstrapped versions in finite samples by a Monte Carlo study.
Section 6 illustrates the use of Cox-type tests with a housing data set. Finally, Section 7 concludes. Some

assumptions, expressions, lemmas and proofs are collected in the appendices.

2. Cox-type Tests

We derive the Cox-type tests for SARAR models in this section. The setting of the non-nested testing
problem is as follows. A SARAR model as the null hypothesis Hj is tested against another SARAR model
as the alternative hypothesis H;:

Ho:  yn =Winyn + Xinf1 + tin, Uin = piMintin + €in, (1)

3Consistency of the bootstrap for a statistic means that the bootstrap can provide a consistent estimator for the asymptotic
distribution of the statistic. On the question that whether the bootstrap can provide asymptotic refinements, i.e., whether
the bootstrap can be more accurate than the first-order asymptotic theory, only preliminary results are available. Jin and
Lee (2012) establish the Edgeworth expansion for a linear-quadratic form with normal disturbances, which can be used to
show the asymptotic refinements of the bootstrap for a linear-quadratic form. Then for a statistic that can be approximated
by a linear-quadratic form, with proper regularity conditions on the remainder term, the bootstrap can provide asymptotic

refinements. For a linear-quadratic form with non-normal disturbances, the Edgeworth expansion has not be established.
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Hy o yn = XoWonyn + Xonfo + Uon, Uzp = paMopton + €2n, (2)

where n is the sample size, y, is an n-dimensional vector of observations, Wj, and Mj, are n X n spa-
tial weights matrices with zero diagonals, X, is an n x k; matrix of exogenous variables, elements of
an n-dimensional vector of disturbances €j, are ii.d. with mean zero and finite variance 0?, and §; =
(Aj, pj, B, 03)" for j = 1,2 are vectors of parameters to be estimated. Denote Sj,,();) = I, — A\;Wj,, and
R;.(p;) = I, — pjM;, with I,, being an n x n identity matrix. Let the true parameter vector of the model
(1) be 010, S1n = S1n(A1o) and Ry, = Ry, (p10) for short. The X5, and X5, may have different dimensions.
The W, and M, are in general different, but could be the same in empirical applications. A particularly
interesting case in practice is the one in which we have different spatial weights matrices Wy, vs Wy, or
My, vs May, in the two models. Let Lj,(6;) be the log likelihood function of the model (j), for j = 1,2, as

if the disturbances were normally distributed:

Lin(0;) = =% In(2m) = Z1n0? +In[S;n ()| + I | Ry )]
1 (3)
— == [Sin(Xj)yn — XjnB5) R (p) Rjn (05)[Sjn(Nj)yn — XjnBi].

20j

Let éjn be the corresponding quasi-maximum likelihood estimator (QMLE) by maximizing L, (6;). The idea
of the Cox-type tests is to modify the log-likelihood ratio [Lay, (02, ) — Lin(615)] so that it is approximately
centered at zero under the null hypothesis, and then test whether the modified statistic after being properly
scaled is significantly different from zero.* As the test statistics involve the QMLEs éln and é2n7 we first
investigate their properties, and then derive the Cox-type test statistics with the QMLEs.

For a correctly specified first order SAR model without spatially correlated disturbances, Lee (2004a)
has proved that the QMLE is consistent under suitable regularity conditions. We can extend the analysis
to SARAR models. When we estimate the alternative model, generally it might have a different number of
parameters and/or variables from that of the data generating process (DGP), let alone the consistency to
the true values of the DGP. We use the so-called pseudo-true values to study the behavior of the QMLE
for the alternative model.? For the model (2), we define the pseudo true value 9_27171 to be the vector that
maximizes E Lo, (62), and we shall show that n'/? (égn — 0a,,.1) is asymptotically normal. With the pseudo-
true values, we can derive the asymptotic distribution of the Cox-type test statistics by using the central
limit theorem for linear-quadratic forms €}, A, e, — o8 tr(A,) + b€, (Kelejian and Prucha, 2001), where ¢,

is an n-dimensional vector of i.i.d. disturbances with mean zero and variance o2, and the elements of the

4Since the data generating process is not assumed to have normally distributed disturbances and we will construct the tests
with the centered log quasi-maximum likelihood ratio, the tests correspond to Aguirre-Torres and Gallant (1983)’s generalized,

distribution-free Cox tests.
5For the definition of pseudo-true values, see, e.g., Sawa (1978) and White (1982). The pseudo-true values are often used

for non-nested hypothesis testing problems, see, among others, Gourieroux et al. (1983) and Gourieroux and Monfort (1994).
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n X n matrix A,, and n-dimensional vector b,, are all non-stochastic.%

Similar to that in Lee (2004a), the consistency of 01, can be established by investigating the concentrated
log likelihood function Li,(¢1) = maxg, ;2 L1,(01) with ¢1 = (A1, p1)". Fori,5 =1,2, let Ejn(Gj; 6;) be the
expected value of Lj,(#;) when the model (i) with parameter 6; generates the data. Thus, in particular,
L1,,(01;6010) = EL1,(61) and Lo, (02;610) = E Lo, (62). Denote Ejn(qu;t?lo) = maxg, ;2 Ejn(ej;elo) with

®j = (A, pj) for j =1,2. We make the following assumptions for the consistency of O1y,.

Assumption 1. {e1,:}’s in €1, = (€101, €1nn), ¢ = 1,...,n, are i.i.d. with mean zero and variance

0%,. The moment E(e%i%) for some ¢ > 0 exists.

Assumption 2. The elements of X1, are uniformly bounded constants, X1, has full column rank ki, and

. 1 v/ . . .
lim,, oo ;Xlen exists and is nonsingular.
Assumption 3. Matrices S1, and Ry, are nonsingular.

Assumption 4. {Wy,} and {M,} have zero diagonals. The sequences of matrices {Wi,}, {Mi,}, {Ry,}}

and {Sy,1} are bounded in both row and column sum norms (for short, UB).T

Assumption 5. {S;,}(\1)} is bounded in either row or column sum norm uniformly in Ay in a compact
parameter space Ay, and {Rl_n1 (p1)} is bounded in either row or column sum norm uniformly in p; in a

compact parameter space 01. The true \ig is in the interior of A1 and the true p1g is in the interior of o1.

Assumption 6. The limit lim,, .., %X{n i (P1)Rin(p1)X1n exists and is nonsingular for any p1 € o1,

and the sequence of the smallest eigenvalues of R}, (p1)Rin(p1) is bounded away from zero uniformly in py.8

Assumption 7. Either (i) lim, o ~[In|of,S;, Ry, Ry, ST —In |63, 4 (¢1)S5, (M) RL,) (01) RE, (01)ST, (A)]]

exists and is nonzero for any 1 # ¢10, where 53, ,(¢1) = UT%‘O tr[R1 S NS, (MR, (p1) Rin(p1)S1n (M) S5 R,

or (i) limy,_ s %(anXl,,Lﬁlo,Xln)’(anXlnﬁlo,Xln) ezists and is monsingular, and for any p1 # pio,

1
n

an = WlnS;nl .

limy o0 2 [In |030S1,) Ry Ry, ST, =10 (63, o (A0, p1) ST, Rip (p1) R, (p1) ST, ] exists and is nonzero, where

6In Kelejian and Piras (2011), the pseudo-true values are not explicitly discussed for spatial J tests. This is because their
tests are based on two-stage least squares (2SLS) estimators, which have closed forms. Thus, by assuming that some matrices
involving the estimators for the alternative model converge to positive definite matrices in probability, there is no need to

explicitly consider the pseudo-true values.
7A sequence of m x m matrices {An, = [an,;]} is bounded in row sum norm if there is a constant c such

that sup;<;<p 2?21 lan,ij| < c for all n, and is bounded in column sum norm if there is a constant ¢ such that

SUP1<j<n Dieq |@n,ij| < ¢. See Horn and Johnson (1985).
8Let Hn,p; be the smallest eigenvalue of R’ln(pl)Rln(pl). Then the second part of the assumption means that there is some

constant ¢ > 0 such that inf,; cp; ftn,p; > ¢ for all n.



Assumptions 1-5 are similar to those in Lee (2004a), except for the additional conditions on Ry, (p1)
which resemble those on S1,(A1). In practice, the A and p are typically assumed to be in the interval (—1,1)
such that |S1,(A1)| and |R1,(p1)| are positive, while for the theoretical purpose, the parameter space can
be taken to be the compact interval contained in (—1,1) so that the consistency of the estimator would still
hold.? Note that Ry, (p1) is linear in p;, a sufficient condition for the first part of Assumption 6 is that the
limit of n=1 X}, [ X1, (M], + M1n)X1n, M{,, M1, X1, exists and has full column rank.!? The second part
of Assumption 6 is required to guarantee the uniform convergence of %[Lln (1) — L1n(¢1;010)] to zero in
probability. As Rj,,(p1)Rin(p1) is positive semi-definite, its eigenvalues are non-negative. The assumption
further limits the eigenvalues to be strictly positive for all n. Assumption 7 provides sufficient conditions
for global identification, where (i) is related to the uniqueness of the variance-covariance (VC) matrix of
yn and (ii) states that a part of the identification can be from the asymptotically non-multicollinearity of
Q1nX1n810 and Xj,,. The first part of (ii) does not hold if X;,, contains a vector of ones and Wi, is a

matrix of equal weights.!
Proposition 1. Under Hy and Assumptions 1-7, 1, — 010 = op(1).

The asymptotic distribution of 01, can be derived by applying the mean value theorem to the first order

condition Mlgfo(fl") = 0 at the true 01q:

L8 Lialfin)y ! 1 0Lin(0) @

\/ﬁ(oln - 910) = _(’I’L 89189/1 \/E 00, y

9To make |S1,(A1)| positive, the admissible interval for A1 is (1/fn,mins 1/fn,max), Where fin min and in,max are, respective-
ly, the minimum and maximum real eigenvalue of W,,. If W,, with non-negative elements is row normalized, then fy max = 1
and —1 < pp min < 0. Thus the interval is (1/tin, min, 1), where 1/pn min < —1. The admissible interval for p; is similar, thus we
only focus on the admissible interval for A;. The concentrated quasi log likelihood function over n is %Lln(qh) = 7%[ln(27r) +
1] = $In67,(61) + I |Sin(A)| + 5 In|Rin(pr)l, where 67,(61) = n~ 'y, S}, (M)R), (p1)Hin(p1)Rin(p1)S1n(A1)yn
with Hin(p1) = In — Rln(pl)Xln[X{nR’ln(pl)Rln(pl)Xln]_lX{nR/ln(pl), from (A.1). By the proof of Proposi-
tion 3, 6%, (¢1) — 3, (¢1;610) = op(1), where &%, (¢1;610) = "nitr[R’lgls;;lsgn(Al)R;n(pl)Rln(pl)sm(Al)S;an;}} +
%(Xlnﬁlo)’S;lSin(/\1)R’ln(pl)Hln(p1)Rln(pl)Sln(Al)anlen,Blo is bounded away from zero. Then In [7%”((;31) is bounded
in probability. In the case that pn max = 1, when A1 approaches 1, %ln |S1n(A1)| approaches minus infinity, thus %Lln(qbl)
approaches minus infinity in probability, which implies that %Lln(qﬁl) at a A1 very close to 1 will be smaller than its value
at some A1 in the interior of (—1,1) in probability one. Similarly, when 1/t min = —1, %Lln(qﬁl) approaches minus infinity
in probability as A; approaches —1. When 1/ty, min < —1, [S1n(A1)| at —1 is positive and finite. Thus the interval for A1
can be taken to be (—1,1) in practice, while it makes no harm to assume the parameter space to be compact. This view is in

Amemiya (1985, p. 108). In this paper, the QMLE is proved to be consistent only for a compact parameter space.
10When X1, contains a vector of ones and My, is a matrix of equal weights, n_lX{n[Xln, (M1, + Min)X1n, M{, M1nX1n]

doest not have full column rank, but the first part of Assumption 6 may still hold in this case.
1 The condition is equivalent to that the limit n71[Q1nX1nﬁ10}’MX1nanXln,Blo exists and is non-zero when the lim-

it of n~1X/ X1, exists and is nonsingular, where Mx, = In — X1n (X}, X1n) 1 X},. Let Wi, = (Inll, — In)/(n — 1),
where [,, is an n-dimensional vector of ones. Then MXMan = (1- n)_kMxln. Thus Mx, QinX1nf10 = 0 and

n " Q1nX1nB10) Mx,,, Q1nX1nB10 = 0.



where 9~1n is between éln and 610.'? In the above equation, every element of ﬁ 8L18n79(19m) is a linear-quadratic

form of the disturbances ey, thus the central limit theorem in Kelejian and Prucha (2001) is applicable.!?

2 0 2
The term %8591%53}”) can be shown (see the proof of Proposition 4) to be equal to %E(%Lg#(g}”)) plus
1 1

a term converging to zero in probability. The following assumption is needed for the limit of ¥y, =
2
—% E(%Lell’ib(g,llo)) to exist and be nonsingular.

27 .
Assumption 8. The limit lim,, .o %% exists and is nonsingular.
1

Proposition 2. Under Hy and Assumptions 1-8,

A d . _ _
Vb1, — 010) = N(0, n11_>Hgo(E1nl,1QIn,lz1n1,1))7 (5)
where Q15,1 = 1 E(8L159(1910) angg(,em)) and Y1p1 = 7% E(%). In the case that €1, ;s are normally
) 1 100y ’

distributed, \/ni(f1, — 610) % N(0,lim, o0 B3, ).

The Q4,1 generally involves the third and fourth moments of the disturbances if they are not normally
distributed, thus it has a form more complicated than that of ¥, ;. When €1, ;’s are normally distributed,
the information matrix equality holds, i.e., 31,1 = Q1p,1, so the VC matrix has a simpler form.

For the alternative model (2), the following assumptions are made for the convergence of égn 70_27171 to zero
in probability under the null hypothesis of the model (1). Denote Ss,, = Sgn(j\Qnyl) and Rz, = Rap(p2n,1)

for short.

Assumption 9. The elements of X, are uniformly bounded constants, Xop, has full column rank ko, and

lim,, o0 %Xéann exists and is nonsingular.

Assumption 10. Matrices So, and Rs, are nonsingular.

Assumption 11. {Wy,} and {Ma,} have zero diagonals. The sequences of matrices {Way,}, {Man}, {R51}
and {Sy,'} are UB.

Assumption 12. {S;,!(\2)} is bounded in either row or column sum norm uniformly in Ay in a compact
parameter space Ao, and {R2_n1 (p2)} is bounded in either row or column sum norm uniformly in ps in a

compact parameter space Q2.

Assumption 13. The limit lim,,_, %Xéanzn(pg)Rgn(pg)XQR exists and is nonsingular for any ps € 0o,

and the sequence of the smallest eigenvalues of R}, (p2)Ron(p2) is bounded away from zero uniformly in ps.

12The mean value theorem is applicable to a function but not a vector-valued mapping. So 61r can be different for each row
of the Hessian matrix.

13The expressions for % %ffﬁ”) and some other terms in the text are collected in Appendix A.

7



Assumption 14. For n > 0, there exists k > 0 such that, when ||p2 — dan1|| > 1, n_1<l_/2n(</;2n,1;910) —

Loy 1 (2 910)) > k for any large enough n.

Assumption 15. The limit of n= ' tr[R};' S| 1S5, Ry, RonSan Sy, Ry} or

-1 rQ/—=1¢r / -1 - -
n~ (X1n810) St Shy Ry Hon RonS2nS1,, X1nb10 exists and is non-zero.

Assumptions 9-13 are similar to those for the estimation of the model (1). With a misspecified model
being estimated, it is not straightforward to find primitive identification conditions, so Assumption 14 is
imposed. Assumption 15 implies that {5’57“1}, the sequence of pseudo true values for o2, is bounded away
from zero by (A.4), which is necessary to prove the uniform convergence of n~* (Lgn(rj)g) — Lon(; 910)) to

zero in probability on As X go. Without this assumption, n‘ll_/gn(q’)g; 010) can be arbitrarily large.
Proposition 3. Under Hy and Assumptions 1—4, 9-15, Oy, — 9_2,171 =op(1).

The asymptotic distribution for [ §2n71 can be derived by an expansion of the first order condition
L2y (02n)

that 505 =0 at 0_271715
« _ 1 02%L, éz -11 0L, 9_2 1
NCI( - ,(fy) 7M’ (6)
n 00200, Vvn 005
where s, is between éZ’rj and @y, 1. Noting that 22r2n(02n1) r‘gbf"‘"’l) =0 and 8L2’5(0§22”v1) — 8L27é(0§22”v1) _9 EL%%(fZ"vl),
every element of %i”“) can be written as a linear-quadratic form of the vector of disturbances €1,,.
2 N 2 )

Since %%&%) =1E “&27%’“) + op(1), we make the following assumption which guarantees that

1 8%Lay (020n,1) - . . P
~E —ogs00, 1 nonsingular in the limit.

27 oy .
Assumption 16. The limit lim,,_, %% exists and is nonsingular.
2

Proposition 4. Under Hy and Assumptions 1—4, 9-16,

V(B — B3,1) L N (0, nlgfolo(ziﬁ,ﬁzn,lxgﬁ@)), (7)
where Yon1 = — E(iaz)%g;gggm)) and an1 = %E(aLZ%(Qiz"’l) aLmé(e%“'l)).

With asymptotic distributions of the estimators, we are now ready to derive the Cox-type test statistics.
As mentioned earlier, the Cox-type tests are based on the recentered log likelihood ratio Lgn(ézn) —Lin (éln)
Thus we need to find an expression for the asymptotic mean of the ratio. Because of the results in Proposi-
tions 2 and 4, we shall show that n=1/2[Lay, (f2n)— L1 (61n)] = 0 /2[Lon (an.1)— Lin(010)]+0p(1). The lead-
ing order term of nfl/Q[Lgn(O_gn,l) — L1,,(610)] is the expected value n’l/z[E Lo, (égn,l) —E L1,,(610)], which
can be shown by applying Chebyshev’s inequality, as Lo, (02n,1) —E Lan(02n.1) and L1,,(010) —E L1,,(610) are
both linear-quadratic forms of €1,,. The E Lgn(égml) involves the unknown parameters §2n71 and 619 because
an expectation is taken, and E L1,,(619) involves #19. Except for égn, another estimate for 0_2”71 can be the

8



vector that maximizes Lo, (f2; éln) Denote fs,,(01) = maxg, L, (f2;61). The difference between égn(éln)
and 65, is expected to be small under the null hypothesis, since they are maximizers of two functions whose
difference is small in probability.'* Hence, we investigate the asymptotic distribution of the statistic

1
NG

|:[L2n(é2n) - Lln(éln)] - [Z-Qn (5271((9177,); éln) - E1n<éln; éln)” )

or

—
\/ﬁ

under Hy. But note that Lln(ém) Lln(Oln, Gln) so essentially the tests are based on the statistics

[LQn(éQn) - Lln(éln)] - [EZn(éQ'n; éln) - Eln (éln; éln)]]v

— [L2n( n) - Z/2n (9211(9171); gln)]; (8)

3

or
1

7

As \/ﬁ(égn - égn(éln)) = Op(1) by Proposition 7 in Appendix B, a second order Taylor expansion implies

[LQn(éQn) - EQTL (éQny éln)] . (9)

that

N _ ~ 1 82.Z/2n (éQna éln)
(On = o0 O1n)) S =000,

[-E2n (é2n7 éln) - I/Zn (éZn (éln); eln):l = \/E(éQn - §2n (éln)) = Op(l),

DN | =

L
Vn
where 6, is between s, and 6a,(61,). Thus, (8) and (9) are asymptotically equivalent. Note that
Loy, (égn(éln); éln) > Izgn(égn; éln), so the expression in (8) is smaller than that in (9). The original version
of the Cox test is based on (8), while (9) corresponds to Atkinson (1970)’s version.

As shown in the proof of Proposition 5, we have

1

= [ (0) ~ Lo (OG0

(10)
1 —~ = — 1 8L1n(010)
= ——[Lop(02n.1) — Lop(02,.1; 0 CnE _— 1),
\/ﬁ[ 2n (02n,1) 2n(02n,1;010)] — Cay 1 1 T 00 +op(1)
where Cy, 1 = %%‘W. The second term on the r.h.s. of (10) appears as we estimate 619 by 01,

The first term on the r.h.s. of (10) can be written as a linear-quadratic form of €;,, and elements of 6121570(910)

are also of such forms, so the asymptotic distributions of the Cox-type test statistics follow by applying the
central limit theorem for linear-quadratic forms. Let 02, be the variance of f [L2n(02n.1) — Lan (025,15 6010)] —

Ch 1 Z — 9L1n(010) tpen
n,

n,lyn 90,

1 _ _ - OL1,(0 _
0l = 5[1» —Chp1Zim 1) Var([LG(92n,1) — L2y (020,15 010), %]/)[17 —Con1Zimal’s (11)
1

14The extended Wald test constructs an asymptotic x? statistic using the asymptotic normality of n1/2[0_2n(é1n) — égn],

and the extended score test constructs an asymptotic x? statistic using the asymptotic normality of the score vector

\lr %’2‘(91")) Appendix B presents those tests to supplement the Cox-type tests.

15This can be seen from (A.1) and (A.2) with the estimators plugged in.
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where var(-) denotes the VC matrix of a random vector. In the case that €,;’s are normal, Ca,1 =

E(%Lgn (92,,71)&%"79(10“))) and the information matrix equality that 31, 1 = Q15,1 can be applied, so

1 _ — — —
ol = - var[Laon (02n.1) = Lon(O2n.15010)] — o, 137,01 Con 1. (12)

c,m

The o2, involves 02,1, 010, and also €1, ;’s third and fourth moments p3 and g4 if €1,; is non-normal. Let
2

co,n

&go’n and 6?a’n be, respectively, consistent estimators of O’?)n used in Cox and Atkinson’s versions. The &
62a,n may be obtained, e.g., by replacing 619’s in o, with éln’s, 3 and py’s with the third and fourth

sample moments of the residuals from the quasi-maximum likelihood (QML) estimation, and 9_2,171’5 with

either égn(éln)78 or 0o,,’s.16
Proposition 5. Under Hy and Assumptions 1-16, the Cox-type test statistics
Cox, = n=1/2 [L2n(é2n) - E2n (§2n (éln)§ éln)} /a'co,na (13)

and
COIa == n71/2 [LQn(éQW) - EQn(é2n; éln)] /(}ca,n7 (14)

2

are asymptotically standard normal, if o ,, is bounded away from zero.

Since Lo, (égn(éln);éln) > Egn(ém;éln) as noted earlier, Cox, < Cox, asymptotically under Hy. We
shall digest a little bit more on the two versions of the Cox test under the alternative hypothesis. Let 6y
be the true parameter of the model (2) which generates the data, and élmg be the pseudo true value of the

model (1). Under the alternative hypothesis,

(a0 @) ~ Lan @) ~ (B (Bn(B1n)s10) — Lan(Bri 61 )]

Le. o S o (15)
= ~ | (L2 (8203 020) = Lun (123 620)) = (Lan (Ban(B1):610) = Lo (Brni B10)) | + 0 (1),
and
~(Ean(B20) — Lin(010)) — (Eon(Pani 1) — Lin (010 10))]
= % [(L2n (8205 020) — L1n (010,25 020)) — (L2n(B2n; 01n) — L1 (0103 010))] + 0p(1). "

By JCHSCH’S incquality (thC information incquality), Egn (920; 020) Z Eln(éln,% 020), Eln(éln; éln) Z Egn (§2n(éln)a éln)
and Eln(éln; éln) > Loy, (égn; éln), so the leading order terms of (15) and (16) are non-negative. The Cox
tests thus have one-sided critical regions such that we reject the null hypothesis if the Cox statistics are

greater than the critical value uj_q, where u;_, is the (1 — a)) quantile of the standard normal distribution

2

16Note that for Coz, below, if we use ézn for égnyl in oz, then there is no need to compute égn(éln). In the Monte Carlo

study, for Coz,, we use fap,(615,) for Gy 1; for Cozq, we use 2y,
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for the chosen level of significance a. If the leading order terms of (15) and (16) are bounded away from
zero, and O, p, and G4, are stochastically bounded under the alternative hypothesis, then the Cox tests are
consistent. From (15) and (16), the two Cox-type test statistics are generally not asymptotically equivalent

under the alternative hypothesis.

3. Relationship and Comparison between the Cox-type and J-type Tests

In this section, we first investigate whether there is an equivalence relationship between the Cox and
J-type tests for SARAR models and then shortly compare these two types of tests.

To investigate the relationship between the Cox and J-type tests for SARAR models, we start from a
short review on establishing the asymptotic equivalence of the Cox and J tests for univariate regressions
under the null hypothesis, and then examine whether a similar relationship of these two types of tests for
SARAR models would exist or not.

Consider the problem of testing a nonlinear univariate regression model against another one:

Hy: yn= fli(Xln,iaﬂl) + €1n, 61n,i’S are i'i‘d'N(an-%)7 0, = (51»0%)/» (17)

Hy: yni = foi(Xoni, B2) + €ansiy  €oni’s are i.i.d. N(0,03), 6 = (B%,03), (18)

where y,;’s are observations on a dependent variable, X, ;’s and Xa, ;’s are vectors of exogenous variables,
and 61 and 0, are vectors of parameters. To test Hy against H; by the J test (Davidson and MacKinnon,

1981), the following compound model is considered:
Yni = (1 = 7) f1i(Xin,i, B1) + 7 f2i(Xonyi, B2) + €1ni- (19)

As [ disappears from the model when 7 = 1 and [, disappears when 7 = 0, the compound model suffers
from Davies’s problem (Davies, 1977). The J test circumvents the problem by substituting an estimator
Bon of By from H; into (19) and then estimating 7 and (7 jointly. The ¢ statistic for 7 = 0, which is
asymptotically standard normal, is the J test statistic. Davidson and MacKinnon (1981) has proved that
the J test is asymptotically equivalent to the Cox test under Hy. Gourieroux and Monfort (1994) note that
the Cox test statistic is asymptotic equivalent to a score test statistic for = 0 under Hy, computed as if an
estimator s, of O from Ho was deterministic, in a model with the following probability density function
0" (W, X 00)1 (Y, Xon, 020)
S U7 Wy Xins 00)18 Yy Xon, O20) dyn
(2m) "% (03) T "(63,) " #m exp (5 v — 1 (Kans BOI” = 52 [y — F2(Xan, Bon) )

= Lompiag N1 1— 2 3 2 » (20)
”(azn)_fnexp(—ﬁgﬂyn - X, 8| - %Hyn — f2(Xon, B20) | ) difn

J@m)~E(o}) "=

where g = (Yn1, -2 Ynn)'s Xjn = (X100 Xinn)'s f5(Xjns B5) = (Fi1 (Xjn1: B1)s -+ s fin(Xjnns B5))' for
j=1,2;]|...]| denotes the Euclidean vector norm; and l1,,(yn, X1, 61) and lo, (yn, Xon, 02) are, respectively,
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the likelihood functions of Hy and H;. The asymptotic equivalence of the J and Cox tests is not surprising,
since (20) is the likelihood function of the regression model'”
nt — A~

2
o .
J1i(X1ni, B1) + nol + 271 1, )62 f2i(Xan.is Ban) + &nis (21)
1 n

)53
where &,,;’s are i.i.d. N(0,0763,/[not + (1 — n)63,]), which is the same as (19) after reparameterization.
Given the equivalence result on the models (17) and (18), it is tempting to just use the J-type tests but
ignore the Cox-type tests for other models. However, no such equivalence result exists for SARAR models.

For the SARAR models (1) and (2), the spatial J test, as described in Kelejian and Piras (2011), is

obtained by augmenting the spatial Cochrane-Orcutt transformed null model

Rin(p1)Yn = M R1n(p1)Win¥n + Rin(p1)X1nf1 + €1n

to the model

Rin(p1)yn = MRin(p1)Winyn + Rin(p1) X1nB1 + aR1,(p1)S5, (A2) XanBa + €1n, (22)

or

Rin(p1)yn = M Rin(p1) Winyn + Rin(p1) X101 + @R (p1) Ao Wanyn + Xonf2) + €1n, (23)

as both S;nl()\g)Xgnﬁg and (AoWo,yn + Xo,02) are predictors of y, with some estimator for 62 plugged
in. In the first step of the spatial J test, we can get an estimator p1, of p1p from the null model and an
estimator o, of 05 from the alternative model. Then Ri1n(P1n)Yns Rin(P1n)Win¥n, Rin(p1n)Xin, and the
predictors Rln(ﬁln)SQ_nl (Xgn)XgnﬁAgn or Rln(ﬁln)(j\QnWQHyn + Xgnﬁgn), can be computed. After that, (22)
and (23) can be estimated by 2SLS in order to construct a t statistic to test whether « is equal to zero or
not. We call the J test statistic based on (22) J; and the other J;. The Monte Carlo study in Kelejian and
Piras (2011) shows similar finite sample results for J; and J. For computational convenience, they suggest
the use of Js.

Let the likelihood functions of the models (1) and (2) still be denoted by I1 (Y, X1n,601) and lo(yn, Xon, 02),

respectively. The compound model with a probability density function corresponding to (20) is

5" Yy X1y 0013 (Yns Xons 02
f li_n(yn, Xin, 91)13(%, Xon, 02n) dyn,

- %||R2n(ﬁ2n)[52n(5\2n)yn - X2nB2n]H2) |Sln(>\1)R1n(p1)‘17n|32n(5\2n)R2n(ﬁ2n)|n7 (24)

1—n ~ _ 0y 1-—
= cyo(0])” 77 "(63,) 2 eXP(*T;HRln(Pl)[Sln()\l)yn*Xlnﬂl]||2

where ¢, only depends on n. The score test for n = 0 in (24), computed as if Oy, is non-stochastic, can be

shown to be asymptotically equivalent to the Cox test under Hy. The score test is based on the asymptotic

17See Atkinson (1970), among others.
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distribution of the score

1 ~ ~ A « A
% ln12(yn,X2n, 92n) - hlll(melm@ln) - /[111 ZZ(yn7X2n792n) - lnll(ynaXlna aln)]ll(ynaXlna 91n) dyn:|a

(25)
where éln is from Hy. The asymptotic variance of (25) is computed as if égn were deterministic. (25)
is equal to the numerator of Atkinson (1970)’s version of the Cox test statistic. To derive the asymptotic
distribution of (25), as noted in (D.1) and (D.2), 6, can be replaced by the non-stochastic pseudo true value
9_2%1. Once the analytical form of the asymptotic variance for (25) is found, 0_2n71 may be substituted by égn
to approximate the asymptotic variance. Thus the score test for n = 0 deduced from (24) is asymptotically
equivalent to the Cox test under Hy.

On the other hand, (24) is not equivalent to (22), (23) or any other simple combinations of the models (1)
and (2). The exponent in (24) written in the quadratic form is equal to —%(A% Yn —A;%bn)’(A% Yn —A;%bn)
plus a term not involving y,,, where A,, = %Sin(Al)R/ln(pl)Rln(pl)Sln()\1)"‘%55”(S\Qn)R/Qn (po2n) Ron (P2n)San(Aan)
and b, = %Sin()\l)Rin(Pl)Rln(Pl)X1nﬁ1 + %Sén(j‘Qn)Rén(ﬁQn)RQTL(ﬁQH)XQHBQTL' The corresponding

model with i.i.d. normal disturbances would be
1 1

which is not linear in parameter and does not correspond to any simple linear combination of the original
models. In particular, this model is very different from the compound models (22) and (23) (or the one
in Kelejian (2008)). Therefore, the Cox-type and J-type tests for SARAR models cannot be shown to be
asymptotically equivalent under the null hypothesis by showing that the exponential compound model (24)
is equivalent to (22) or (23). It seems not to be surprising that there is no such an equivalence relationship
because of the spatial dependence.

The original J-type tests in Kelejian and Piras (2011) employ the generalized spatial 2SLS (GS2SLS)
proposed in Kelejian and Prucha (1998) to estimate the null and alternative models, and the 2SLS to
estimate the augmented model. Since the GS2SLS or 2SLS only uses linear instruments, which is less
efficient than the QML or the GMM which uses both linear and quadratic moments, the power can be low
due to the estimation method, especially when the variation in exogenous variables cannot explain much of
the variation in the dependent variable. We may estimate the null, alternative and augmented models by the
GMM or QML for the J-type tests, which is computational more involved. For the estimation of the null and
alternative models in the J-type tests, an advantage of the generalized spatial 2SLS is that it can be robust
to unknown heteroskedasticity while the QML is not.!® The Cox-type tests are built upon the QMLEs of
the null and alternative models, which involve nonlinear objective functions, thus identification conditions

are needed. The J-type tests only involve the GS2SLS and 2SLS, where an identification condition is only

18The GMM can also be robust to unknown heteroskedasticity, see Lin and Lee (2010).
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needed for the spatial error dependence parameter.!? Also related to the nonlinear objective functions, the

QML needs the compact parameter space assumption while the GS2SLS does not need that assumption.

4. Consistency of the Bootstrap for Cox-type Tests

In this section, we show that the bootstrap is consistent for Cox-type tests. The bootstrap testing

procedure is as follows:2%

(i) Compute the QML estimator (5\1n, Pin,s Bin)’ and the corresponding residual vector e1,, = R1n(p1n) [Sln(j\ln)yn—
Xlnﬁln] for the model (1). Compute the Cox-type test statistics.
(ii) Draw an n-dimensional vector e}, of random samples from the residuals in ey, using sampling with
replacement and generate data y: according to y% = S5} (Ain)[X1nB1n + Ry (p1n)€l,)-
(iii) Compute various test statistics using the data y?.
(iv) Repeat (ii) and (iii) s times, and obtain the bootstrapped p-values.?!
(v) The bootstrap tests consist in rejecting the null hypothesis if the bootstrapped p-value is smaller than

the chosen level of significance and not rejecting otherwise.

Using y, we have the estimators é{n, é;n and égn(éfn)7 corresponding to the estimators 0y, 0, and

ggn(éln) respectively. Denote the bootstrapped versions of 6o, Gca,n, Coxo, Cox, by, respectively, &

*
co,n?

Ak
Jca,na

Coz*, Cox’. Let P* be the probability distribution induced by the bootstrap sampling process.
From (10), the Cox-type test statistics can be approximated by a linear-quadratic form of disturbances,
thus we can apply a theorem in Jin and Lee (2012), who establish that the bootstrap is consistent for
spatial econometric statistics that can be approximated by a linear-quadratic form. The result is based on
the uniform convergence of the distribution for a linear-quadratic form to the normal distribution. The
consistency result for Cox-type test statistics needs a stronger assumption on the disturbances—namely, the
existence of eighth moment—than assumed earlier, for non-normal disturbances. One reason of the stronger
assumption is that the numerators for the Cox-type tests generally involve estimators of the fourth moments

of the disturbances. The stronger condition is needed for the rate of convergence of the estimators.

Assumption 17. {€1,,;}’s in €1n, = (€1n,15-- -1 €1nn), ¢ = 1,...,n, are i.i.d. with mean zero and variance

0%y, and the moment E(e?nyi) exists.

9The identification condition is not explicitly stated in Kelejian and Piras (2011). They assume instead the high level
condition that the limits of some matrices involving parameter estimates for the alternative model have nonsingular probability

limits.
20The resampling procedure above has been used by Burridge and Fingleton (2010).
21For the Cox-type tests, as they are one-sided tests, the bootstrapped p-value is the percentage of test statistics calculated

from the bootstrapped samples that are greater than the corresponding test statistic obtained in (i). For two-sided tests, the
bootstrapped p-value is the equal-tail bootstrapped p-value which is equal to 2 times the smaller one of the percentages of test

statistics that are greater and non-greater than the test statistic in (i) (MacKinnon, 2009).
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Proposition 6. Under Hy and Assumptions 2-17, sup, |P*(Cox? < z) — P(Coz, < x)| = op(1) and
sup, | P*(Cox’ < z) — P(Cox, < )| = op(1).

5. Monte Carlo Study

We compare the finite sample size and power properties of the tests derived in this paper with those of
the spatial J tests (Kelejian and Piras, 2011) with Monte Carlo experiments. In addition, we also compare
them with a test derived from a comprehensive model. For the SARAR models (1) and (2), a natural

comprehensive model for them is
Yn = >\1W1nyn + /\2W2nyn + XinB1 + XZn,aﬂ2a +ULp, Uy = p1MinUin + p2Mopti, + €1p, (27)

where Xy, , contains the variables in X5, that are different from any in Xy,,, and S, is the corresponding
parameter vector. We test whether Ao, po and 3, are jointly zero with a Lagrangian multiplier (LM) test.
Denote the corresponding test statistic by Aug. In the experiments, the spatial weights matrix in the spatial
error process is set to be the same as that in the spatial lag equation for the two SARAR models, and the
two models either have the same spatial weights matrix or the same exogenous variable matrix. For the
J test statistics J; and Jo, first estimate the model (1) to obtain p1, by the generalized spatial 2SLS, as
described in Kelejian and Prucha (1998), with instrumental variables [ X1, Wi, X1,, anXln]U, where LI
denotes the linear independent columns of a matrix, then estimate the model (2) with instrumental variables
[Xon, Wapn Xon, W2, Xo,] 11 to obtain y,,’s predictors, and finally (22) and (23) are estimated with the instru-
mental variables [ X1, WinX1n, Won X1n, W, X10, W2 X100, WinWopn X1n, Won Wi X1n| o1 when X1, = Xo,
but Wi, # Wan; or [Xin, Xon, WinXin, WinXon, Wi, X1n, W2, Xon| o1 when Wy, = Wa,, but X1, # Xop.
As an alternative, we first estimate the model (2) by the QML to derive the predictor S;nl(j\gn)XgnBQn
or (Xgntnyn + Xgnlézn), and then estimate (22) and (23) by the GMM with both linear and quadratic
moments.?? Denote the J tests with the alternative estimation methods as Ji, and Jo, respectively. The
linear instruments for Jy, and Js, are the same for .J; and .J5, and the matrices for the quadratic moments
include different matrices of Wi,,, Wa,,, W&, —tr(W32,) L, /n, W3, —tv(W3,) L, /n, W1, Way, —tr(W1, Wap )1, /0
and Wy, Wy, — tr(Wa, W1,)I,, /n. Note that for the extended Wald and score tests, we use the asymptotic
chi-square critical values with degrees of freedom equal to the number of parameters in the alternative model

to evaluate the empirical size and power.

22Note that our GMM approach estimates p; jointly with A1 and 81 in (22) and (23). This is different from the original
approach in Kelejian and Piras (2011) where pp is first estimated in the model (1) and then the estimate is plugged into
the augmented model. The GMM estimation of (22) and (23) involving quadratic moments with an initial estimate of p1
plugged in would generate a complicated variance-covariance matrix because a part of the variance-covariance would be from

the estimation error of p1’s estimator.
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Table 1: Sets of Experiments

Experiments H, H,
Set I Wa; Xa Wln Xa
Set IT We, Xo We, Xg

Set 111 We, Xo W, X,

The experimental design is based on former Monte Carlo studies of spatial models (see, e.g., Anselin and
Florax 1995, Kelejian and Prucha 1999, Arraiz et al. 2010 and Kelejian and Piras 2011). We consider three
different spatial weights matrices W,, W} and W.: W, is generated according to the rook criterion, W, is
generated according to the queen criterion and W, is a block diagonal matrix with the diagonal blocks being
the continuity matrix for 49 neighborhoods in Columbus, OH from Anselin (1988). We use row normalized
matrices. Two exogenous variable matrices X, and X, are used: X, contains a vector of ones and a vector
of random samples drawn from the standard normal, and X, contains a vector of ones, a variable drawn
from the uniform distribution U(0, 1), and a variable equal to 2 times the second variable plus 1/2 times a
variable drawn from the chi-square distribution with 2 degrees of freedom. For X3, the correlation coefficient
between the second and third variables is 0.5. The three sets of experiments considered are shown in Table 1.
For each set of experiments, the disturbances are drawn from either the standard normal or a normalized
chi-square (x%(3) — 3)/v/6 with mean zero and variance one. The true parameter vector is either (0.5,0.5)’
or (0.5,2)" corresponding to X,, and either (0.5,—1,0.5)" or (0.5,4,1)" corresponding to Xp, leading to the
ratio of the variance of X with the sum of the variance of X 8 and that of the error terms to be equal to 0.2
and 0.8, respectively.?> Denote this ratio by R2. When the null and alternative models generate the data,
i.e., when the empirical size and power are considered, A; in the null model and A5 in the alternative model,
or, p; in the null model and ps in the alternative model, are the same, taking value of 0.2 or 0.8. Denote
the two parameters by A and p respectively in the reported tables. In total, we have 3 x 2 x 2 x 2 x 2 =48
experiments for each sample size n. We consider a small size n = 98 and a large sample size n = 1519.24 The
nominal level of significance is set to 5% and the number of Monte Carlo repetitions is 1000. For n = 98,
bootstrapped tests of various test statistics are also implemented.??> We set the number of resampling s to
199, leading to a standard error of the bootstrapped p-value being equal to 1.5%.

The Monte Carlo results for n = 98 are reported in Tables 2—7. Using the asymptotic p-values, Jy, Js,

23This kind of Monte Carlo setting for spatial models follows from Lee (2007) and Lee and Liu (2010).
24For n = 98, the W, and W, are first generated on a 10 x 10 grid, then the last two rows and last two columns are deleted,

and finally they are row-normalized to have row sun 1 by dividing each element in a row by the sum of all elements in that

row. The W, and W} for n = 1519 are similarly derived.
25For n = 1519, implementing bootstrap tests for all statistics with 1000 repetitions takes too long, so bootstrap tests are

not implemented.

16



Aug and Score generally have small size distortions while other statistics have large size distortions in some
cases. The empirical sizes of J; deviate from the nominal one by no more than 3 percentage points in all
experiments, the empirical size of Jo can be as large as 9.7% as shown in Table 3, Aug in experiment set
IIT and Score in experiment sets II and III with chi-square disturbances significantly under-reject the true
null hypothesis. The Ji, and Jo, almost have no size distortion in experiment set III, but have large size
distortion in the first two sets of experiments. The empirical size of Jo, can be over 40% when R2 = 0.2
in experiment set I. The Wald have empirical sizes larger than 50% in many cases. The size distortion of
Coz, and Cozx, is no more than 3.7 percentage points in experiment set I, but the size of Cox, can be as
large as 20.2% in experiment set IT and 30.2% in experiment set III, and the size of Cox, can be as large as
23.2% in experiment set IT and 22.6% in experiment set III. The empirical sizes based on the bootstrapped
critical values show that the bootstrap removes the size distortion of various statistics in most cases. We
thus compare the empirical powers of different statistics based on the bootstrapped p-values.

Several patterns for the empirical powers of the bootstrapped tests can be summarized as follows: none
of the tests can dominate the rest of tests in power in all experiments, but the Cox-type statistics usually
have high powers compared to other statistics and dominate other ones in some cases; in most cases of all
experiments, Ji, is more powerful than Ji; in most cases, Js, is more powerful than J5 in experiment sets
IT and III, but less powerful in experiment set I; J, is more powerful than J; in almost all cases. We now
investigate the results for experiment set I with normal disturbances in some detail, and briefly summarize
results for other experiments. Table 2 presents the results for experiment set I with normal disturbances.
The powers of Cox, and Coz, are similar, which are the highest among all the test statistics, and the powers
of other statistics are significantly lower in most cases. Taking the case with B2 = 0.8, A = 0.2 and p =028
as an example, Cozx, and Coz, have powers higher than 90%, Aug has a power of 73.7%, Score has a power
of 52.5%, but the powers of the rest statistics are all below 21%. In all cases except the one with R% = 0.2,
A =02 and p = 0.2, J, has a higher power than J;. When R? = 0.8, A = 0.8 and p = 0.8, J, has a
power of 84.0%, while .J; has a power of only 52.6%.2% Table 3 presents the results for experiment set I with
chi-square disturbances. Changing the distributions of the disturbances from normal to chi-square has not
led to big changes in the results. For experiment set II, Tables 4 and 5 show that, Jo,, Aug, Score, Cozx,
and Cozx, have similar magnitude of power, among which Coz, has the highest power in most cases, and
other statistics have significantly lower powers. For experiment set III, all statistics, except J; and Wald
in some cases, have powers close or equal to 100%. The Wald has very low power compared to other test
statistics.

The empirical size and power based on the asymptotic p-values for n = 1519 are reported in Tables 8-10.

26In the Monte Carlo study of Kelejian and Piras (2011), their Monte Carlo design has produced high powers for the J tests,

where in general Ja is also relatively more powerful than Jq, but due to their high power, their differences seem small.
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Most statistics have no significant size distortion with a sample size of 1519, except for Wald, Coz, and
Cozx, in some cases, which have much smaller size distortion compared to that with a sample size of 98.
The Wald still has significant size distortion for all experiments. For experiment set I, Coz, and Cox, have
empirical sizes close to the nominal level. For experiment set II, Coz, and Coz, have large size distortion
only when A = 0.2 and p = 0.2. For experiment set III, Coz, and Cozx, still have large distortion in some
cases. For example, when R? = 0.2, A = 0.2, p = 0.8 and the disturbances are normal, Cox, and Coz,
with n = 1519 have empirical sizes equal to 17.2% and 17.3% respectively, smaller than the sizes 22.9% and
22.6% for n = 98. All the statistics have powers close or equal to 100% with the large sample size except for
Ji, Jo and Ji,. For experiment set I, when R2 = 0.2 and A = 0.2, J; and .J, have very low powers, less than
27%, and Ji, has powers lower than 76% with p = 0.2 and lower than 41% with p = 0.8. For experiment
set II, when R?2=0.2and \ = 0.2, J1, Jo and Jy, have powers lower than 60%. All statistics in experiment
set IIT have powers close or equal to 100%. Note that with n = 1519, J5, may still have slightly lower power
than Cozx, and Coz,, e.g., in experiment set I with R2=102,A=0.8, p = 0.2 and chi-square disturbances,
Joq has a power of 98.5%, while both Coz, and Coz, have a power of 100%.

The Cox-type tests are computationally more involved than the J-type tests, especially for large sample
sizes.?” First, the Cox-type tests are based on the QMLEs. However, with the development of more
advanced computers and computational techniques?®, the QMLE can be efficiently computed. A further
computational problem in calculating the Cox-type test statistics after deriving the QMLEs is on the traces
involving the inverses S7;}(A1,) and Ry} (1) or on the product of S5} (A1) and a vector (see Appendix
A). LeSage and Pace (2009, pp. 110-113) have discussed some techniques in computing such terms. Those

approaches may make the computation practically easier.

6. Empirical Illustration

We illustrate the use of the Cox-type tests with the housing data set in Harrison and Rubinfeld (1978).
Pace and Gilley (1997) added longitude-latitude coordinates for census tracts to the data set. With the
augmented data set, LeSage (1999, pp. 83-94) estimates a SARAR model, where the dependent variable
is the studentized log of median housing prices for each of the 506 census tracts, the explanatory variables
include 13 covariates, and the spatial weights matrix for both the spatial lag and the spatial error dependence
is a first order contiguity matrix (call it Wy,.). We create a row-normalized spatial weights matrix based

on 5 nearest neighbors (call it Ws,,,), where the elements corresponding to a census tract’s five nearest

27For Experiment Set I with the sample size of n = 1519, when R2 = 0.8, A = 0.2, p = 0.2 and the disturbances are normal,
Computing J1, J2, Jia, J24, Coz, and Coz, once take, respectively, 0.3, 0.3, 7.8, 7.8, 101.6 and 17.6 seconds on average, using

Matlab on a desktop computer with Intel Core i7-2600 processor and 8 gigabyte memory.
28See, e.g., Pace and LeSage (2009) and Smirnov and Anselin (2009).
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Table 2: Empirical size and power for experiment set I with normal disturbances

and n = 98f
Asymptotic’ Bootstrap! Asymptotic’ Bootstrap'
Size Power Size Power Size Power Size Power
R?=0.2, A=0.2, p=0.2 R?=0.2, A=0.2, p=0.8
Ji 6.7 5.0 5.8 4.4 5.0 5.4 8.9 8.4
Ja2 5.5 5.1 4.0 3.3 6.7 209 59 17.8
J1a 12.8 14.7 4.7 4.9 11.5 16.6 5.3 6.7
J2a 46.8 26.8 4.1 2.5 24.3 12.3 4.0 1.2
Aug 6.5 5.2 5.4 5.1 5.3 35.7 5.6 35.0
Wald  70.3 74.2 2.3 2.9 50.4 80.5 4.5 3.1
Score 6.6 3.9 6.6 4.0 4.7 15.2 4.0 17.0
Coz, 6.7 24.7 3.1 8.8 5.3 74.2 5.0 57.4
Coz, 7.0 19.4 4.0 10.4 3.9 72.7 4.9 55.2
R?*=02,A=08,p=0.2 R?>=02,A=08,p=0.8
Ji 2.8 3.2 7.7 5.4 2.3 1.3 6.5 5.7
Jo 5.3 24.9 4.6 22.1 4.3 35.9 5.2 35.6
Jia 10.4 29.7 4.7 10.5 8.4 23.1 5.3 13.9
Joa 43.2 13.6 4.7 1.2 25.5 40.0 4.5 14.2
Aug 5.9 38.2 5.3 38.6 7.3 92.4 6.2 92.2
Wald  50.5 87.5 4.1 6.3 30.6 98.8 2.8 0.6
Score 5.7 17.3 4.8 17.5 6.9 76.5 5.3 77.5
Coz, 5.1 77.8 4.2 59.8 3.4 99.4 4.9 97.3
Coz, 3.2 75.9 4.4 58.2 1.8 99.6 3.8 97.3
R?*=08,A=02,p=0.2 R?>=08,A=02p=0.8
Ji 5.2 18.8 3.6 11.6 6.3 15.9 4.1 12.9
Ja 5.6 21.0 4.2 13.2 7.5 27.4 4.1 20.5
Jia 14.6 31.2 4.9 12.6 11.1 30.7 4.6 16.9
J2a 9.3 353 4.5 16.7 13.3 493 5.9 18.0
Aug 5.3 19.9 5.1 18.3 6.3 75.5 5.6 73.7
Wald  53.0 81.0 2.6 9.3 27.6 64.2 4.8 13.1
Score 6.6 12.7 6.3 12.2 5.7 53.4 4.9 52.5
Cozx, 8.7 57.2 44 314 7.6 93.9 5.7 92.1
Coz, 8.7 49.3 4.5 28.8 6.5 94.3 5.0 91.5
R?>=08,A=08, p=0.2 R?>=08,A=08,p=0.8
Ji 6.1 91.8 5.8 92.3 6.1 583 6.3 52.6
Ja 5.2 98.9 4.7 99.0 6.3 95.2 8.2 84.0
J1a 18.5 88.8 5.0 771 14.3 89.9 49 79.1
J2a 9.5 83.7 5.2 57.5 13.3 73.5 5.1 63.9
Aug 5.3 97.7 4.8 97.2 5.7 99.5 5.8 99.5
Wald  26.0 97.1 3.9 88.0 34.7 96.6 4.5 81.2
Score 5.8 92.9 5.1 91.4 6.8 97.2 5.7 96.8
Cozx, 5.0 100.0 4.9 99.9 3.9 100.0 4.8 100.0
Cox, 4.2 99.9 54 99.9 2.3 100.0 5.1 100.0

T All empirical sizes and powers are expressed as percentages with the sign
% being omitted. The “Asymptotic” and “Bootstrap” mean that the
reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 3: Empirical size and power for experiment set I with chi-square disturbances

and n = 981

Asymptotic Bootstrap Asymptotic Bootstrap
Size Power Size Power Size Power Size Power
R?=0.2, A=0.2, p=0.2 R?=0.2, A=0.2, p=0.8
Ji 5.7 5.1 5.4 4.8 5.3 4.2 10.9 7.3
Jo 6.1 6.4 4.1 4.9 7.8 20.8 7.3 16.9
J1a 10.3 13.7 2.8 4.7 8.8 15.3 4.3 5.8
J2a 44.2 29.2 4.5 2.3 23.0 114 3.1 1.0
Aug 5.5 4.4 5.2 4.8 4.9 33.9 5.2 34.8
Wald  51.7 54.6 3.4 4.2 42.1 70.4 3.5 2.8
Score 1.8 0.7 5.8 3.9 2.6 9.2 5.7 22.8
Cozx, 6.0 22.1 2.9 7.6 5.0 72.3 4.9 56.3
Cox, 5.7 17.5 4.2 10.6 4.2 74.8 5.5 60.1
R?*=02,A=08,p=0.2 R>=02,A=08, p=0.8
Ji 3.3 3.6 7.4 4.8 2.2 1.5 8.9 5.5
Jo 6.6 25.3 5.6 22.3 4.1 36.5 5.6 36.3
J1a 7.6 26.3 3.6 9.7 6.3 23.0 4.1 114
J2a 41.8 14.3 3.4 0.8 22.8 39.5 4.1 13.6
Aug 4.9 35.6 5.1 36.9 7.4 92.7 6.5 92.5
Wald  42.2 83.6 5.6 6.4 24.7 97.0 3.5 0.2
Score 2.3 11.1 5.3 23.8 3.0 69.6 5.9 84.8
Coz, 4.4 75.9 4.7 58.2 3.1 99.3 4.0 97.9
Coxq, 3.1 75.6 3.7 58.9 1.6 98.7 4.5 97.3
R?*=08,A=02,p=0.2 R>=08,A=02,p=0.8
Ji 5.3 19.3 4.7 12.5 7.3 18.0 4.6 11.9
Jo 5.6 22.1 4.8 14.8 9.7 28.7 5.2 20.9
J1a 11.5 34.8 4.4 13.0 9.3 33.6 4.9 14.4
J2a 9.2 358 3.9 17.2 13.5 50.4 5.7 16.5
Aug 5.1 20.5 4.5 20.7 6.2 76.7 5.6 75.2
Wald  33.6 58.5 4.1 5.8 21.6 36.2 5.7 6.5
Score 2.2 5.2 4.8 14.4 2.5 46.7 5.2 58.6
Coz, 8.4 56.0 4.9 314 6.3 95.0 4.8 92.6
Coz, 8.2 458 5.0 30.1 6.9 94.7 5.7 91.7
R?*=08,A=08,p=0.2 R?>=08,A=08, p=0.8
J1 4.2 90.7 3.4 92.6 7.5 62.2 8.0 54.6
Ja 3.9 98.7 4.0 98.4 6.7 94.2 94 84.5
J1a 16.3 88.1 3.8 76.8 114 89.7 4.1 77.0
J2a 9.5 81.8 4.2 56.2 12.2 73.2 6.0 58.5
Aug 4.6 98.2 4.2 97.6 5.9 99.7 5.5 99.7
Wald  20.6 93.4 3.7 85.2 26.0 93.7 4.4 72.5
Score 2.9 89.7 4.7 94.6 2.6 96.9 5.1 98.6
Coz, 4.0 99.9 4.5 99.9 2.8 99.9 4.1 100.0
Cox, 3.6 100.0 4.5 100.0 2.5 100.0 4.4 100.0

T All empirical sizes and powers are expressed as percentages with the sign
% being omitted. The “Asymptotic” and “Bootstrap” mean that the
reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 4: Empirical size and power for experiment set II with normal disturbances

and n = 98f

Asymptotic Bootstrap Asymptotic Bootstrap
Size Power Size Power Size Power Size Power
R?=0.2, A=0.2, p=0.2 R?=0.2, A=0.2, p=0.8
Ji 3.7 8.0 4.8 7.9 5.2 22.5 6.5 25.0
Ja 2.7 17.3 4.6 19.1 2.1 74.5 7.5 78.3
Jia 7.8 13.2 4.8 10.8 7.1 26.0 4.7 29.4
J2a 11.7 61.6 4.7 45.4 14.9 99.6 5.2 99.3
Aug 4.6 44.7 5.4 44.8 5.4 99.9 5.7 99.9
Wald  60.5 88.4 2.5 8.7 64.0 99.6 5.1 17.3
Score 4.0 34.3 4.4 34.9 4.3 99.5 5.3 99.5
Cozx, 18.6 83.3 2.6 37.4 3.7 99.9 4.2 99.9
Cox, 19.0 70.0 4.8 42.4 3.8 100.0 4.3 100.0
R?*=02,A=08,p=0.2 R>=02,A=08,p=0.8
Ji 3.8 37.1 4.5 34.9 5.0 33.5 5.6 34.3
Ja2 2.0 81.7 5.9 82.1 1.5 97.4 4.9 97.6
Jia 7.9 39.4 5.1 41.3 7.4 55.0 4.1 55.9
J2a 15.7 99.5 5.1 99.1 15.5 100.0 4.2 100.0
Aug 5.3 99.9 5.9 99.9 7.2 100.0 6.2 100.0
Wald  67.3 99.3 5.3 174 71.2 99.4 5.0 41.1
Score 3.8 99.8 5.0 99.7 5.3 99.4 5.2 99.3
Cozx, 4.0 99.9 4.9 99.9 5.0 100.0 5.4 100.0
Coxg 3.2 100.0 4.0 100.0 2.3 100.0 6.1 100.0
R?*=08,A=02,p=0.2 R?>=08,A=02p=0.8
Ji 4.8 31.6 5.3 23.6 5.8 33.4 5.2 36.4
J2 4.6 39.7 4.8 30.5 5.0 55.7 5.3 54.3
Jia 9.8 45.8 4.3 26.5 7.8 43.7 3.8 38.6
Joa 11.3 76.4 5.1 55.6 10.2 97.8 5.5 96.0
Aug 4.7 59.7 5.0 60.0 4.8 99.9 5.7 99.9
Wald  37.8 93.0 1.7 30.2 34.1 100.0 5.5 96.5
Score 5.1 49.2 5.2 48.7 5.3 99.9 5.0 99.9
Cor, 20.2 92.4 3.1 53.0 4.5 99.9 4.2 99.9
Cor, 232 83.7 4.9 58.7 4.9 100.0 3.6 100.0
R?*=08,A=08, p=0.2 R?>=08,A=08,p=0.8
Ji 4.0 99.1 5.0 98.7 6.0 62.1 6.6 62.4
Jo 3.4 99.9 5.0 99.9 4.7 98.6 6.4 98.5
J1a 9.6 93.9 3.9 92.0 8.2 62.2 4.5 62.9
Joaq 10.7 100.0 5.1 100.0 12.8 100.0 5.5 100.0
Aug 4.2 100.0 4.0 100.0 6.2 100.0 6.1 100.0
Wald  57.0 100.0 4.7 98.6 66.2 100.0 5.6 87.6
Score 4.7 100.0 4.8 100.0 5.0 99.7 4.8 99.6
Coz, 7.9 100.0 5.3 100.0 5.7 100.0 4.3 100.0
Coz, 6.2 100.0 5.2 100.0 3.3 100.0 5.7 100.0

T All empirical sizes and powers are expressed as percentages with the sign
% being omitted. The “Asymptotic” and “Bootstrap” mean that the
reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 5: Empirical size and power for experiment set II with chi-square disturbances

and n = 98f

Asymptotic Bootstrap Asymptotic Bootstrap
Size Power Size Power Size Power Size Power
R?=0.2, A=0.2, p=0.2 R?=0.2, A=0.2, p=0.8
Ji 4.6 7.6 4.6 8.3 4.5 20.5 6.2 22.2
Ja2 1.9 15.1 3.9 15.7 1.9 71.6 5.2 74.9
Jia 7.8 17.3 5.6 13.5 7.8 27.6 4.8 18.5
J2a 8.8 61.8 3.7 47.6 10.7 99.2 4.8 98.1
Aug 3.8 42.9 5.4 44.1 4.3 100.0 5.1 100.0
Wald  48.3 74.0 2.4 8.6 59.1 99.5 5.1 17.3
Score 0.2 16.7 4.6 37.7 2.0 99.0 4.9 99.9
Cozx, 15.5 80.3 2.5 37.0 3.2 100.0 4.2 99.9
Cox, 13.8 70.1 4.8 49.2 1.4 99.9 3.6 99.9
R?*=02,A=08,p=0.2 R?>=02,A=08,p=0.8
Ji 4.6 36.1 5.4 37.2 2.0 30.4 2.8 35.9
Ja 2.1 85.2 4.8 86.1 0.8 96.0 4.0 96.9
Jia 7.3 40.6 4.7 40.7 8.0 55.6 4.8 57.2
J2a 14.0 99.2 4.1 99.0 14.8 100.0 5.0 100.0
Aug 4.7 100.0 5.4 100.0 5.2 100.0 4.4 100.0
Wald  64.2 99.2 5.4 18.7 64.8 99.8 6.4 32.6
Score 2.0 99.3 4.8 99.9 3.6 99.8 4.4 100.0
Cozx, 4.1 100.0 4.6 100.0 1.6 100.0 2.4 100.0
Coxg 1.4 100.0 3.4 99.9 0.3 100.0 4.4 100.0
R?*=08,A=02,p=0.2 R?>=08,A=02p=0.8
Ji 6.0 33.1 3.4 23.8 5.7 31.7 5.1 34.4
J2 5.6 41.1 3.7 30.9 5.0 53.0 4.7 50.7
Jia 9.8 43.7 3.1 30.9 8.4 46.0 4.6 42.6
Joa 8.0 72.4 4.8 57.5 9.0 97.4 4.7 96.2
Aug 5.0 58.3 4.7 59.1 4.3 100.0 4.8 100.0
Wald  28.5 90.0 2.6 29.9 30.2 99.9 4.9 93.8
Score 0.6 30.2 5.3 57.0 2.8 99.7 4.5 100.0
Cox, 17.6 91.8 2.3 51.9 3.6 100.0 3.6 99.8
Cor, 17.1 85.6 4.7 63.2 2.2 99.9 3.3 99.9
R?*=08,A=08,p=0.2 R?>=08,A=08,p=0.8
Ji 6.1 99.5 5.1 99.1 4.9 67.5 5.3 65.6
Jo 4.8 99.9 5.2 99.9 3.6 98.2 4.5 98.0
J1a 9.1 93.7 4.1 914 9.0 65.6 4.7 63.0
Joaq 10.9 100.0 5.6 100.0 9.9 100.0 4.7 100.0
Aug 5.6 100.0 6.2 100.0 4.4 100.0 4.3 100.0
Wald  53.0 100.0 3.2 96.2 60.6 99.9 4.2 81.5
Score 2.9 100.0 4.4 100.0 2.7 99.6 3.8 99.6
Coz, 7.0 100.0 4.7 100.0 5.3 100.0 5.3 100.0
Coz, 5.0 100.0 5.6 100.0 1.0 100.0 5.0 100.0

T All empirical sizes and powers are expressed as percentages with the sign
% being omitted. The “Asymptotic” and “Bootstrap” mean that the
reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 6: Empirical size and power for experiment set III with normal disturbances

and n = 98f

Asymptotic Bootstrap Asymptotic Bootstrap

Size Power Size Power Size Power Size Power

R?=0.2, A=0.2, p=0.2 R?=0.2, A=0.2, p=0.8
Ji 5.2 92.4 3.7 91.9 4.5 74.9 8.1 81.3
Ja 2.8 98.1 3.8 97.8 3.5 99.1 4.9 97.9
J1a 5.5 98.8 4.1 97.8 5.2 979 4.2 96.8
J2q 4.8 98.7 3.9 97.8 4.4 99.4 4.6 98.7
Aug 0.8 99.6 3.2 99.8 1.1 99.6 3.3 99.9
Wald  94.3 99.9 2.3 11.9 85.6 100.0 1.1 8.3
Score 5.0 98.9 4.3 98.5 5.5 99.4 5.3 99.4

Coz, 30.2 100.0 3.8 98.8 22.9 100.0 3.4 99.3
Cozq, 18.6 100.0 4.0 99.8 22.6 100.0 5.4  100.0

R?*=02,A=08,p=0.2 R?>=02,A=08,p=0.8
Ji 27 699 53 757 20 480 59  53.3
Jo 50 998 6.4  99.2 50 999 5.1 99.7
Jia 58 975 53  96.8 6.1 97.9 48 971
Joa 47 997 45 989 47 999 50 998
Aug 1.7 99.7 4.6 100.0 1.5 100.0 4.5  100.0
Wald 939  99.9 27 125 93.3  99.7 0.0 9.3
Score 54 985 49 979 89 1000 7.0  99.2
Coz, 282 1000 4.0 981 165 1000 35  99.6
Coz, 21.1 1000 4.8  99.8 175 1000 4.9  100.0

R?*=08,A=02,p=0.2 R?>=08,A=02p=0.8
Ji 46 1000 5.6  100.0 62 998 48  99.8
Jo 45 1000 5.8  100.0 47 1000 5.0 100.0
Jia 50 100.0 4.5  100.0 49 1000 5.0 100.0
Joa 48 1000 4.7  100.0 46 1000 52  100.0
Aug 20 1000 5.0 100.0 1.8 100.0 4.7  100.0
Wald 746 1000 6.0  48.6 447 100.0 4.4 13.6
Score 5.2 100.0 5.2  100.0 58 100.0 5.2  100.0

Coz, 14.1 100.0 4.5 100.0 16.9 100.0 5.3 100.0
Cozq, 104 100.0 5.4 100.0 15.6 100.0 5.2 100.0

R?>=08,A=08, p=0.2 R?>=08,A=08,p=0.8
i 3.5 1000 59  100.0 59 953 7.2 964
Jo 46 1000 52 1000 45 1000 4.7  100.0
Jia 52 1000 5.0  100.0 50  97.6 48 952
Joa 50 1000 5.6  100.0 45 1000 4.5  100.0
Aug 1.9 100.0 4.7 100.0 1.6 100.0 4.5  100.0
Wald 783  99.9 4.9 8.3 50.8  100.0 3.6 6.4
Score 4.9 100.0 4.3  100.0 6.8 1000 6.0 100.0

Coz, 14.6 1000 4.8 100.0 10.0 100.0 4.3 100.0
Cozg 9.8 100.0 4.8 100.0 12.3 100.0 5.3  100.0

T All empirical sizes and powers are expressed as percentages with the sign
% being omitted. The “Asymptotic” and “Bootstrap” mean that the
reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 7: Empirical size and power for experiment set III with chi-square distur-

bances and n = 98F

Asymptotic Bootstrap Asymptotic Bootstrap
Size Power Size Power Size Power Size Power
R?=0.2, A=0.2, p=0.2 R?=0.2, A=0.2, p=0.8
Ji 6.2 919 54 92.1 5.0 75.8 8.0 79.4
Jo 4.8 98.2 4.0 97.2 4.5 98.6 3.9 97.6
J1a 5.8 98.3 4.8 97.4 5.1 978 3.6 96.6
J2q 5.3 97.8 4.9 96.6 4.5 98.4 4.0 97.7
Aug 1.5 99.0 5.5 99.8 1.7 99.1 5.7 99.9
Wald  75.6 100.0 2.6 24.3 66.5 100.0 3.7 11.7
Score 0.7 95.4 5.2 99.1 0.7 96.9 4.7 99.7
Cor, 20.8 100.0 5.1 98.1 17.7 100.0 4.9 99.1
Cor, 13.5 99.9 4.6 99.7 14.3 100.0 5.2 99.9
R?*=02,A=08,p=0.2 R?>=02,A=08,p=0.8
Ji 3.3 69.7 6.3 76.3 3.0 472 6.8 55.6
Ja 5.6 99.2 4.7 98.4 5.0 99.7 4.0 99.3
J1a 5.4 97.7 4.5 96.2 5.9 97.6 4.5 96.0
J2a 5.8 99.3 5.6 98.6 49 1000 3.6 99.4
Aug 1.5 99.0 4.9 99.7 1.7 99.7 6.0 100.0
Wald  71.7 100.0 4.1 16.1 84.4 100.0 2.1 22.5
Score 0.7 93.5 5.9 99.3 14 97.2 6.3 99.7
Cor, 16.7 100.0 4.2 98.3 12.6 100.0 4.7 99.1
Cor, 124 100.0 5.0 99.7 10.0 100.0 5.4 100.0
R?*=08,A=02,p=0.2 R?>=08,A=02p=0.8
Ji 4.2 100.0 3.9 100.0 7.3 100.0 6.4  100.0
Ja 5.3 100.0 4.7 100.0 4.6 100.0 4.7 100.0
J1a 5.8 100.0 4.7 100.0 53 100.0 5.0 99.9
J2a 5.9 100.0 4.7 100.0 5.2 100.0 5.5 100.0
Aug 1.7 100.0 5.1 100.0 1.9 100.0 5.6 100.0
Wald  59.5 100.0 7.1 64.2 39.3 100.0 6.8 20.2
Score 1.7 100.0 4.1 100.0 1.7 100.0 4.7 100.0

Coz, 11.1 100.0 5.4 100.0 11.8 100.0 5.5 100.0
Cozg 8.7 100.0 4.9 100.0 10.2 100.0 5.8 100.0

R?>=08,A=08, p=0.2 R?>=08,A=08,p=0.8
i 36 1000 44  100.0 56 944 6.1 95.8
Jo 52 1000 4.8  100.0 48 1000 49  100.0
Jia 6.1 1000 55  100.0 59 989 5.6  96.9
Joa 54 1000 4.8  100.0 55 100.0 5.7  100.0
Aug 1.7 100.0 4.9 100.0 1.8 100.0 5.5  100.0
Wald 481 1000 5.0 9.6 472 100.0 4.1 8.7
Score 1.0 100.0 4.1  100.0 0.9 1000 50 100.0
Coz, 80 1000 4.2 100.0 53 100.0 3.6  100.0
Coz, 88 1000 6.0 100.0 7.0 100.0 6.0  100.0

T All empirical sizes and powers are expressed as percentages with the sign
% being omitted. The “Asymptotic” and “Bootstrap” mean that the
reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 8: Empirical size and power computed using asymptotic p-values for experiment set I

with n = 1519%

Normal Chi-square Normal Chi-squares
Size Power Size Power Size Power Size Power
R2=02,A=02,p=0.2 R2=02,A=02,p=0.8
Ji 53  16.1 44 151 6.2 149 56  14.0
Jo 44 194 39 173 7.7 26.1 83 242
Jia 53 752 50 735 56  37.2 51  40.6
Joq 46 979 50  97.7 48 995 6.0  99.4
Aug 45 984 44 981 5.1  100.0 4.8 100.0
Wald 721 99.7 65.5  99.3 40.1  100.0 39.0  100.0
Score 4.6 95.8 1.8 919 3.9  100.0 3.6 100.0
Coz, 2.8 998 56  99.9 4.4 100.0 5.4 100.0
Cor, 43  99.9 3.6  99.7 5.5  100.0 6.7 100.0
R2=02,1=08,p=0.2 R2=02,1=08,p=0.8
Ji 50  85.3 46  85.0 62 478 7.6 47.6
Jo 3.7 976 44 974 6.1 924 6.4 929
Jia 59 994 6.3  99.1 32  95.1 41  95.1
Joq 6.1 988 72 985 7.6 100.0 80  99.9
Aug 4.0 100.0 4.6  100.0 5.0 100.0 4.2 100.0
Wald 31.2  100.0 31.0  100.0 10.4  100.0 9.1 100.0
Score 5.0  100.0 3.8 100.0 4.6 100.0 3.7 100.0
Coz, 5.1 100.0 6.2 100.0 1.7 100.0 3.1 100.0
Coz, 52 100.0 6.5 100.0 2.1 100.0 2.5 100.0
R2=081=02,p=0.2 R2=081=02,p=0.8
Ji 47 970 47 965 50 853 48  85.6
Jo 48 971 45 970 51  87.7 52  87.2
Jia 55  98.3 45 979 51  97.6 47 980
Joa 4.8 100.0 5.4 100.0 54 100.0 4.6  100.0
Aug 4.9  100.0 4.8  100.0 4.7 100.0 5.5  100.0
Wald 20.6  100.0 17.9  100.0 11.2  100.0 10.9  100.0
Score 4.0 100.0 2.8 100.0 4.9  100.0 5.0  100.0
Coz, 5.4 100.0 7.8 100.0 3.9  100.0 6.1  100.0
Coz, 4.0 100.0 5.2 100.0 4.9  100.0 4.4 100.0
R2=08,A=08,p=0.2 R2=08,A=08,p=0.8
Ji 4.6  100.0 50  100.0 4.7 100.0 4.1 100.0
Jo 3.9 100.0 5.0  100.0 5.2 100.0 4.7 100.0
Jia 4.1 100.0 6.6  100.0 51  100.0 50  100.0
Joq 4.3 99.9 6.3  99.6 4.6 100.0 6.5 100.0
Aug 3.1 100.0 4.6  100.0 5.0  100.0 5.3 100.0
Wald 6.2 100.0 6.8 100.0 15.9  100.0 13.5  100.0
Score 5.3 100.0 4.4 100.0 4.3 100.0 3.5  100.0
Coz, 5.1 100.0 5.1  100.0 3.1 100.0 5.5 100.0
Coz, 4.4 100.0 45 100.0 3.1 100.0 3.8 100.0

T All empirical sizes and powers are expressed as percentages with the sign %

being omitted.
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Table 9: Empirical size and power computed using asymptotic p-values for experiment set 11

with n = 1519%

Normal Chi-square Normal Chi-squares
Size Power Size Power Size Power Size Power
R2=02,A=02,p=0.2 R2=02,A=02,p=0.8
Ji 56  29.2 55 283 6.8 344 58 354
Jo 46 373 53 359 59 589 50  56.0
Jia 6.4 423 6.8  40.2 55  45.8 47 471
Joq 5.4 100.0 57 999 5.4 100.0 6.9 100.0
Aug 5.0  100.0 5.6  100.0 5.0  100.0 6.2  100.0
Wald 69.4  100.0 63.5  100.0 16.8  100.0 16.1  100.0
Score 4.8  100.0 2.8 100.0 5.8  100.0 50  100.0
Coz, 127  100.0 12.6  100.0 55  100.0 5.4 100.0
Coz, 11.8 100.0 12.9  100.0 4.5  100.0 4.9  100.0
R2=02,1=08,p=0.2 R2=02,1=08,p=0.8
Ji 55  99.5 45  99.3 51  69.8 50 704
Jo 4.6 100.0 46  99.9 34 99.1 3.0 99.0
Jia 50  56.6 53  54.4 6.0  48.2 45 478
Joq 6.1  100.0 5.4 100.0 5.7 100.0 6.0 100.0
Aug 5.0  100.0 4.7 100.0 45  100.0 4.9  100.0
Wald 16.8  100.0 16.6  100.0 33.5  100.0 34.2  100.0
Score 5.9  100.0 4.8 100.0 4.2 100.0 2.9 100.0
Coz, 5.0 100.0 6.5 100.0 7.3 100.0 9.2 100.0
Coz, 4.9 100.0 4.8 100.0 7.1 100.0 6.5 100.0
R2=081=02,p=0.2 R2=081=02,p=0.8
Ji 5.4 100.0 54 998 6.4  82.7 52  83.1
Jo 4.7 100.0 6.1  99.8 6.2 882 55  88.0
Jia 58  99.8 58  99.8 6.0 932 56  90.8
Joa 4.9  100.0 6.7 100.0 4.8 100.0 6.7 100.0
Aug 4.8 100.0 6.3 100.0 4.9 100.0 6.3 100.0
Wald 9.6  100.0 9.7 100.0 16.7  100.0 16.8  100.0
Score 5.4 100.0 3.6  100.0 5.7 100.0 45 100.0
Coz, 9.4 100.0 9.3 100.0 6.0 100.0 51  100.0
Coz, 84 100.0 7.4 100.0 51  100.0 5.5  100.0
R2=08,A=08,p=0.2 R2=08,A=08,p=0.8
Ji 55  100.0 5.5  100.0 5.4 100.0 50  100.0
Jo 5.0  100.0 5.9  100.0 4.7 100.0 5.8  100.0
Jia 5.6 100.0 5.6  100.0 48 971 49 976
Joq 5.6 100.0 6.0 100.0 5.2 100.0 6.8  100.0
Aug 4.8 100.0 5.2 100.0 4.9  100.0 5.6 100.0
Wald 155  100.0 16.6  100.0 12.9  100.0 14.0  100.0
Score 5.6  100.0 5.2 100.0 5.2 100.0 4.0 100.0
Coz, 5.7 100.0 6.1  100.0 5.2 100.0 7.0 100.0
Coz, 6.6 100.0 6.0 100.0 5.7 100.0 5.9  100.0

T All empirical sizes and powers are expressed as percentages with the sign %

being omitted.
26



Table 10: Empirical size and power computed using asymptotic p-values for experiment set

III with n = 15197

Normal Chi-square Normal Chi-squares

Size Power Size Power Size Power Size Power
R2=02,A=02,p=0.2 R2=02,A=02,p=0.8

Ji 9.2 100.0 11.4  100.0 8.8 99.9 10.5 99.9

Jo 5.8 100.0 5.7 100.0 5.1  100.0 5.3  100.0

J1a 6.4  100.0 6.4  100.0 7.1 100.0 7.7 100.0

Jou 5.8  100.0 5.5  100.0 5.4  100.0 5.6  100.0

Aug 1.6  100.0 2.2 100.0 1.0 100.0 2.2 100.0

Wald  95.9 88.3 92.7  100.0 66.6 83.1 62.4  100.0

Score 4.8  100.0 1.5  100.0 5.5 99.5 1.7 100.0

Cox, 21.7 100.0 22.1  100.0 17.2  100.0 14.3  100.0
Coz, 18.3 100.0 12.3  100.0 17.3  100.0 12.4  100.0

R2=02,1=08,p=0.2 R2=02,1=08,p=0.8
Ji 5.2 100.0 6.6  100.0 42 99.7 54 995
Jo 5.6 100.0 5.8  100.0 5.6 100.0 5.7 100.0
Jia 5.4 100.0 6.8  100.0 6.3  100.0 7.5 100.0
Joa 5.7 100.0 58  100.0 5.6 100.0 5.9  100.0
Aug 1.8 100.0 2.1 100.0 1.0 100.0 2.1 100.0
Wald 89.6  87.7 60.0  100.0 79.6 885 70.4  100.0
Score 6.1 100.0 2.0  100.0 5.6  100.0 2.8 100.0
Coz, 19.9 100.0 13.3  100.0 54 100.0 5.2 100.0
Coz, 21.3  100.0 11.0  100.0 6.7  100.0 4.3 100.0

R2=081=02,p=0.2 R2=081=02,p=0.8
Ji 4.9  100.0 5.7 100.0 6.0  100.0 6.9  100.0
Jo 5.7 100.0 5.7 100.0 5.4 100.0 5.7 100.0
Jia 5.2 100.0 5.2 100.0 51 100.0 58  100.0
Joa 5.5 100.0 5.4 100.0 5.5  100.0 5.9  100.0
Aug 1.7 100.0 2.1 100.0 1.0 100.0 2.1 100.0
Wald 716  98.1 73.1  100.0 46.7  99.5 48.5  100.0
Score 5.8  100.0 3.7 100.0 5.7 100.0 4.2 100.0
Coz, 9.2 100.0 8.6  100.0 8.6  100.0 7.5 100.0
Coz, 84 100.0 7.1 100.0 7.6 100.0 8.4  100.0

R2=08,A=08,p=0.2 R2=08,A=08,p=0.8
Ji 4.9  100.0 5.2 100.0 4.7 100.0 5.4 100.0
Jo 5.7 100.0 5.6 100.0 54 100.0 5.5 100.0
Jia 1.2 100.0 1.3 100.0 4.8  100.0 51 100.0
Joa 0.7 100.0 0.9  100.0 5.5  100.0 5.7 100.0
Aug 1.7 100.0 2.1 100.0 1.1 100.0 2.0  100.0
Wald 360  99.3 25.0  100.0 328 989 36.6  100.0
Score 6.0  100.0 2.9 100.0 7.0 999 51 100.0
Coz, 7.2 100.0 81 100.0 6.1 100.0 4.2 100.0
Cor, 7.1 100.0 6.8  100.0 6.2  100.0 55 100.0

T All empirical sizes and powers are expressed as percentages with the sign %

being omitted.
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neighbors are 0.2 and other elements are zero. The matrix is then used to re-estimate the SARAR model
and we test the SARAR model with Wy, against the one with Wi, and vice versa.

The estimation of the SARAR model with W, generates similar parameter estimates and inference to
that of the SARAR model with Wy, with the exception of the parameter for proportion of owner-occupied
units built prior to 1940, which becomes significant at the 5% level. The coefficient of determination?® and
log likelihood with W, are, respectively, 0.888 and -18.9, higher than the corresponding values 0.866 and
-56.0 for the SARAR model with W,

We compute various test statistics for the SARAR models with the two different spatial weights matrices.
To compute the Cox-type test statistics, (3) and (A.2) can be used for the numerators and (A.14)—(A.17)
can be used for the denominators. The testing results at the 5% level are reported in Table 11. For the
test of the SARAR model with Wy, against that with Ws,,, the results with asymptotic and bootstrapped
p-values are the same: Hj is rejected for all tests except J;. For the test of the SARAR model with W,
against that with Wy, Ji and Ji, generate different results with asymptotic and bootstrapped p-values
while other test statistics generate the same result. Based on the bootstrapped p-values, the null hypothesis
with Wk, cannot be rejected for all test statistics except Wald and Score. For the J-type and Cox-type
tests based on the bootstrapped p-values, Jo, Ji4, J2u, Cox, and Cozx, are in favor of Wj,,,, but J; is not

able to distinguish the two matrices with the given data. In conclusion, most tests are in favor of Ws,,,,.

7. Conclusion

In this paper, we derive the Cox-type tests of non-nested hypotheses for SARAR models. We show
that they are not asymptotically equivalent to the spatial J tests under the null hypothesis. We also prove
that the bootstrap is consistent for Cox-type tests. The bootstrap may be used to remove the possible size
distortion of the Cox-type tests in finite samples.

The performances of the Cox-type tests, spatial J tests, a LM test from a simple augmented model, the
extended Wald and extended score tests (derived in the appendices) are compared in a Monte Carlo study.
The extended Wald and Cox-type test statistics have large size distortions in some cases. But a simple
bootstrap procedure essentially removes the size distortions of all tests. Using bootstrapped p-values, the
Cox tests have relatively high power in all experiments and can outperform other tests in some cases. For
the J-type tests, it turns out that alternative estimation methods may significantly improve the power over
the ones based on spatial 2SLS estimation methods. With alternative estimation methods to implement

the J test procedure, the Cox-type and such J-type tests can be complimentary to each other for some

29The coefficient of determination is defined as usual, i.e., one minus the ratio of the residual sum of squares over the total

sum of squares.
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Table 11: Testing results with a housing data set (Whether Hy is rejected or
not)Jr

Wioe against Wsy,y, Wnn against Wyoe

Statistic Asymptotic Bootstrap Asymptotic  Bootstrap

J1 No No Yes No
Jo Yes Yes No No
J1a Yes Yes Yes No
Jog Yes Yes No No
Aug Yes Yes No No
Wald Yes Yes Yes Yes
Score Yes Yes Yes Yes
Coz, Yes Yes No No
Cox, Yes Yes No No

f The “Asymptotic” and “Bootstrap” mean that test statistics
are computed by using, respectively, the asymptotic and boot-
strapped p-values. The “Yes” and “No” mean that Hj is, respec-

tively, rejected and not rejected at the 5% level of significance.
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cases. For the two versions of the Cox test, we suggest the use of Atkinson’s version (in (14)) because of its

computational simplicity.

Appendix A. Notations and Expressions

For j = 1,2, ¢; = (Nj,p;)'s 05 = (65,85, 03) Rjn(pj) = In — piMjn, Sjn(Nj) = In — X\jWin, Ljn(0;)
is the log likelihood function of the model (j), L;n(6;;6;) is the expected value of L;,(6;) when the model
(¢) with the parameter §; generates the data, and 6, is the true parameter vector of the model (j) when it
generates the data. The 6;,,(6;) is the pseudo true value of the model (j) when the DGP is the model ()
with the parameter 0;, and 0;,,; = 0;,(0;0). Denote Rjn = Rjn(pjn.1)s Sin = Sin(Ajn.1), Qin = Wlnanl,
Qo = WgnSl_n1 and T3,, = Mlan_nl. For any square matrix A, A = A+ A’

As many identical terms appear in various matrices needed for the computation of test statistics in the

paper, we define the following expressions:

RX 1, = RipX1n, RSSR,, = Ry, 82,51,  RT,), RD,, = Ro,,(S2,57,} X1n810 — XanBaon.1),
RX 3, = RapXon, MSSR,, = My, S0, Sy} Ry MD,, = Ma,, (520,57, X1nB10 — X2nBon1),
RQR,, = R1,Qi.R;,,, ROXB1n = RinQ1nX1nBi0, RSSQR,, = R2, 52,51, Qi Ry,
RQR,, = Ro,QanRy,), RQX B2y = RonQ2, X110,  RSSQX B, = RonS2,,S7, Q10X 1010,

RSSX,, = R2nS9nS1,} Xin.
The concentrated quasi log likelihood function L;,(¢;) = maxg, 2 Lj,(8;) for j =1,2 is equal to
n n ~
Lyu(é) = 2 (2m) + 1] = 2 1052, (05) + In |50 (0)| + 1 | Ry, (A1)

where 62, (6;) = n~y;,85, (N R}, (05) Hjn(pj) Rjn(p5)Sin(Aj)yn with
Hjn(ps) = In = Rjn(pj) Xjn X}, R}, (05) Rin () Xjn] ~ X}, RS, (p5). The Ljn(85;610) = E Ljn(6;) is

Jjn=vljn jn"vin

= n n
Ljn(05;6010) = *gln(%) D) 1110’32' + 1 [Sn(A)] + In [ R (p;)]

2
_ %10

52 TR S S ) B (05) Rjn (03)Sin (M) S By (A.2)
J
1 _ _
~ 55215 (A)ST) XinBro — XjnB5) R, (0) Rin(p5)[Sin (X)) S5, X1nBro — XjnB]-
J

By the maximization of Egn(Hg; 010) for a given ¢o, we have

Bon($2;610) = [X3, R, (p2) Ron (p2) Xon] ™' X5, R, (p2) Ran (p2) S2n (X2) S, X1n 10, (A.3)
2

75, (¢2:610) = % tr[RY, ST, S, (A2) Ry, (p2) Ran (p2) San (A2) St Ry ] A4
. .

+ E(XlnBIO)/Sj/L;lSén()‘2)Rén(pQ)HQn(p2)R2n(p2)SQn()\Q)S;anln/BIQ
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Then .Z/jn(¢j; 910) = HlaXﬂj7U]2 .Z/jn(gj; 910) is
_ n n
Ljn(33610) = =5 [In(2m) + 1] = 5 57, (655 610) + I [ (A))] + I R (p)] (A.5)

The first order derivatives of L1,(01) at 619 are

1 OL1,(0 1 L
% 18)51 10) = \/50'2 [EllnRQRlneln - U%O tI‘(an>] + WRQXB/JWGP’“ (A6)
2 10
1 0L, (0 1 ’
S O0) e T, — o r(Ti) (A7)
10
1 0Ly, (610) 1 /
1 _ RX' e, A8
Voo 0B Vnot, nl A
LaLln(Qlo) 1

= (ellneln - HU%O), (Ag)

vn o 90?  2ynoi,
The first order derivatives of Lo, (02) at ézn’l with y,, expressed as the model (1) being the DGP are

Loy, (0o, 1
9 ”(%’”::_2 (RD!,RQR,, + RQX ), RSSR,)e1,
3)\2 0277,,1

1 (A.10)
+ E [e/lnRQR/QnRSSann — 0%0 tr(RQR’ZnRSSRn)],
2n,1
OLonlons) _ L (yipr p§sR,, + RD)MSSR, e,
Opa O2n,1 (A.11)
1 .
+ Ea [€],, MSSR!, RSSR €1, — Jfo tr(MSSR!, RSSR,,)],
2n,1
6L2n (§2n 1) 1 /
=L = RX5 RSSR, €1y, A.12
aﬁQ 5%%1 2n 1 ( )

Lo (025, 1 1
0 2(2“):,4 RD!,RSSRy1n + ~—— [}, RSSR, RSSR €1, — 0% tr(RSSR!, RSSR,,)].  (A.13)
do3 Oan,1 O9on,1

For any n-dimensional square matrices A,, and B,,, and n-dimensional vectors a,, and b,,, let IT1 (A, an, Bn,by) =
E[(G/mAnqn — o2tr(A,) + a;eln) (e’laneln — odtr(B,) + b’nqn)], which is the covariance of two linear-
quadratic forms. The detailed expression for Iy (A,, an, By, b,) is given in Lemma 1. Denote IT; (A, a,) =
I, (A, an, Ay, ap) for short. Let ps; be the third moment of €1, 0;x; be an i x j matrix of zeros, and

vecp(Ay) be a column vector consisting of the diagonal elements of A,,. Then according to (A.6)—(A.9), the

symmetric matrix 1, 1 in (5) is°
1
Qpi1 = ——
et ”Uilo
Hl(RQRlna RQXﬂln) * * *
I (T1n, Onx1, RQR1p, RQX B1y) I (T On k1) * *
RX7, [131 vecp (RQR1,) + 03 RQX B11] us1RX1,, veep(T1y) o3 RX}, RX1, *
#H1(17L707L><17RQR1H7RQXlgln) #H1(17L70nX17T1n707L><1) 2’?21 VeCD/(In)RXIn ﬁnl(lruonxl)
10 10 10 10

30When €1n,;’s are normal, as Q1,,1 = X1p,1, only Q1,1 or ¥1,,1 needs to be estimated.

31



According to (A.10)—(A.13), the symmetric matrix Qg, 1 in (7) may be written as a 4 x 4 block matrix,
where the (1, 1)th block is

11, (RQR,, RSSR,., RQR,, RD,, + RSSR., RQX fay,),

2n,1

the (2, 1)th block is

I, (MSSR., RSSR,,, MSSR,,RD,, + RSSR!, MD,,, RQR), RSSR,,, RQR},, RD,, + RSSR., RQX Ban),
2n 1

the (2, 2)th block is

T, (MSSR!, RSSR,,, MSSR', RD,, + RSSR', MD,,),

NOgp 1
the (3, 1)th, (3,2)th and (3, 3)th blocks form the vector

——— RX}, RSSR, (131 vecn (RQRY, RSSR,) + 02, (RQRY, RD,, + RSSR!, RQX f2,),

nUZn 1

ps1 veep (MSSR!, RSSR,,) + o3 (MSSR!, RD,, + RSSR!,MD,,), 03, RSSR,, RX2,],

and, the (4, 1)th, (4,2)th, (4,3)th and (4,4)th blocks form the vector

1 1
—5 [ 1 (§RSSR;LRSSR,“ RSSR!,RD,,, RQR), RSSR,,, RQR), RD,, + RSSR;LRQXBQH),

N0y, 1
I, (iRSSR;,RSSRn, RSSR!,RD,,, MSSR!, RSSR,,, MSSR!,RD,, + RSSR, MD,,),
1
(% vecp’(RSSR., RSSR,,) + o3, RD,, RSSRn) RSSR! RX,,11; (iRSSR:LRSSRn, RSSR/TLRDH)] .
For computational simplicity, X1, 1 in (5) may be estimated by 1 %a(g}n)’ and Yo, 1 in (7) may be

estimated by + 8L2’7‘(02”), as shown in the proof of Proposition 4. We thus only give the expressions for

90,007,
68%;7’5(02). For j =1,2,
0%L.,(0; 3 B 1
TLinl03) — 0305, 0 Wi 5 )] = YW R (01) R (91 Wit
J J
O%L.,(0; 1
W = 72y;LWj{n[M]l'nRjn(pj) + R;‘n(pj)MjnHSjn(/\j)yn - Xjnﬁj]a
J J 7
0?L;n (0 1
Wﬂﬂ = 72 JnR;TL( )Rjn(Pj)anym
FOP;
0%L,,(0; 1
WEIQJ) = ? ; Wj/nR;n( )Rjn(pj)[sjn()‘j)yn - XjnﬁjL
V] J
82.[/]”(0]) -1 -1 ]. , ,
005 :
0%L ., (6; 1
W = *ple‘n[Myl‘nRjn(Pj) + R (05) Mjn[Sin (M) yn — XjnBi),
0P i
0%L.,(0; 1 )
ap]ﬁ(a;) = =7 155 (A)yn = Xju 5] Mo Rin (p5) (S (Xg)yn = XjnBi,
s J
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PLyn(0;) 1

“an aar 77X/ ! in\Pj X'na
86]65; O_JQ Rjn( )RJ (p]) J
%L, (05) 1
8ﬂj60§ - _UiggxénR;‘n(Pj)Rjn(Pj)[sjn()\j)yn - XjnbBl,
0%L;,(05) n 1
5(3)2)2] = g;i - ;J@[Sjn(/\j)yn — XjnBi) Ry (05) Rjn (p)[Sin (X)) yn — XjnBj]-

In (11) which gives the expression for 07,,, Cap,1 is equal to

o2
Con1 = 1 [ RD! RSSQX S, + ,210 tr(RSSQR! RSSR,,),
nUan 02n1 (A.14)
) .
10 tr(RSSR, RSSR, Tin), —— RD|, RSSX ,,, —5— tr(RSSR,, RSSR.,)] ,
‘72n 1 2n 1 2‘72n,1
_ = a7 1 F oA . 1 ) OL14, (010)
1 var <[L2n(92n,1) - L2n(02n,1a010)]> [ av ar(Lon (020,1) — Lan(P2n,1:610)) = E(L2n(620,1) o )
- OL1n (61 - ’
n 89(1 ol % E(LZn(92n 1)%(910)) an,l
(A.15)
where
_ - 1 1
VaI‘(LQn (921'7,,1) — LG (9271’1; 910)) = 6TH1 <§RSSR/TLRSSRH, RSSR;LRDH), (A16)
2n,1
and
~ 5L1n(910)
E(L2y(02n,1) 69’ )
1
= R ; [ ( RSSR’ RSSR,, RSSR’ RD,, RQR1,, RQXﬂln),Hl (iRSSR;LRSSRn, RSSR;LRDH,TM,O,L“),
1092n,1
1
(%vecD(RSSR;RSSRn) + RD;LRSSRn)Rle ﬁﬂl (iRSSR;RSSRn, RSSR;LRD,L, I, Onxl)] .
10

(A.17)
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_ 1 8%*Lan(P2n.15010) -
For P2n71 = ;W m (B2), we have

0%Lay(Oon,15010) 1

(RD'/nRQnQ%lanXlnBlO + RSSQXB;LRQX/BQTL)

OX 01 h 5%”71
2
+ % tr(RSSQR}, RQRan + RY,' @1, Qb R, RSSR, ).
2n,1
621_/2 (ég 1'910) 0'%0
n n,ls _ t T/ / . s 7
v 57 tr(Tin(RSSR, FQRy.)°)
02Loy (02,13 010) 1
el = X! X By + X! Q) R, RD,
6)\28ﬁ1 537171 (RSS TLRQ 52 + 171,Q2n QnR )7
02Loy, (02,15 610) 1 /
i tr(RSSR, RQRay).
52Zl2n(9_2n 15 910) 1 / / -1
8p28)\1 6%7;,1( nR2 +R nt2 )52 Sln Ql 1 610
2
+ 0 tr(RY, Q41 S (M3, RSSRy + Rb, MSSR,)),
2n,1
0%Loy (025,15 610) ofo / / 0%Loy (025,15 610) I o et
— = — tr(77,,(MSSR;, RSSR,,)*), s = ——X! S-18! (My, RD, + R}, MD,,),
dpadpr N (T71,.( )%) 90200 7 1051 San (My 2 )
0?Loy(02n,1; 610) 1 / 0% Loy, (02,13 6010) 1
L = tr(RSSR!, MSSR,,), nA72n, 1, - RX!, RSSQX B,
Op2dot 0301 x " ) P20 03,0 " QXP
a2Z/2n(§2n 1; 910) 82E2n(§2n 15 910) 1 ,
: = Opyx1, ’ = ——RX}, RSSX,,
8B20p1 haxl 35208, e
9? Lan (0201 610) ?Lon(O2n1;010) o3
n n,ls — n n,ls — T/ / n
9p2007 Oz 1, 9020 = tr(7y,, RSSR,, RSSR,,),
PLonOn1i000) _ 1 paoyr pp O Lon(O2n11610) _ 1 tr(RSSR. RSSR.,)
90305 T3n.1 me 903002 258, 1 n o1 ),
2 Lon (0an ;0 1 ,
O LonOomrib) _ 1 (ppy pssqxs, +o% tr(RSSR, RSSQR,).
0050\ Ton1

The V3,1 in (B.3) is

1 0L (02n,1) L1, (010)
Van = [Tiyy —Pon1 27,1 ann w B (™50, gor) Ilk2
’ 27 ) n a P A B ,
’ 1 8L1n(910) dL2n(92n,l) 72 P/
+ E( 90, 0, ) Qinn 1 2n 1

where the expression for %E(aLz’é(giz"’l) angg(fw)) can be derived from (A.6)—(A.13).

Appendix B. The Extended Wald and Extended Score Tests

Appendiz B.1. The Extended Wald Test

Under the null hypothesis, both ézn and égn(éln) are estimators of the pseudo-true value égn,l and their

difference can be shown to converge to zero in probability. We would like to test whether this difference,
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after being properly scaled, is significantly different from zero, i.e., whether the null hypothesis could explain

the alternative model significantly well. This gives rise to the extended Wald test, which is based on

\/ﬁ(ézn - é2n(éln)) = \/ﬁ(ém —0O2n1) — \/E(§Qn(éln) — O2n,1). (B.1)
The first term on the right hand side of the above equation has been shown to be asymptotically normal
with mean zero by using (6). The second term is also asymptotically normal. Jointly, the asymptotical
distribution of \/ﬁ(égn - égn(éln)) can be obtained. By the mean value theorem,

_ 8E2n(§2n(éln); éln) o 8E2n(§2n,1; éln) 82E2n(9~2n,1; éln)

0 00, - 0, 90,00,

(éQn(éln) - g?n,l)a

where 6, 1 is between a,, 1 and 0y,,(1,,). Thus,

_ 19 Lon(Oan.1; 9>);M
N 06,00; Jn 06,

= 22_711,1P2n,1\/7l(é1n —b10) +op(1)

1 3L1n(910)

V(2 (010) = O2n1) =

= 2273,113271,1217},1% 20, +op(1),
where Po, 1 = %%@%’f;em). Therefore,
- ~ 4 _ 1 OLay(02n1) _1 1 0L1,(bh0)
V(Bon — Oon(Br10)) = 35,1, (WT - P2n7121n171ﬁ8701> +op(1). (B.2)

The partial derivatives of the log-likelihood functions at the true or pseudo-true values have been shown to

be linear-quadratic forms of €1, so \/ﬁ(égn — B2,,1) is asymptotically normal.

Proposition 7. Under Hy and Assumptions 1-4, 9—16,
V(B — O (01)) N(07HILII;O(EEJ,J%JEEJJ))’ (B.3)

1 9Lan (02, —1 1 8Li.(8 L
where Vo, 1 = var(ﬁ$ — PgnylEln’1ﬁ$), When €1p,,;’s are normally distributed, Vap,1 =

—1 /
Qan,1 — Pon 127, 1 Pop 1

When €1, ;’s are normally distributed, L1, (610) is the true probability density function. Then Poy, 1 =

E(%BL%(G?”J) 3L1§0(,91°)) and the information matrix equality holds for Lj,(61p). Similar to the case
1

of non-spatial models (Gourieroux et al., 1983), avar(yn(fz, — 02,(01n))) = avar(y/n(fay — O2n1)) —

avar(\/ﬁ(égn(éln) — 672,1_,1)), where avar(-) denotes the asymptotic VC matrix. Thus égn(éln) as an esti-
mator for égn’l is more efficient than égn.
Let igml and Vgn,l be, respectively, estimators of ¥, 1 and V5,1 such that i:gml —Ygn1 = op(1l) and

nglngn’l =op(1),and ‘A/Q'ZJ be a generalized inverse of ‘72”71. If lim,, o0 Pr(rk(f/gn,l) = rk(lim,,— o Vgnl)) =
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1 (Andrews, 1987), where rk(-) denotes the rank of a matrix, then under the null hypothesis, the extended
Wald test statistic
Wald = n(éQn - §2n(é1n))/22n,1‘72—;71227%1 (éZn - 0_2n(é1n)) (B~4)

is asymptotically distributed as a chi-square with degrees of freedom df given by the rank of lim, o Vap 1.
The extended Wald test of Hy against H; rejects Hy if Wald, > x?_, (df), where x3__ (df) is the (1 — a)
quantile of a chi-square distribution with df degrees of freedom for the chosen level of significance «, and
does not reject otherwise.

The Va1, even in the case where the DGP has normal i.i.d. disturbances, has a complicated form and
the rank of lim,,_,o Vap,1 is hard to check. One solution is to test rank constraints and estimate the rank via
a series of tests. But this kind of procedure often fails when the estimated matrix is positive semidefinite.3!

Another solution is to modify the test statistic to make sure that the involved matrix has full rank.3?

Appendixz B.2. The Extended Score Test

Under the null hypothesis,

i 8L2n (§2n (él'rL))
Vn 00,

which is asymptotically normal with mean zero and limiting VC matrix lim,,_o V2p,1. Then the extended

== EQn,l\/ﬁ(e_Zn(éln) - éQn) + OP(1)7 (B5)

score test statistic o .
o 1 6L2n(92n(01n)) yan aLQn(GZn (aln))

is asymptotically chi-square distributed with degrees of freedom df , if lim,, o P(rk(f/gn,l) = rk(lim,, o0 Vgnl)) =
1. From (B.2) and (B.4)—(B.6), it is clear that the extended Wald and score statistics are asymptotically

equivalent under the null hypothesis.

Appendix C. Lemmas

Lemma 1. Suppose that A, and B, are n-dimensional square matrices, a, and b, are n-dimensional
vectors, and €,;’s in €, = (€n1,--.,€nn) are i.i.d. with mean zero, variance 0(2), third moment ps and finite

fourth moment py. Then,

i) E(en - €, Anen) = p3 vecp(An),
i) E(el, Apen - €, Bnen) = (14 — 303 )vecy (Ay) veep (By) + ag tr(Ay,) tr(By,) + of tr(A, BS).
iii) B(eAnen — ol tr(An) + ahey) (€ Bnen — 0dtr(By) + blen)] = (ua — 30§)vec(A,) veen(By) +
o4 tr(AnBs) + ps(al, veep(By) + b, vecp (Ay)) + odal,by.

31See, e.g., Donald et al. (2007, 2010) and the cited references therein.
328ee Liitkepohl and Burda (1997).
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Proof. For i) and ii), see Lin and Lee (2010). Compared to Lin and Lee (2010), the additional terms
ps veen (An), (pa —303)vecs (Ay) veep(By) and of tr(Ay) tr(By,) appear because we do not assume that A,
and B,, have zero diagonals. iii) is a direct result of i) and ii). O

Lemmas 26 are elementary, and can be found, for example, in Lee (2004b). Lemma 7 is from Kelejian

and Prucha (2001).

Lemma 2. Suppose that A,, is uniformly bounded in either row or column sum norm, elements of the n X k
matrices X, are uniformly bounded, and lim,_, . %X;Xn exists and is nonsingular. Then tr(Mx, A,) =

tr(A,) + O(1), where Mx, = I, — X,,( X}, X,,) "1 X]..

Lemma 3. Suppose that n-dimensional square matrices {A,} are bounded in either row or column sum

norm and €,;’s in €, = (€n1,...,€xn) are i.i.d. with mean zero, variance 03 and finite fourth moment.

Then, E(e, Apen) = O(n), var(e, Aye,) = O(n), €, Anen, = Op(n) and e, Ane, — L E(e, Apen) = op(1).

Lemma 4. Suppose that A, is an n X n matriz with its column sum norm being bounded, elements of
the n x k matriz C,, are uniformly bounded, and elements €,;’s of €, = (€n1,---,€nn)’ are ii.d. (0,08).
Then ﬁC’,’LAnen = Op(1). Furthermore, if the limit of 1C}, A, A},C,, exists and is positive definite, then
L Cl Anen 5 N(0,03 limy o0 2C;, A, A7, Cr).

Lemma 5. Suppose that the elements of the sequences of n-dimensional vectors P, and Q,, are uniformly
bounded, and n-dimensional square matrices {A,} are bounded in either row or column sum norm, then

Lemma 6. Suppose that n x n matrices {||W,||} and {||S;;*(Xo)||} are bounded, where || - || is a matriz

norm and S, (\) = I, — A\W,,. Then the sequence {||S;; (||} is uniformly bounded in a neighborhood of \g.

Lemma 7. Suppose that n x n symmetric matrices { A, = [an,ij]} are UB, by, = (bp1,...,bnn)" is a vector
such that sup, n= ' Y1 | |bni [T < 0o for some p1 > 0, and €,;’s in €, = (€n1,+ ,€nn) are mutually
independent, with mean zero, variance o2, and finite moment of order higher than four such that E(|e,;|*T"2)
for some ny > 0 are uniformly bounded for all n and i. Let J?Qn be the variance of Q, where @, =

€ Anén + b,€n — Y1 aniion;. Assume that a3y /n is bounded away from zero. Then, Qn/oq, 4 N(0,1).

Lemma 8. Suppose that n x n matrices {M,} are UB. The smallest eigenvalue of R}, (p)Ry(p) is bounded
away from zero uniformly over the interval [—9,6], where R,(p) = I, — pM,. Elements of the n x k
matriz X, are uniformly bounded. The limit of ~X| Rl (p)R,(p)Xn ezists and is nonsingular for any
p € [=6,6]. Then elements of (1X R, (p)Rn(p)X,)™' are uniformly bounded in [—6,6], and Hy,(p) =
I, — Ru(p) Xn(X R, (p)Rn(p) X))t X! R (p) is UB uniformly in p € [—6,6].
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Proof. As the smallest eigenvalue of R, (p)R,(p) is bounded away from zero uniformly on [—d,d], there
exists a constant £ > 0 such that the smallest eigenvalue of R/, (p) R, (p) is greater or equal to k for any n and
p € [=9,48]. Write R, (p)R,(p) =T (p)An(p)Tn(p), where 'y (p) is an n x n orthonormal matrix and A, (p) is
a diagonal matrix with the diagonal elements being the eigenvalues of R}, (p) R, (p). Then R}, (p) Ry (p)—rI, =
I (p)[An(p) — kI, (p) is positive semi-definite, which implies that (££X], X,,) ™' = (2 X/ R, (p)Rn(p) Xn) ™"
is also positive semi-definite. Thus, elements of (1 X/ R/, (p)Rn(p)X,) " and

1

are uniformly bounded in p € [=§,4]. It follows that L X,(1X/R! (p)R.(p)X,) ' X}, is UB uniformly in
p € [—0,8]. As R, (p) is UB uniformly in p € [=4, 9], Hy(p) is also UB uniformly in p € [-4, d]. O

Lemma 9. Let W,,, M,, and A, be nxn matrices that are UB, b,, be an n-dimensional vector with uniformly
bounded elements, X, be an n X k matriz with uniformly bounded elements, and €, = (€p1,...,€nn) be a
random vector with i.i.d. elements that have mean zero, variance o5 and finite fourth moment. Assume
that lim,,_ oo %X&R;(p)Rn(p)Xn exists and is nonsingular for any p € [—0,8], where R, = I, — pM,.
Let Su(N) = In — AW, and Tu(8) = G(@)Ha(p)Gn(9) with 6 = (A p)', G(@) = Ru(p)Su(A) and
H,(p) = I, — Ry(p) Xn(X, Rl (p)Rn(p) X0n) ' X, R (p). Then L10/.T,(¢)Ane, = op(1) uniformly on the
parameter space ® = [5,68] x [=6,6], L[, Al T, (¢)Anen — 08 tr(A, T, (¢)An)] = op(1) uniformly on ®, and
LA (G (B)Gn(9) — Tu(6))Au] = o(1) uniformiy on @.

Proof. By 21.9 Theorem on p. 337 of Davidson (1994), the uniform convergence of a sequence of stochatic
functions { f,(¢)} on ® follows from the pointwise convergence in probability f,(¢) = op(1) for every ¢ € ®
and the stochastic equicontinuity of {f, (¢)}. For the stochastic equicotinuity, by 21.10 Theorem on p. 339
of Davidson (1994), a sufficient condition is that |f,(¢*) — fu(@)| < enh(||¢* — ¢||), for any ¢*, ¢ € ®, where
{en} is a stochastically bounded sequence not depending on ¢, h(z) is nonstochastic which goes down to 0
as x goes down to 0, and || - || denotes the Euclidean vector norm. By Lemma 8, H,(p) is UB uniformly
over the parameter space. Then 10! T, (¢)A,e, = op(1) for any ¢ = (X, p)’ in ® and L[e, AT, (¢)Anen —
ol tr(AL T, (¢)An)] = op(1) for any ¢ € ® by Lemma 4, and L tr[A], G} ()P, (p)Gn(d)An] = o(1) for any
¢ € ® by Lemma 2, where P,(p) = I, — H,(p). It remains to show the stochastic equicontinuity of the
sequences { L6, T (0) Anen, {11, AL To(0) Anen — 03 tr( A, Tu(6) )]} and {1 tr{A,G1(6) Pa() G (6) Aul).

By the mean value theorem,

Eb’nTn(qb*)Anen - EbLLTn((b)Anen = ﬁb;’ 8)(\¢) Apen( N = X) + ﬁb" a;(b) Apen(p® = p),
where 2558 = — G, (6)Ha(p) R (9)Wo = Wi R/, () Ha(p) (),
) Gl (G ()M, — S ML H (9)Gnl0) + Go(0) P56 0
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with
OH,(p)

ap = M"LX”[X?/’LR;L(p)Rn(p)XTL]ilXTI’LR;’L(p) + Rn(p)Xn [XT/’LR;’L(p)Rn(p)X’!L]ilX'II’LM'V/’L

— R (p)Xn[ XL R, (p) R (p) X)) ' [X) M Ry (p) X + X R (p) M X, ] [X0, R (p) R (0) X X R (),

and ¢ is between ¢* and ¢. Since X, [ X! R, (p)Rn(p)Xn] ' X/, and H,,(p) are UB uniformly in p by Lemma 8,
R, (p) is linear in p and S,(\) is linear in A, there exists a finite constant ¢ such that all elements of

Lo, O (¢)A | and |10/, aT"(qb)A | are bounded by c. Hence,

1 . 1 2¢ .
|5b;Tn(¢ )JAnen — Eb;Tn<¢)An€n| < . Z lens| - 10" — &I,
i=1

where L 37" | |e,;| = Op(1) by Markov’s inequality. Then {2/, T,,(¢) A€, } is stochastically equicontinuous.
For {L[el, Al T, (¢)Anen — o tr(ALTa(¢)An)]}, by the mean value theorem,
AL (67) At — o3 (AL T (67) Au)] = e AT (0) Anen — 0F (AL To(6) )]
= Lo Oy %e;A; L) p et )
— % i, 200 g e sy = B, ) gy
A D L 2,
9 220 4y 98, OO g — gy,

where ¢ lies in between ¢* and ¢. As Al BT (¢ A, is symmetric, by the eigenvalue-eigenvector decomposition,

there exists othornormal matrix I',, and elgenvalue matrix A,, = Diag{\,1, -, Ann} such that

T, (9) ,
B

1 1
E' nAl n6n| = E'anrnAnF;ﬁM < gi:r%?j)-{,n |/\T”| : E{nen

< 114, T g e < S = 00 (1)

by the spectral radius theorem, for some constant c;, because A;%@An is UB uniformly in ¢ € ®.
Similarly, %|6;A;8T57,@Anen| < “e e, = Op(1). Furthermore, %tr[A%aTgi’/\(qb)An] and %tr[A%aTgi’p(@An] are
bounded uniformly on ®. Then {1[e}, A T,,(¢)Anen — tr(A, T, (¢) A S0)]} is stochastically equicontinuous.

For {1 tr(AL Gl ()P (p)Gn(d)An)}, its derivative is %% tr(A,G (0)Gr(P)An) — = 8¢ O tr(ALT,(p)An),
which is bounded by a constant not depending on ¢ in absolute value. Then by the mean value theorem,
L (AL Gl () Pa(p)Gr(#)Ay) is equicontinuous.

The results in the lemma follow from the pointwise convergence and stochastic equicontinuity. O

The following lemmas are for the consistency of the bootstrap for Cox-type tests. Let €}, be the residual
vector from the QML estimation of the the model (1) with the bootstrapped data %, E* be the expectation
induced by the bootstrap sampling process and || - || be the Euclidean matrix norm.
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Lemma 10. For any integer v, if E |e1,:|" < 0o, E* €7}, ; = Eef,, ;+op(1), ntY € = Eel, i top(l),
E* |e1n,i["" = Elerni|” + op(1) and n™' Y77 é1n]" = Elern|” + op(1). If Eel), ; < oo, nt/2[E* e —
Ee}, ] =0p(1) and n'/2[n=1 30" & —Ee, ] = Op(1).

Proof. This is Lemma 5 in Jin and Lee (2012). O

Lemma 11. Forn >0 and an integer v, P*(In=' 31 &7 s — B €jr ;| > n) = op(1) if E|eni|” < 0.

Proof. This is Lemma 7 in Jin and Lee (2012). O
8?L1n(01n)  8%L1n(010:010) || _ 8%Lon (02,)  0%Lon(02n,13010) 1| 9%Lan (021;010)
Lemma 12. ﬁ‘ 96007 06,00 | =0r f‘ 96,00, 96200, | =op(1). +] 00,007
92 L2n(0210,1;010) || _ 1 (| 9*Lan(0213010) 32L2n(§2n,1 010) || _ 1 82L2n(62n501n) 8% Lay (02n,13010)
96,00; | =or(1), 1] 90:00, 96,00, H = op(1) and || 90,00 96,00} | =
op(1), where 01, is between 0y, and 010, and O, is between Oy, and 927%1.
; ; —1/2||8°Lin(01n) _ 8°Lin(610) || _ i
Proof. We prove the first result by showing that (i) n H 56,00 90,00, H = Op(1) and (ii)
—1/2(] 9°L1n(010) 9%Lin(010) || _ ; ;
n ’ 50,90, —E 50,0, H = Op(1). To prove (i), apply the mean value theorem to each term in

. Results for other

2 n 2
the second order derivative. Specifically, we investigate n~1/ 2| 9 Léf\(fl") ~E2 Léggew) |
1 1

terms can be derived similarly. By the mean value theorem,

1 82L1n(§1n) 82L1n(010)

2
= - Bn Bn n Vn B’ru
\/ﬁ( o ox ) = Bin + w2 B2 V(pin — pin) + B3

O1n

where By, = —2n"! tr[(Wlnanl (;\m))g}nlﬂ(j\m — ;\1n), on = n"tyl Wi M{, Rin(p1n)Winyn and Bs, =
(nad, ) WL R, (Pin) Rin (P1n)Winynn'/?(63, — 62,) with 0y, being between 6y, and 69. By the u-
niform boundedness of anl()\l) in Ay € Ay, Bi, = Op(1). Note that Ba, = Bay1 + Ban2(p10 — f1n),
where Ba, 1 = n=tyt, Wi, M{,, RinWi,yn, = Op(1) and Bay, o = n~ty},, Wi, M|, M1, W1,y, = Op(1), then
2672 Bonn'/?(p1n — p1n) = Op(1). Similarly, Bs, = Op(1). Hence (i) holds. (ii) follows from Chebyshev’s
inequality.

The proof of the second result resembles the above proof and the rest results are proved by a similar use

of the mean value theorem. O

Lemma 13. Forn > 0, P*([05, — 61|l > 1) = 0p(1), P*(||83, — 020]| > n) = 0p(1) and P*(||f2,(05,) —
Q_Zn(éln)H > 77) = OP(]')'

Proof. We first prove the result on 6%,. Let L1, (¢1;010) = maxg, o2 L1, (015 010), L3, (61) be the log likeli-
hood function of the the model (1) with the dependent variable y*, and L1, (¢1; 61.0) = maxg, o2 E* L7, (61),
where eln a = (>\1n7 Pin, Blnv E* €1n z) then

5 5%, (61) + 10 |S1, (M) + In | Rin (1)1,

= ~ n n
Lin(¢1;01n,4) = —g[ln(%) +1] = 5 &7 (¢1) + I [Sin (A1) + In |Rin(p1)],
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where
51, (1) = l010tr(RﬁlSﬁlsin()\1)3/171(/71)3171(/71)Sln()\1)51}1}31]1)
+ *(Xlnﬁlo)lsﬁlsin()\l)Rlln(Pl)Hln(Pl)Rln(p1)51n(/\1)51_n1X1nﬁ107
51‘3(%):%( e ) (R (prn) STt (91n) 81, (M) RE, (1) Rin (p1) S1n (A1) ST (M) Rt (1)
+ %(Xlnﬁln),si;l(;\ln) L )R, (01) Hin (1) Rin (01)S10 (M) S1) (M) X1n B,

with Hy,,(p1) = In — Rin(p1) X1a[ X, Re, (1) Rin(p1) X10) 1 X1, RS, (p1) being UB uniformly on g; (see the

proof of Proposition 3). By the mean value theorem,

1512 (d1) — 53, (41)

~2
2 O1n

1 . _
ﬁ[Lm(dh; Oin,a) — Lin(¢1;010)] = — )
where G7,, is between 63, (¢1) and 72(¢1), and

Tin(¢1) = 01, (01)

1 * % — ~ —1/3 — ~
= 5(E eini — 00) tr (R, (A1n) STt (P10) 10 (A1) R1, (p1) Rin (p1)S1n (M) 1, (A1) Ry, (A1)
+ = (Xmﬂln) St (An) St (M) Ry (p1) Hin (p1) Rin (1) S1n (M) Stk (Min) X1 (Bin — Bio)
2 %n 1—1/ « I / —1/X —1/x -1/« ~ _
+ tr(RY, (1n) St (P1n) 51, (A1) 1, (1) Rin (1) S1n (M) S1, (A1) Ry (1n) Min R, (1)) (Pin — p10)
2 i1/ e . a1 .
+ Ot tr(RY, (1n) St (P1n) 51, (A1) 1, (1) Rin (p1) S1n (M) ST, (M) Win St (Atn) B1,) (P1n)) (Atn — Ao)

2 . BT o L .
+ = (X1nB1n)' ST (M) 1 (A1) B1 (1) Hin (01) Rin (1) S1n (M) S50 (2an) Win S50 (M) X1 B (Arn = M1o),

with §1, = (A1n, P1n, B1n)’ being between y19 and 41, and 63, being between %, and E* €}2 ;. By Lemma 10,

SUDg, e, 16312 (¢1) — 52, (41)] = op(1). As 52, (¢1) is bounded away from zero uniformly on ®; (see the proof

of Proposition 3 for a similar result on &3, (¢2;6010)), SUPg, e, In " L1n(¢1; ém,a) — Lin(¢1;610)]| = op(1).
If |1 — binll > 0, |61 — dr0l] > |61 — d1nl| — |d1n — d10]] > 1/2 with probability 1 — o(1). Note that

l (I_/ln(qsl; éln,a) - I/ln((bl; 910))

+ %(Em(%o; 010) — Lin(¢1;610)) — %(Lm((blo, 610) — L1 (103 010)),

(Eln(qgln; éln,a) - -Z/ln(¢1§ éln,a)) = %(Eln((lgln; éln,a) - Eln(éln? 910)) -

S|

given ) > 0, there exists a k > 0, such that ||<;51—¢A51n\| > 7 implies that n~! (Eln ((2)1”; élnya)—iln(qbl; éln,a)) >
k with probability 1 — o(1). Then

P*([|¢7, — duall > n)

<P (0 (Lin(@1ni O1nsa) = Lin(010: 01n0)) = K) +o(1)

<P (0 (Lan(1ni O1na) = Lin(d1n) + L1 (91n) = Lin(ini O10.a)) = ) +0(1)
<P*(2n7" sup |L},(61) — Lin(é1;01n.0)| > £) +0(1),

P1EP1
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where ¢1 is the parameter space of ¢1, L1, (¢1) = maxg, 52 L], (61), and

%(L’{n(qsl) — Lin(¢1;01n0)) = _Gin(#1) — ain(¢1)

26’%n(¢1) ’
with 632 (¢1) being between 632 (¢1) and 532 (¢1), and
Ak — % 1 *! —1/4 —1/,3 —1/3 —1/A *
5in(d1) — a1a(dn) = ﬁelnRIInl(pln)Sinl(Aln) (MR, (p1) Hin(p1) Rin(p1) S1n (A1) St (A1) Ry, (P1n)€rn
E* 6*2

= =R (1) 1 () S5 (M) R (1) Ran (1) S1 (M) 1 (an) Rid (Prn)]
2 P N N ~ *
+ E(Xlnﬁln)'sﬂl(Aln)Sin(Al)Rﬁn(ﬂl)Hln(Pl)Rln(Pl)Sln(/\l)anl(Aln)anl (P1n)€ln-

The 61%(¢1)—672(61) s equal to a LQ form plus n =1 (E* €12 ;) tr[R7, ! (p1n) 1, (M) S, (M) R (1) (Hin (1) —
L) Rin(01)S1n(A)STE(Ain) Ry (1n)]. Since Ry, (p1) is linear in py, Sy, (A1) is linear in A\; and Hy,(p:)
is UB uniformly in p; € g1, Chebyshev’s inequality implies that nP*(supy, ¢, |62 (¢1) — o1 (d1)| > n)
for n > 0 is bounded by a term depending only on Bln, Ee”{%i, Ee*{f’” and Ee”{fm, which has the order
Op(1) by Lemma 10. Then P*(supy, ¢, |67 (¢1) — 012 (61)| > 1) = op(1). It has been shown above that
SUPy, ey, 1012(01) — 01, (¢1)| = op(1) with 57, (¢1) being bounded away from zero uniformly on ®;, then
P*(||¢%,, — d1nl| > n) = 0p(1). Now the mean value theorem and the formulas of 3, and 672 as functions of
%, can be used to show that we also have P*(|| 55, — Binl| > ) = 0p(1) and P*(||672 — 62,|| > 1) = op(1).
The result on 63, can be similarly proved. For the result on 6, (8%, ), some modifications are needed.
First, by the mean value theorem, we can show that P*(supg, e, n![Lon (¢2; 0%,) — Lon(¢2; 010)] > 1) =
op(1) for n > 0, where Lo, (¢2;01) = maxg, 2 L2, (62;01). Given n > 0, there exists a x > 0, such that
|2 — égn(éln)ﬂ > 7 implies that n_1<l_/2n(¢;2n(é1n);é1n> — Egn(q’)g;éln)) > k with probability 1 — o(1),

where (527;(@1”) = maxg, ;2 Loy (6 ém)- Then
P (||d2n (0,) — G20 (010)]] > 1)
< *(pt (EQn((Z_SZn(éln);éln) - E2n($2n(éfn)5éln)) 2 "5) + 0(1)

P
< p* (nil (E2n((52n(é1n); éln) - EQn(d_)Zn(éln); éin) + EZn(QEZn(éTn)v éTn) - EQn(Q_S2n(éTn)7 aln)) > /Q) + 0(1)
P

< P*(sup 0! Lon(d2;01n) — Lon(2:67,) > ) + o(1) = op(1).
P2Ep2
The rest proof is similar to that for 67,,. g

w0 —1(|92L1,(07,) _pox 9°Li, (61n) _ w (1) 02L3,(05,)  ox 92L3, (fan)
Lemma 14. Forn >0, P (n } 801169;1 -E 8911891 ‘>n) =op(1), P (n | 8922802 -E 692280’2

,’7) — OP(l), P* (n—l H 82f‘271(55n§§1n) _ 62E2n(é2n§éln) H > ,),]) — OP(1)7 P* (n—IH 82E2n(§;n§é1n) _ 62E2n(é2n§éln)

| >

96,007, 96,007, 96,007 96,00}, ’ >
27 Gx .5 27 i .4 ~ ~
17) = op(1) and P* (n‘lHa L?’e(fggée“’) _ 9 L?éggggée“’) ’ > 77) = op(1), where 61, is between Oy, and 010,
éfn is between éfn and 6y, and é;n is between é;n and By, .
2 7 * 0 * 2 1% A
Proof. We prove the first result in the lemma by showing that (i) P* (n’l || 2 géi‘égi”) 9 gell"a(g,ll") || > n) =
2 7 % A 2 ok * a
op(1) and (ii) P* (n_lHa gelfa(gi") -2 Eaengéggl") H > n) = op(1). As in the proof of Lemma 12, use the

42



mean value theorem for each term in the second order derivative to prove (i). Here we only investigate

1 BQL;n(zéln) 9°L;, (eln)|
N2

Results for other terms are similarly derived. By the mean value theorem,

n ON? ON?

* 2 * [~k ~ *
:Bln+ o) B2n(p1n_p1n)+33n7
O1n

where B}, = —2n~'tr((W1,S;,, (A} ))3)(~* — Ain), Bi, = n7 by W, M, Ry, (5%,)Winyt and B, =

1n

(n& )Ly Wi R), (55, Rin (55,) Winys (672 —62,)) with 65, being between 67, and 0;,,. By Lemma 13 and

the uniform boundedness of S},}(\1), P*(|Bf,| > 1) = op(1). Let B3, =n" Ly Wi M, Rin (i) Winy:
and Békn,Q = n_l y Wlananﬂwlnyn Then P*(|Bikn,1 - E Bfn 1| > 77) = OP(l) and P~ (|B;n,1 -
E* Bgn,l| > 77) = OP(l)' Since Bgn = Bgml + BSn,Q(pAl’ﬂ - pv;jn)7 p* ( 2B2n(p1n ﬁln)‘ > 77) = OP(I)'
.. % /| ok . w( _110%L;,(6%,)  O°L%, (01n) . sy e
Similarly, P*(|B3,| > 1) = op(1). Therefore, P*(n™!| batnt — v | > n) = op(1). (ii) is proved

d
by using Chebyshev’s inequality.

The proof of the second result is almost the same. The rest of results are proved by using the mean

value theorem. O
1 % 82L’{n(é1n) _ 32L1n(910) —1 x 82 LG(éZn) _ 82L2n(§2n,1) _
Lemma 15. n~!||E 96,00, E =55, 007 | = or(1) 12 96,00/, E 4,00, | = op(1) and
—1| 9L2n(02n;010) 0L (02n.13010) || _
n~!| 96, - 96, | =op(1).
Proof. The lemma is proved by using the mean value theorem and Lemma 10. O

Lemma 16. Forn >0 and 0 < a < 3, P*(n%)|0%, — 01| > 1) = op(1), P*(n?|63,, — O2n|| > 1) = 0p(1)
and P*(n°]020(03,,) — 020 (01)]] > m) = 0p(1).

Proof. We only prove the result on an, as the proofs for the rest of results are similar. By the mean value

theorem,
L 102L5, 05,0\ " a1 OL%, (010)
apr _p n) = a n ,
(01 — b1n) ( n_ 06,00, ) " 96,

where éfn is between éi‘n and 1,,. Then

. allAe 10°L; 1_, 92L%, (01,
P*(n®(|67,, — O1all > ) < P* (||nﬁ—;E ﬁ”>”)

P* (0|65, — O1nl| > 1, || = —manind

P00, = Ol > 0. =54 ae’ n aelaef <),

The result follows from Lemmas 10-15 and Chebyshev’s inequality. O
1 * a—1 17;(9 ) * 2? Lln ‘9171 0% .

Lemma 17. Forn >0 and 0 < a < 3, P*(n H 20759 —E 96,90, H > n) = op(1), where 0, is

between éi‘n and ém-

Proof. The proof is similar to that for Lemma 14 except for the adjustments of orders and the application
of Lemma 16. O
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Appendix D. Proofs

Propositions 1 and 2 present the consistency and asymptotic normality of the QMLE for the null model.
Their proofs are similar to those of Theorems 3.1 and 3.2 in Lee (2004a), except for some modifications to
allow for SAR disturbances. Thus we omit their proofs, but focus on proving the results on the QMLE for
the alternative model (Propositions 3 and 4), where necessary conditions and modifications will be pointed
out.

Proof of Proposition 3. The convergence of égn - §2n71 to zero in probability will follow from the uniform
convergence of %[LQH(QSQ) — Loy (¢2;610)] to zero on @5 and the unique identification condition (White, 1994,
Theorem 3.4).

We first show that supy,cq, |%L2n(¢2) — %Egn(¢2;910)| = op(1). For any ¢o € Do, %(Egn(@;@lo) —

Egn(&gnJ; 910)) < 0 implies that

(In[S2p| — I |S2n(A2)]) — = (In[Rap| — In | Ray (p2)])-

S

_ 1
1H(U§n71) - ﬁ

N | =

%1D(5§n(¢2;910)) >

As in the proof of Theorem 3.1 in Lee (2004a), 1 (In|Ss,| — In[S2,(A2)|) is bounded uniformly in Ay € Ag
and & (In|Ra,| — In|Ry,(p2)|) is bounded uniformly in py € 2. Since 73, ; is bounded away from zero by
Assumption 15 and (A.4), In(73,, ;) is also bounded. Thus, 53, (¢2; 610) is bounded away from zero uniformly
in ¢o € ®,. By the mean value theorem,
 5,(02) — 33, (¢2;610)

265, (¢2:010)
where 63, (¢2;010) is between 63, (¢2) and 7%, (¢2;610), and 63, () — 73, (¢2;010) = n~ L[}, Ginein —

0%0 tr(ng) + ng] with

%[L2n(¢2) - EQ"((’ZSZ; 910)] -

Gin = R, ST, S5, (A2) Ry, (p2) Han (p2) Ron (p2) S2n (A2) ST, R,

Gan = Ry, ST, S5, (A2) Ry, (p2) Ron(p2) Son(X2) S, Ry

in

Gan = 2(X10810) S1,, " S (A2) Ry (p2) Han (p2) Ran (p2) S2n (A2) ST, Ry €1

By Lemma 8, Xa, (X5, R, (p2)Ran(p2)X2n) 1 X%, and Ha,(p2) are UB uniformly on 9.3 By Lem-
ma 9, n=Ye},,Gine1n — 039(Gan)] = op(1) uniformly on ®3 and n~1Gs, = op(1) uniformly on ®3. Then
63, (¢2) — 03, ($2;010) = op(1) uniformly on ®5. Consequently, sup,, cq, =|Lan(d2) — Lan(d2;010)| = op (1),
as 3, (¢2;010) is bounded away from zero uniformly on ®, in probability.

With the uniform boundedness in both row and column sum norms of Ha, (p2), %Egn((bg; 010) is uniformly

equicontinuous on P, as in the proof of Theorem 3.1 in Lee (2004a). The identification unique condition is

33Similarly, Hipn(p1) is UB uniformly on g; for the proof of Proposition 1.
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guaranteed by Assumption 14.34 It follows that égn - 92,1,1 =op(1). O

Proof of Proposition 4. The proof is based on (6) obtained from the mean value theorem. We first prove

18%Lan(f20)  1o(10°Lan(B2n1)y _ PRI . o 10%Lan(02) 1 0°Lon(P2n,1) _
that - 56007 E(+ D000, ) = op(1), which is done by showing that i) + 56067 n o0 =

1 92Lan (O2n 92 Lan (02n : 92Lan(B2n1)
op(1) and ii) & 8202(692; 1) _ E(L 620259025 *1)) = op(1). After that, lim, E(%#&J)) is shown to be

nonsingular in Step iii). Finally, applying the central limit theorem in Lemma 7 to ﬁ%ﬁ;ﬂ“l) and using

Slutsky’s Lemma, we obtain the asymptotic distribution of \/ﬁ(égn — O2n1)-

2 0 2 )
i) Prove that %8 5022”8(3,2") - %8 %292%9927"1) = op(1). By the mean value theorem and Assumption 12,
2 2

’I’L_ltr[(WgnS;nl(S\gn))2] —n! tr[(WgnS;n1)2] = 2n_1(5\2n — 5\271’1)tr[(WgnS;nl(S\gn)f] = op(1), where
Mo, is between Ay, and 5\2”,1. Similarly, ’I’I,_ltr[(MgnRQ_nl(ﬁgn))ﬁ — n_ltr[(MgnRQ_nl)Q] = op(1). For

2 n ~ — ~
the other terms in %6592%8(32"), we may first rewrite Son(A2n) = Son + (A2n1 — A2n)Wan, Ron(p2n) =

Ropn, + (pan1 — Pan)May, and Bgn = Bgml + (Bgn — Bgn’l), and then expand these terms. Noting that
73, is bounded away from zero in probability, y, = S;}Xlnﬁlo + anlanleln and Sony, — XQ,LBQM =

1 — Xon (X3, Rhyy Ron Xon) ™ X5, Ry, Ran] S20 STy, X1n 10 + S1,, Ry, €10, Where X (X, Rby, Ron Xon) ™ X5,

is UB as shown in the proof of Proposition 3, we have %828%2;8(2271) - %82L2”($§;;£Z”’1’&g") = op(1), by
Lemmas (3)—(5). In addition, %62L2n(<55z,23§§n,175§n) - %02%%2599—02;1) = op(1) by the mean value theorem.
Therefore, %82592;8(2}22") - %82%29259@9?’1) =op(1).

ii) Prove that 1242 (ea) _ (L 8en(lans)y — (1), Terms in 1222 l0) — (L8 an By pave

the form %[EllnAneln —tr(A4,)] + %c;aneln or %Xéaneln, where the n-dimensional square matrices A,

and B,, are UB, and elements of n-dimensional vector ¢, are uniformly bounded. By Lemmas (3) and (4),
190%Lon(f2n1) E(l 82L2n(972n‘1)) _ Op(l).

n~ 00,00 n~ 00,00}
. . . 02 Loy (02p . 8% Lay (O2n
iii) Prove the non-singularity of lim, . E(% #5,2’1)). Let ¢ = (85,03)". Then lim,,_,o E(2 812,027(812/3;1)
— limy, 00 —3— X}, R),, Rop X, 0 . _ '
2t is nonsingular. Suppose that we have a block matrix
A B . : . . . .
G = , where A is a square matrix and D is invertible, then it is sufficient to show that A—BD~!C
C D
) ) ) ) A B A—-BD™'C B I 0
is nonsingular to prove the nonsingularity of G, because =
C D 0 D D-'C I,

In the current situation, we need to show that

. 1 8%Lon(02n,1) : 1 9%Lan(02n,1) : 1 9%Lay(B2n,1) 11 s 1 9%Lan(f2n,1)
hmn—mE(ﬁ Dp200), )_hmnﬁooE(ﬁ Dp2 0P, )[hmn—mE(ﬁ Dpa Oy, )] hmn—><><>E(ﬁ D20 )

34For the identification uniqueness condition of the null model, note that %[iln(¢1§910) — Lin(¢10;610)] can be de-
composed as the sum of ﬁ[lnhfosfanfan;;lS;H - ln\6%71@((1)1)51_”1(Al)Rl_nl(pl)R';Ll(pl)Sﬁl()\l)H and —%()\10 —
A)2(Q1n X1nB10) RY,, (p1)Hin(p1) Rin(p1)Q1nX1nB10/62, with both terms being non-positive, where &%, is between
6%n(¢1; f10) and 6%7“1((]51), by the method in the proof of Theorem 3.1 in Lee (2004a). Then Assumption 7 provides suf-

ficient conditions for global identification.
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is nonsingular. Let 19, (¢2) satisfy aELG(gi;wn(@)) = 0 and let g,(¢2) = E Loy (2, 2, (¢2)). Taking the

derivative of BELZ"(%;%"(@)) = 0 with respective to ¢5, we have o EL“%%’;”"(%))
2
’EL n sP2n Oan : Oan : ’EL n sYP2n B ’EL n sP2n
261%?912;2 (¢2)) 92 ¢(¢2) 0. So lim,, o wg¢(f¢2) (hmn—)oo % 20122%12/1&2 (¢2))) lim,, o 711 2815;42)?)(22 (¢2))
Ogn(¢2) _ OE Lan(¢2,%2n(d2)) 1: 19%gn(d2) _ 1 92E Lan (¢2,%2n (¢2))
Since 50 5% lim,, o0 50300, =lim,, o 50209 +
2 2 ’ n 20¢) n 2004
. 9% B Lan(¢2,%2n ; Oan 9% E Lo (¢2,%2n
lim,, o0 % Qaéfglzf (¢2)) lim,, oo wf%(,qbZ) = lim,, o0 % zaéfgﬁ,j (¢2)) _
3 O’EL n y¥P2n 92 E Lan ;Won =1, 82ELn »¥P2n iy
lim,, o % 28<;($f('2)$; (¢2)) (hmn%oo % 2815}??)1222 (¢2))) lim,, a0 % 2875;(228;22 (#2))  Ag VYon(Pon1) =
— 2 e 27 7 .
a1, Assumption 16 implies that lim,,_, %% = lim, oo %% is nonsingular.3?
2 2

The asymptotic distribution of /7 (fa, — f2n,.1) follows from the expansion in (6) by using the central
limit theorem in Lemma 7. (]
Proof of Proposition 5. We only check that (10) holds, as other details are in the text. By a second
order Taylor expansion,

%[LG(‘%n,l) - L2n(é2n)] = %(5271,1 - ézn)/;mazezgg,:l)
a1 9 Lan(f2n.1) _

where égml is between égn and e_gn’l, and =55 50 = Op(1) can be seen from the proof of Proposition 4.

V(021 — 02,) = op(1), (D.1)

Similarly,

1 - . . o .
W[LQH (92n; Hln) - L2n(92n,1; aln)]
10Lon(Oan1;00n) ~5 & 1. 102 Loy, (B30 01
Mﬁ(QQWQQH’lHi(Q% 79%71),(5 20 (02,1501

) V(0 — O2n.1) (D.2)

n 6, 960,00,
1 a L2n(92n 15 aln) A ~
- 0oy, — O, 1) = 1),
= (6, 10) = - 06,00, Vn(bs on,1) +op(l) =op(1)
where 52%1 is between s, and 92,%1, and 6, is between fy,, and 010, since %% Op(1) and
%7821:42%(99;{%;;9171,) = Op(1). Furthermore,

Wﬁ(ém — 810) + 0p(1)
1

, _ 1 8L1n(010)
= C2n,121n1,1ﬁ8791

Combining (D.1)-(D.3) yields (10). O

1 - . o
7[L2n(92n,1; 01n) — Lon(02n,1;610)] =

3
3=
S
No

+op(1).

Proof of Proposition 6. We prove the result for Cox,. The result for Coz, can be proved similarly.

Rewrite Lgn(égn) — Egn(égn; éln) as
L2n (éQn) - z/2n (éan éln)
= (L2n(02n,1) — Lon (020,13 610)) — (L2n(02n,1; 01n) — Lan (P 1; 610))
- (fan(ézn; éln) - E2n(§2n,1; éln)) - (LQn(e_Zn,l) - L2n(é2n))

35For the estimation of the null model, Assumption 8 is needed instead for the non-singularity of %% in the limit.
1
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OLon(02n156010) 1,4 , 0% Loy (0215 01,)

- (L2n(§2n,1) - I/Zn(9_2n,1; 910)) - (T + i(aln - 010) 89189’1 )(éln - 010)
A 82I/2 (92 91 ) - = 82E2 (92 91 ) A —
— ((B1, — O10) ——2 2 22 4 (O, — Oy 1) o2 T2 (G, — By,
(( 1 10) 06,00, + (02 on,1) 00,00, )( 2 om,1)
1. _ 0?Loy, (Pan) - _
— 5(02n - 92n,1)/W(92n —bO2n1),

where éln and éln are both between éln and 6, égn and 6y, are both between ézn and 0, 1, and ézn is

between 6o, and Hfgn’l By the mean value theorem, 91n — b0 = X, 1L w + Eln 1(1 9L (O1n) +

n, 1 n 80169/
Zlml)(éln — 610), where Xq,,1 = —%%&;3910) and 0y, is between 61, and 610. Let Cox, = (D, +
1
En)/a'ca,n, Where Dn = ﬁ[LZr,L(éQn7l) — EQn(égn,l; 910)] OZn 121n 1 \/1»6[‘16"%0(1910) Then

1 A _ A A
n1/4En = n1/4(ﬁ (L2n(92n) - L2n(92n; aln)) - Dn)

1 L2 (02,15 010) 1 82Lyy, (610)

= e, (g0t Yma)n O — )
- %n3/8(91n - 910)'% 82L2:§(00125é}; aln)ng/g(éln — b10)
o (n3/8(9 — bh0)’ i% + ng/g(ézn - 0—2%1)/;{%)”3/8(@2” - §2n,1)
g o R o).

By Propositions (2), (4) and Lemma 12, n'/*E,, = op(1). Then n'/*E, /0., = op(1), as 0., is bounded

away from zero. Since 0., is the standard deviation of the LQ form D,,, we can easily show that n'/?(52 Ocamn—

02,) = Op(1) by the mean value theorem, Propositions (2), (4) and Lemma 10. Note that n'/*(Cox, —

D /UC n) = n1/4 E” +fn3/8M _1/8 Dy -+ M 1/4 E"L then n1/4(00x — D /o—cn) — OP(l)

Oca,n Oc,n Gca,n

Let E be the bootstrapped E,. An expression for n'/ 1E* can be derlved from n'/4E,, by replacing some

terms:
* 1 * N T N N* *
n'AE: = n1/4(ﬁ(L2n(62n) — Loy (65,5 67,)) — Dy)
_ L0Lan(Bonibun) L F" Liy (Bun) s 1 PLi,(05,) _ 10°E" L, (01n)
n 001 n 00,00} n 00,00 n 00,00}
1 -, 18%Lon(0an; 0%, .
_ 2 3/8( _ eln) E%nlﬂ%eln _ eln)
1

-, 18%Lo,(03,:60%,)
3/8 2 97 LonVan; Y1n)
= (865, = 01’ n 00,00,

) n3/8 (é;jn - éln)

+ n3/8(0;n - éQn)/ﬁ 80289/2 )n3/8 (é;n - 9271)

_ 1 3/8(px _ p /182L§n(é§n) 3/8/px _ p
5” (05, — 02n) ;W” (05, — 62,),

where 6% Hi‘n

In>

is between 603, and s,. By Lemmas 14-17, P*(n'/4|E*| > n) = op(1). Since P*(n3/3|5*

and é{n are between é{n and 01,,, 9; and 63, are both between é;n and 0y, and egn

n

*
can - Uc,n| >
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n) = Op(n=1%) and n1/4(Cox; _ D:/Uz,n) _ n1/4% + ns/sffz,gz—a&fa,nn—us% + GZ,Z(;}E@,” n1/4%,
P*(n!/4|Cox’ — Dy Jot .| > m) = op(l). The consist;ency result on’ Cox, in tﬁe proposityion holds ioy
Theorem 1 in Jin and Lee (2012) with 6 = 1/2. O
Proof of Proposition 7. We first prove that égn(éln) — 091 = 0p(1). For a fixed ¢, the maximization
of Egn(eg;éln) yields Bgn(¢2;é1n) and 6§n(¢2;é1n), whose expressions are given in (A.3) and (A.4). Then

by the mean value theorem,

Ban(¢2; 01n) — Ban($2; 010)

= [ X5, Ry (p2) Ran(p2) Xan) ™' X, Ry (p2) Ron(p2)S2n (A2) 1! (M) [WinS1,, (M) XinBin (Ain — Ar0)
+ X1n(Bin — Bro)];

T3 (025 010) — 63, (623 010)

1 /—1/~ 1—1/X —1/X —1/~ ~
= tr[ Ry, (P1n) ST (Ain) S (A2) R, (p2) Ron (02) S2n (A2) ST, (Ain) Rit (P10)] (6%, — 03)

+ 255" tr[R7," (hrn) M1, B, (Bin) STt (Mn) S (A2) Rb, (2) Ron (p2) S2n (X2) ST, (Mn) Ri,) (P1n)] (P1n — pi10)
+ Q(f" tr[R (P1n) ST (Ain) W1, 1t (M) by (A2) Rb (92) R (92) Son (A2) ST, (Atn) Ryt (1)) (Atn — Aro)
+ %(Xlngln)’sﬁl(xln)W{nSiﬁl(5\1n)Sén()e)R/zn(,02)H2n(,02)Rzn(pz)szn()\z)sfnl(;\m)XlnBln(j\ln — Ao),
+ %(Xlngln)/‘si:zl(5‘1TL)Sén()‘2)Rl2n(p2)H2n(p2)R2n(p2)5271()\2)Sl_nl(;\ln)Xln(Bln — B1o),

where 01, = (¢1n,35,,62,) is between 01, and 6y. Elements of (™' X4, R, (p2)Ron (pg)Xgn)_l are
bounded uniformly on g2 and Hs,(p2) is UB uniformly on go as in the proof of Proposition 3. Writing
Bin = Bro+ (Bin — Bro), then by Lemmas 5 and 6, Ban (do; 1) — Ban(¢2: 010) and 73, (da; 1) — 52, (92 010)
both converge to zero in probability uniformly on ®,. To verify that Aay, (éln) — 5\2”,1 = op(1l) and ﬁzn(éln) —
pan.1 = op(1), we only need to show that n=![La,(¢2; éln) — Lo, (¢2;610)] converges in probability to zero

uniformly on ®, as the unique identification is guaranteed by Assumption 14. By the mean value theorem,

[Lon(d;010) — Lon(d2;010)] = — (52, (02;010) — 73, (23 610)],

1
- ——
n 2027171

where 73, ; is between 52, (¢2:01n) and 2y(¢o; 010). Since 62, (¢o;010) is bounded away from zero and
53, (923 01,) — 53, (d2;010) = 0p(1) uniformly on Py, SUDy, ca, |+ [Lon (P2 O1n) — Lan(62;010)]| = op(1).

An expression for \/ﬁ[égn(éln) — 02,1] can be derived from the expansion of the first order condition

OLan (02 (01n)301n o .
OLan By Budiin) _ g ot Gy,

_ aEQn(éZn(éln); éln) _ aEQn(§2n,l; éln) aZEQn(éZn,l; éln)
265 26 2600,

0 [an(éln) - g?n,1]7
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where égnJ is between égn,l and 65, (éln) Then we have

1 02 Loy (B, 1; éln))fliafﬂn (02,15 011)
n 00200, N 00

_ (_l a2I/2n(9~2n,1; éln) )*ll 82E2n(§2n,1; éln)
n 00200, n 002,00

\/ﬁ[§2n(éln) - §2n,1] - (
(D.4)

\/ﬁ(éln - 010);

where éln is between éln and 019. We can show that

19?Lon(O2n.1;010) 10%Lan(0201301,) 1 0?Lop (020,15 610)
nanoe  Ceator(l) and o = T amae, ot

by writing é2n,1 = Op1 + (é2n,1 — O2n.1), f1 = 610 + (éln — 610) and 01 = 010 + (éln — 61p), and then
expanding the expressions. Using (6), (B.1) and (D.4), we obtain (B.2). The asymptotic distribution of

vn (égn — 92n71) follows from applying the central limit theorem in Lemma 7.

OLan (025 n
1 OLan(02n,1) 0Ly (910)) and

In the case that €;,;’s are normally distributed, We note that Py, 1 = E(n 505 507
1

: : L3 (02 - i
Y1n1 = Qin1. Then the covariance matrix between ﬁ% and PgnylElnl,lﬁangio(fw) is just equal

to the VC matrix of the latter, and we have Vo, 1 = Qo,1 — Pon1 217711,1132/7;,1- O
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