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Abstract

In this paper, we consider the Cox-type tests of non-nested hypotheses for spatial autoregressive (SAR)

models with SAR disturbances. We formally derive the asymptotic distributions of the test statistics. In

contrast to regression models, we show that the Cox-type and J-type tests for non-nested hypotheses in

the framework of SAR models are not asymptotically equivalent under the null hypothesis. The Cox test

in non-spatial setting has been found often to have large size distortion, which can be removed by the

bootstrap. Cox-type tests for SAR models with SAR disturbances may also have large size distortion. We

show that the bootstrap is consistent for Cox-type tests in our framework. Performances of the Cox-type

and J-type tests as well as their bootstrapped versions in finite samples are compared via a Monte Carlo

study. These tests are of particular interest when there are competing models with different spatial weights

matrices. Using bootstrapped p-values, the Cox tests have relatively high power in all experiments and can

outperform J-type and several other related tests in some cases.
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1. Introduction

There are three general approaches in testing non-nested hypotheses: the centered log-likelihood ratio

procedure, known as the Cox test (Cox, 1961, 1962); the comprehensive model approach, which involves

constructing artificial general models including non-nested models as special cases (Cox, 1962; Atkinson,

1970); and the encompassing approach that tests directly the ability of one model to explain features of

an alternative model (Deaton, 1982; Dastoor, 1983; Mizon and Richard, 1986; Gourieroux and Monfort,

1995).1 In a contribution related to the encompassing approach, Gourieroux et al. (1983) extend the Wald

IWe are grateful to the editor and two anonymous referees for their helpful comments.
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1For the definition and overviews of non-nested hypotheses, see McAleer and Pesaran (1986), Gourieroux and Monfort

(1994), Pesaran and Weeks (2001), Pesaran and Dupleich Ulloa (2008), among others.
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and score tests to non-nested hypotheses based on the difference between two estimators for the alternative

model. The comprehensive model approach suffers from the Davies’s problem (Davies, 1977), which can be

circumvented in various ways. Davidson and MacKinnon (1981)’s J test can be seen as a way to deal with

the problem. These well-established procedures may also be very useful for model specifications in spatial

econometrics.

There are many spatial econometric models, e.g., spatial autoregressive models, spatial moving average

models (Cliff and Ord, 1981) and spatial error components models (Kelejian and Robinson, 1993), that

cannot nest other models as special cases. In addition, spatial econometric models usually involve spatial

weights matrices which are assumed to be exogenous. As economic theories are often ambiguous about

spatial weights, we may construct spatial weights matrices in different ways, which also lead to non-nested

models. The J test, as the most widely used procedure for testing non-nested hypotheses due to its simplicity

(McAleer, 1995), has been discussed in spatial econometrics by several authors, while other procedures have

seldom been focused on.2 Anselin (1984) illustrates the use of the J test for spatial autoregressive (SAR)

models with an empirical example and Anselin (1986) presents Monte Carlo results of the J-type tests for

SAR models where only an intercept term is included as the exogenous variable. Kelejian (2008) formally

extends the J test to SAR models with SAR disturbances (SARAR models, for short). Piras and Lozano-

Gracia (2012) present some Monte Carlo evidence in support of Kelejian’s spatial J test. Burridge (2012)

proposes to improve Kelejian’s spatial J test by using parameter estimates constructed from the likelihood

based moment conditions. Kelejian and Piras (2011) modify Kelejian (2008)’s spatial J test so that available

information is used in a more effective way and thus may have higher power in finite samples. Liu et al.

(2011) extend Kelejian (2008)’s spatial J test to differentiate between models with a non-row-normalized

spatial weights matrix versus a row-normalized one in a social-interaction model. No formal results on other

non-nested procedures, as far as we are aware of, have been derived for spatial econometric models.

In this paper, we derive asymptotic distributions of the Cox-type tests for SARAR models and compare

them with spatial J test statistics. It is of interest to derive the Cox-type test statistics. For regression

models, it has been established that the Cox and J statistics are asymptotically equivalent under the

null hypothesis (Atkinson, 1970; Davidson and MacKinnon, 1981; Gourieroux and Monfort, 1994). For

the SARAR models, we shall show that the Cox statistics and the proposed spatial J test statistics in

Kelejian (2008) and Kelejian and Piras (2011) are, in general, not asymptotically equivalent under the null

hypothesis. The different ways that the Cox-type tests use available information might lead to distinct size

and power properties. For comparison purposes, we also present the extended Wald and extended score

tests (Gourieroux et al., 1983) for the SARAR models as supplements (in Appendix B).

For the non-spatial setting, many Monte Carlo experiments (see, e.g., Godfrey and Pesaran 1983) have

2See Anselin (1984) for a general discussion of applying tests of non-nested hypotheses in spatial econometrics.
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shown that the Cox and J tests can have large size distortion and typically reject a true null hypothesis

too frequently. Horowitz (1994) considers the use of the bootstrap in econometric testing and finds that it

can overcome the well-known problem of the excessive size of variants of the information matrix test. Fan

and Li (1995) and Godfrey (1998) have suggested bootstrapping the J test and other non-nested hypothesis

tests. Davidson and MacKinnon (2002) provides a theoretical analysis of why bootstrapping the J test often

works well. Burridge and Fingleton (2010) numerically demonstrate that Kelejian (2008)’s spatial J test

is excessively liberal in some leading cases and the bootstrap approach is superior to the asymptotic test.

For spatial econometric models, Jin and Lee (2012) have shown that the bootstrap is in general consistent

for statistics that may be approximated by a linear-quadratic form of disturbances.3 Using the result, we

show that the bootstrap is consistent for Cox-type tests in our framework. We compare the finite sample

performances of various tests as well as their bootstrapped versions by a Monte Carlo study. Our Monte

Carlo experiments show that although the Cox-type tests have larger size distortions than the J-type tests

in some cases, the bootstrap can essentially remove size distortions of both types of tests. The bootstrapped

Cox-type tests have relatively high power in all experiments and outperform the bootstrapped J-type and

several other tests in some cases.

The rest of the paper is laid out as follows. Section 2 formally derives the asymptotical distributions of

the Cox-type test statistics. Section 3 shows that the Cox-type and J-type tests for SARAR models are

not asymptotically equivalent under the null hypothesis, and also briefly compares the two types of tests.

Section 4 shows that the bootstrap is consistent for Cox-type tests. Section 5 compares the performances

of various test statistics as well as their bootstrapped versions in finite samples by a Monte Carlo study.

Section 6 illustrates the use of Cox-type tests with a housing data set. Finally, Section 7 concludes. Some

assumptions, expressions, lemmas and proofs are collected in the appendices.

2. Cox-type Tests

We derive the Cox-type tests for SARAR models in this section. The setting of the non-nested testing

problem is as follows. A SARAR model as the null hypothesis H0 is tested against another SARAR model

as the alternative hypothesis H1:

H0 : yn = λ1W1nyn +X1nβ1 + u1n, u1n = ρ1M1nu1n + ε1n, (1)

3Consistency of the bootstrap for a statistic means that the bootstrap can provide a consistent estimator for the asymptotic

distribution of the statistic. On the question that whether the bootstrap can provide asymptotic refinements, i.e., whether

the bootstrap can be more accurate than the first-order asymptotic theory, only preliminary results are available. Jin and

Lee (2012) establish the Edgeworth expansion for a linear-quadratic form with normal disturbances, which can be used to

show the asymptotic refinements of the bootstrap for a linear-quadratic form. Then for a statistic that can be approximated

by a linear-quadratic form, with proper regularity conditions on the remainder term, the bootstrap can provide asymptotic

refinements. For a linear-quadratic form with non-normal disturbances, the Edgeworth expansion has not be established.
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H1 : yn = λ2W2nyn +X2nβ2 + u2n, u2n = ρ2M2nu2n + ε2n, (2)

where n is the sample size, yn is an n-dimensional vector of observations, Wjn and Mjn are n × n spa-

tial weights matrices with zero diagonals, Xjn is an n × kj matrix of exogenous variables, elements of

an n-dimensional vector of disturbances εjn are i.i.d. with mean zero and finite variance σ2
j , and θj =

(λj , ρj , β
′
j , σ

2
j )′ for j = 1, 2 are vectors of parameters to be estimated. Denote Sjn(λj) = In − λjWjn and

Rjn(ρj) = In − ρjMjn with In being an n× n identity matrix. Let the true parameter vector of the model

(1) be θ10, S1n = S1n(λ10) and R1n = R1n(ρ10) for short. The X1n and X2n may have different dimensions.

The Wjn and Mjn are in general different, but could be the same in empirical applications. A particularly

interesting case in practice is the one in which we have different spatial weights matrices W1n vs W2n or

M1n vs M2n in the two models. Let Ljn(θj) be the log likelihood function of the model (j), for j = 1, 2, as

if the disturbances were normally distributed:

Ljn(θj) = −n
2

ln(2π)− n

2
lnσ2

j + ln |Sjn(λj)|+ ln |Rjn(ρj)|

− 1

2σ2
j

[Sjn(λj)yn −Xjnβj ]
′R′jn(ρj)Rjn(ρj)[Sjn(λj)yn −Xjnβj ].

(3)

Let θ̂jn be the corresponding quasi-maximum likelihood estimator (QMLE) by maximizing Ljn(θj). The idea

of the Cox-type tests is to modify the log-likelihood ratio [L2n(θ̂2n)− L1n(θ̂1n)] so that it is approximately

centered at zero under the null hypothesis, and then test whether the modified statistic after being properly

scaled is significantly different from zero.4 As the test statistics involve the QMLEs θ̂1n and θ̂2n, we first

investigate their properties, and then derive the Cox-type test statistics with the QMLEs.

For a correctly specified first order SAR model without spatially correlated disturbances, Lee (2004a)

has proved that the QMLE is consistent under suitable regularity conditions. We can extend the analysis

to SARAR models. When we estimate the alternative model, generally it might have a different number of

parameters and/or variables from that of the data generating process (DGP), let alone the consistency to

the true values of the DGP. We use the so-called pseudo-true values to study the behavior of the QMLE

for the alternative model.5 For the model (2), we define the pseudo true value θ̄2n,1 to be the vector that

maximizes EL2n(θ2), and we shall show that n1/2(θ̂2n − θ̄2n,1) is asymptotically normal. With the pseudo-

true values, we can derive the asymptotic distribution of the Cox-type test statistics by using the central

limit theorem for linear-quadratic forms ε′nAnεn − σ2
0 tr(An) + b′nεn (Kelejian and Prucha, 2001), where εn

is an n-dimensional vector of i.i.d. disturbances with mean zero and variance σ2
0 , and the elements of the

4Since the data generating process is not assumed to have normally distributed disturbances and we will construct the tests

with the centered log quasi-maximum likelihood ratio, the tests correspond to Aguirre-Torres and Gallant (1983)’s generalized,

distribution-free Cox tests.
5For the definition of pseudo-true values, see, e.g., Sawa (1978) and White (1982). The pseudo-true values are often used

for non-nested hypothesis testing problems, see, among others, Gourieroux et al. (1983) and Gourieroux and Monfort (1994).
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n× n matrix An and n-dimensional vector bn are all non-stochastic.6

Similar to that in Lee (2004a), the consistency of θ̂1n can be established by investigating the concentrated

log likelihood function L1n(φ1) = maxβ1,σ2
1
L1n(θ1) with φ1 = (λ1, ρ1)′. For i, j = 1, 2, let L̄jn(θj ; θi) be the

expected value of Ljn(θj) when the model (i) with parameter θi generates the data. Thus, in particular,

L̄1n(θ1; θ10) = EL1n(θ1) and L̄2n(θ2; θ10) = EL2n(θ2). Denote L̄jn(φj ; θ10) = maxβj ,σ2
j
L̄jn(θj ; θ10) with

φj = (λj , ρj)
′ for j = 1, 2. We make the following assumptions for the consistency of θ̂1n.

Assumption 1. {ε1n,i}’s in ε1n = (ε1n,1, . . . , ε1n,n)′, i = 1, . . . , n, are i.i.d. with mean zero and variance

σ2
10. The moment E(ε4+ζ

1n,i) for some ζ > 0 exists.

Assumption 2. The elements of X1n are uniformly bounded constants, X1n has full column rank k1, and

limn→∞
1
nX
′
1nX1n exists and is nonsingular.

Assumption 3. Matrices S1n and R1n are nonsingular.

Assumption 4. {W1n} and {M1n} have zero diagonals. The sequences of matrices {W1n}, {M1n}, {R−1
1n }

and {S−1
1n } are bounded in both row and column sum norms (for short, UB).7

Assumption 5. {S−1
1n (λ1)} is bounded in either row or column sum norm uniformly in λ1 in a compact

parameter space Λ1, and {R−1
1n (ρ1)} is bounded in either row or column sum norm uniformly in ρ1 in a

compact parameter space %1. The true λ10 is in the interior of Λ1 and the true ρ10 is in the interior of %1.

Assumption 6. The limit limn→∞
1
nX
′
1nR

′
1n(ρ1)R1n(ρ1)X1n exists and is nonsingular for any ρ1 ∈ %1,

and the sequence of the smallest eigenvalues of R′1n(ρ1)R1n(ρ1) is bounded away from zero uniformly in ρ1.8

Assumption 7. Either (i) limn→∞
1
n [ln |σ2

10S
−1
1n R

−1
1nR

′−1
1n S

′−1
1n |−ln |σ̄2

1n,a(φ1)S−1
1n (λ1)R−1

1n (ρ1)R′−1
1n (ρ1)S′−1

1n (λ1)|]

exists and is nonzero for any φ1 6= φ10, where σ̄2
1n,a(φ1) =

σ2
10

n tr[R′−1
1n S

′−1
1n S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n R
−1
1n ],

or (ii) limn→∞
1
n (Q1nX1nβ10, X1n)′(Q1nX1nβ10, X1n) exists and is nonsingular, and for any ρ1 6= ρ10,

limn→∞
1
n [ln |σ2

10S
−1
1n R

−1
1nR

′−1
1n S

′−1
1n |−ln |σ̄2

1n,a(λ10, ρ1)S−1
1n R

−1
1n (ρ1)R′−1

1n (ρ1)S′−1
1n |] exists and is nonzero, where

Q1n = W1nS
−1
1n .

6In Kelejian and Piras (2011), the pseudo-true values are not explicitly discussed for spatial J tests. This is because their

tests are based on two-stage least squares (2SLS) estimators, which have closed forms. Thus, by assuming that some matrices

involving the estimators for the alternative model converge to positive definite matrices in probability, there is no need to

explicitly consider the pseudo-true values.
7A sequence of n × n matrices {An = [an,ij ]} is bounded in row sum norm if there is a constant c such

that sup1≤i≤n
∑n
j=1 |an,ij | < c for all n, and is bounded in column sum norm if there is a constant c such that

sup1≤j≤n
∑n
i=1 |an,ij | < c. See Horn and Johnson (1985).

8Let µn,ρ1 be the smallest eigenvalue of R′1n(ρ1)R1n(ρ1). Then the second part of the assumption means that there is some

constant c > 0 such that infρ1∈%1 µn,ρ1 > c for all n.
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Assumptions 1–5 are similar to those in Lee (2004a), except for the additional conditions on R1n(ρ1)

which resemble those on S1n(λ1). In practice, the λ and ρ are typically assumed to be in the interval (−1, 1)

such that |S1n(λ1)| and |R1n(ρ1)| are positive, while for the theoretical purpose, the parameter space can

be taken to be the compact interval contained in (−1, 1) so that the consistency of the estimator would still

hold.9 Note that R1n(ρ1) is linear in ρ1, a sufficient condition for the first part of Assumption 6 is that the

limit of n−1X ′1n[X1n, (M
′
1n + M1n)X1n,M

′
1nM1nX1n] exists and has full column rank.10 The second part

of Assumption 6 is required to guarantee the uniform convergence of 1
n [L1n(φ1) − L̄1n(φ1; θ10)] to zero in

probability. As R′1n(ρ1)R1n(ρ1) is positive semi-definite, its eigenvalues are non-negative. The assumption

further limits the eigenvalues to be strictly positive for all n. Assumption 7 provides sufficient conditions

for global identification, where (i) is related to the uniqueness of the variance-covariance (VC) matrix of

yn and (ii) states that a part of the identification can be from the asymptotically non-multicollinearity of

Q1nX1nβ10 and X1n. The first part of (ii) does not hold if X1n contains a vector of ones and W1n is a

matrix of equal weights.11

Proposition 1. Under H0 and Assumptions 1–7, θ̂1n − θ10 = oP (1).

The asymptotic distribution of θ̂1n can be derived by applying the mean value theorem to the first order

condition ∂L1n(θ̂1n)
∂θ1

= 0 at the true θ10:

√
n(θ̂1n − θ10) = −

( 1

n

∂2L1n(θ̃1n)

∂θ1∂θ′1

)−1 1√
n

∂L1n(θ10)

∂θ1
, (4)

9To make |S1n(λ1)| positive, the admissible interval for λ1 is (1/µn,min, 1/µn,max), where µn,min and µn,max are, respective-

ly, the minimum and maximum real eigenvalue of Wn. If Wn with non-negative elements is row normalized, then µn,max = 1

and −1 ≤ µn,min < 0. Thus the interval is (1/µn,min, 1), where 1/µn,min ≤ −1. The admissible interval for ρ1 is similar, thus we

only focus on the admissible interval for λ1. The concentrated quasi log likelihood function over n is 1
n
L1n(φ1) = − 1

2
[ln(2π) +

1] − 1
2

ln σ̂2
1n(φ1) + 1

n
ln |S1n(λ1)| + 1

n
ln |R1n(ρ1)|, where σ̂2

1n(φ1) = n−1y′nS
′
1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)yn

with H1n(ρ1) = In − R1n(ρ1)X1n[X′1nR
′
1n(ρ1)R1n(ρ1)X1n]−1X′1nR

′
1n(ρ1), from (A.1). By the proof of Proposi-

tion 3, σ̂2
1n(φ1) − σ̄2

1n(φ1; θ10) = oP (1), where σ̄2
1n(φ1; θ10) =

σ2
10
n

tr[R′−1
1n S′−1

1n S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1n R

−1
1n ] +

1
n

(X1nβ10)′S′−1
1n S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n X1nβ10 is bounded away from zero. Then ln σ̂2
1n(φ1) is bounded

in probability. In the case that µn,max = 1, when λ1 approaches 1, 1
n

ln |S1n(λ1)| approaches minus infinity, thus 1
n
L1n(φ1)

approaches minus infinity in probability, which implies that 1
n
L1n(φ1) at a λ1 very close to 1 will be smaller than its value

at some λ1 in the interior of (−1, 1) in probability one. Similarly, when 1/µn,min = −1, 1
n
L1n(φ1) approaches minus infinity

in probability as λ1 approaches −1. When 1/µn,min < −1, |S1n(λ1)| at −1 is positive and finite. Thus the interval for λ1

can be taken to be (−1, 1) in practice, while it makes no harm to assume the parameter space to be compact. This view is in

Amemiya (1985, p. 108). In this paper, the QMLE is proved to be consistent only for a compact parameter space.
10When X1n contains a vector of ones and M1n is a matrix of equal weights, n−1X′1n[X1n, (M ′1n +M1n)X1n,M ′1nM1nX1n]

doest not have full column rank, but the first part of Assumption 6 may still hold in this case.
11The condition is equivalent to that the limit n−1[Q1nX1nβ10]′MX1n

Q1nX1nβ10 exists and is non-zero when the lim-

it of n−1X′1nX1n exists and is nonsingular, where MX1n = In − X1n(X′1nX1n)−1X′1n. Let W1n = (lnl′n − In)/(n − 1),

where ln is an n-dimensional vector of ones. Then MX1nW
k
1n = (1 − n)−kMX1n . Thus MX1nQ1nX1nβ10 = 0 and

n−1[Q1nX1nβ10]′MX1nQ1nX1nβ10 = 0.
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where θ̃1n is between θ̂1n and θ10.12 In the above equation, every element of 1√
n
∂L1n(θ10)

∂θ1
is a linear-quadratic

form of the disturbances ε1n, thus the central limit theorem in Kelejian and Prucha (2001) is applicable.13

The term 1
n
∂2L1n(θ̃1n)
∂θ1∂θ′1

can be shown (see the proof of Proposition 4) to be equal to 1
n E
(∂2L1n(θ10)

∂θ1∂θ′1

)
plus

a term converging to zero in probability. The following assumption is needed for the limit of Σ1n,1 =

− 1
n E
(∂2L1n(θ10)

∂θ1∂θ′1

)
to exist and be nonsingular.

Assumption 8. The limit limn→∞
1
n
∂2L̄1n(φ10;θ10)

∂φ1∂φ′1
exists and is nonsingular.

Proposition 2. Under H0 and Assumptions 1–8,

√
n(θ̂1n − θ10)

d−→ N
(
0, lim
n→∞

(Σ−1
1n,1Ω1n,1Σ−1

1n,1)
)
, (5)

where Ω1n,1 = 1
n E
(∂L1n(θ10)

∂θ1

∂L1n(θ10)
∂θ′1

)
and Σ1n,1 = − 1

n E
(∂2L1n(θ10)

∂θ1∂θ′1

)
. In the case that ε1n,i’s are normally

distributed,
√
n(θ̂1n − θ10)

d−→ N(0, limn→∞Σ−1
1n,1).

The Ω1n,1 generally involves the third and fourth moments of the disturbances if they are not normally

distributed, thus it has a form more complicated than that of Σ1n,1. When ε1n,i’s are normally distributed,

the information matrix equality holds, i.e., Σ1n,1 = Ω1n,1, so the VC matrix has a simpler form.

For the alternative model (2), the following assumptions are made for the convergence of θ̂2n−θ̄2n,1 to zero

in probability under the null hypothesis of the model (1). Denote S2n = S2n(λ̄2n,1) and R2n = R2n(ρ̄2n,1)

for short.

Assumption 9. The elements of X2n are uniformly bounded constants, X2n has full column rank k2, and

limn→∞
1
nX
′
2nX2n exists and is nonsingular.

Assumption 10. Matrices S2n and R2n are nonsingular.

Assumption 11. {W2n} and {M2n} have zero diagonals. The sequences of matrices {W2n}, {M2n}, {R−1
2n }

and {S−1
2n } are UB.

Assumption 12. {S−1
2n (λ2)} is bounded in either row or column sum norm uniformly in λ2 in a compact

parameter space Λ2, and {R−1
2n (ρ2)} is bounded in either row or column sum norm uniformly in ρ2 in a

compact parameter space %2.

Assumption 13. The limit limn→∞
1
nX
′
2nR

′
2n(ρ2)R2n(ρ2)X2n exists and is nonsingular for any ρ2 ∈ %2,

and the sequence of the smallest eigenvalues of R′2n(ρ2)R2n(ρ2) is bounded away from zero uniformly in ρ2.

12The mean value theorem is applicable to a function but not a vector-valued mapping. So θ̃1n can be different for each row

of the Hessian matrix.
13The expressions for 1√

n

∂L1n(θ10)
∂θ1

and some other terms in the text are collected in Appendix A.
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Assumption 14. For η > 0, there exists κ > 0 such that, when ||φ2 − φ̄2n,1|| > η, n−1
(
L̄2n(φ̄2n,1; θ10) −

L̄2n,1(φ2; θ10)
)
> κ for any large enough n.

Assumption 15. The limit of n−1 tr[R′−1
1n S

′−1
1n S′2nR

′
2nR2nS2nS

−1
1n R

−1
1n ] or

n−1(X1nβ10)′S′−1
1n S′2nR

′
2nH2nR2nS2nS

−1
1nX1nβ10 exists and is non-zero.

Assumptions 9–13 are similar to those for the estimation of the model (1). With a misspecified model

being estimated, it is not straightforward to find primitive identification conditions, so Assumption 14 is

imposed. Assumption 15 implies that {σ̄2
2n,1}, the sequence of pseudo true values for σ2

2 , is bounded away

from zero by (A.4), which is necessary to prove the uniform convergence of n−1
(
L2n(φ2)− L̄2n(φ2; θ10)

)
to

zero in probability on Λ2 × %2. Without this assumption, n−1L̄2n(φ2; θ10) can be arbitrarily large.

Proposition 3. Under H0 and Assumptions 1–4, 9–15, θ̂2n − θ̄2n,1 = oP (1).

The asymptotic distribution for θ̂2n − θ̄2n,1 can be derived by an expansion of the first order condition

that ∂L2n(θ̂2n)
∂θ2

= 0 at θ̄2n,1:

√
n(θ̂2n − θ̄2n,1) = −

( 1

n

∂2L2n(θ̃2n)

∂θ2∂θ′2

)−1 1√
n

∂L2n(θ̄2n,1)

∂θ2
, (6)

where θ̃2n is between θ̂2n and θ̄2n,1. Noting that
∂ EL2n(θ̄2n,1)

∂θ2
= 0 and

∂L2n(θ̄2n,1)
∂θ2

=
∂L2n(θ̄2n,1)

∂θ2
− ∂ EL2n(θ̄2n,1)

∂θ2
,

every element of
∂L2n(θ̄2n,1)

∂θ2
can be written as a linear-quadratic form of the vector of disturbances ε1n.

Since 1
n
∂2L2n(θ̃2n)
∂θ2∂θ′2

= 1
n E

∂2L2n(θ̄2n,1)
∂θ2∂θ′2

+ oP (1), we make the following assumption which guarantees that

1
n E

∂2L2n(θ̄2n,1)
∂θ2∂θ′2

is nonsingular in the limit.

Assumption 16. The limit limn→∞
1
n
∂2L̄2n(φ̄2n,1;θ10)

∂φ2∂φ′2
exists and is nonsingular.

Proposition 4. Under H0 and Assumptions 1–4, 9–16,

√
n(θ̂2n − θ̄2n,1)

d−→ N
(
0, lim
n→∞

(Σ−1
2n,1Ω2n,1Σ−1

2n,1)
)
, (7)

where Σ2n,1 = − 1
n E
(∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
and Ω2n,1 = 1

n E
(∂L2n(θ̄2n,1)

∂θ2

∂L2n(θ̄2n,1)
∂θ′2

)
.

With asymptotic distributions of the estimators, we are now ready to derive the Cox-type test statistics.

As mentioned earlier, the Cox-type tests are based on the recentered log likelihood ratio L2n(θ̂2n)−L1n(θ̂1n).

Thus we need to find an expression for the asymptotic mean of the ratio. Because of the results in Proposi-

tions 2 and 4, we shall show that n−1/2[L2n(θ̂2n)−L1n(θ̂1n)] = n−1/2[L2n(θ̄2n,1)−L1n(θ10)]+oP (1). The lead-

ing order term of n−1/2[L2n(θ̄2n,1)−L1n(θ10)] is the expected value n−1/2[EL2n(θ̄2n,1)−EL1n(θ10)], which

can be shown by applying Chebyshev’s inequality, as L2n(θ̄2n,1)−EL2n(θ̄2n,1) and L1n(θ10)−EL1n(θ10) are

both linear-quadratic forms of ε1n. The EL2n(θ̄2n,1) involves the unknown parameters θ̄2n,1 and θ10 because

an expectation is taken, and EL1n(θ10) involves θ10. Except for θ̂2n, another estimate for θ̄2n,1 can be the
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vector that maximizes L̄2n(θ2; θ̂1n). Denote θ̄2n(θ1) = maxθ2 L̄2n(θ2; θ1). The difference between θ̄2n(θ̂1n)

and θ̂2n is expected to be small under the null hypothesis, since they are maximizers of two functions whose

difference is small in probability.14 Hence, we investigate the asymptotic distribution of the statistic

1√
n

[
[L2n(θ̂2n)− L1n(θ̂1n)]−

[
L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)
− L̄1n(θ̂1n; θ̂1n)

]]
,

or
1√
n

[
[L2n(θ̂2n)− L1n(θ̂1n)]− [L̄2n(θ̂2n; θ̂1n)− L̄1n(θ̂1n; θ̂1n)]

]
,

under H0. But note that L1n(θ̂1n) = L̄1n(θ̂1n; θ̂1n),15 so essentially the tests are based on the statistics

1√
n

[
L2n(θ̂2n)− L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)]
, (8)

or
1√
n

[
L2n(θ̂2n)− L̄2n

(
θ̂2n; θ̂1n

)]
. (9)

As
√
n
(
θ̂2n − θ̄2n(θ̂1n)

)
= OP (1) by Proposition 7 in Appendix B, a second order Taylor expansion implies

that

1√
n

[
L̄2n(θ̂2n; θ̂1n)− L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)]
=

1

2

(
θ̂2n− θ̄2n(θ̂1n)

)′ 1
n

∂2L̄2n(θ̌2n; θ̂1n)

∂θ2∂θ′2

√
n
(
θ̂2n− θ̄2n(θ̂1n)

)
= oP (1),

where θ̌2n is between θ̂2n and θ̄2n(θ̂1n). Thus, (8) and (9) are asymptotically equivalent. Note that

L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)
≥ L̄2n(θ̂2n; θ̂1n), so the expression in (8) is smaller than that in (9). The original version

of the Cox test is based on (8), while (9) corresponds to Atkinson (1970)’s version.

As shown in the proof of Proposition 5, we have

1√
n

[
L2n(θ̂2n)− L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)]
=

1√
n

[L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)]− C ′2n,1Σ−1
1n,1

1√
n

∂L1n(θ10)

∂θ1
+ oP (1),

(10)

where C2n,1 = 1
n
∂L̄2n(θ̄2n,1;θ10)

∂θ1
. The second term on the r.h.s. of (10) appears as we estimate θ10 by θ̂1n.

The first term on the r.h.s. of (10) can be written as a linear-quadratic form of ε1n and elements of ∂L1n(θ10)
∂θ1

are also of such forms, so the asymptotic distributions of the Cox-type test statistics follow by applying the

central limit theorem for linear-quadratic forms. Let σ2
c,n be the variance of 1√

n
[L2n(θ̄2n,1)−L̄2n(θ̄2n,1; θ10)]−

C ′2n,1Σ−1
1n,1

1√
n
∂L1n(θ10)

∂θ1
, then

σ2
c,n =

1

n
[1,−C ′2n,1Σ−1

1n,1] var
([
L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10),

∂L1n(θ10)

∂θ′1

]′)
[1,−C ′2n,1Σ−1

1n,1]′, (11)

14The extended Wald test constructs an asymptotic χ2 statistic using the asymptotic normality of n1/2[θ̄2n(θ̂1n) − θ̂2n],

and the extended score test constructs an asymptotic χ2 statistic using the asymptotic normality of the score vector

1√
n

∂L2n(θ̄2n(θ̂1n))
∂θ2

. Appendix B presents those tests to supplement the Cox-type tests.
15This can be seen from (A.1) and (A.2) with the estimators plugged in.
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where var(·) denotes the VC matrix of a random vector. In the case that ε1n,i’s are normal, C2n,1 =

E
(

1
nL2n(θ̄2n,1)∂L1n(θ10)

∂θ1

)
and the information matrix equality that Σ1n,1 = Ω1n,1 can be applied, so

σ2
c,n =

1

n
var[L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)]− C ′2n,1Σ−1

1n,1C2n,1. (12)

The σ2
c,n involves θ̄2n,1, θ10, and also ε1n,i’s third and fourth moments µ3 and µ4 if ε1n,i is non-normal. Let

σ̂2
co,n and σ̂2

ca,n be, respectively, consistent estimators of σ2
c,n used in Cox and Atkinson’s versions. The σ̂2

co,n

σ̂2
ca,n may be obtained, e.g., by replacing θ10’s in σc,n with θ̂1n’s, µ3 and µ4’s with the third and fourth

sample moments of the residuals from the quasi-maximum likelihood (QML) estimation, and θ̄2n,1’s with

either θ̄2n(θ̂1n)’s or θ̂2n’s.16

Proposition 5. Under H0 and Assumptions 1–16, the Cox-type test statistics

Coxo = n−1/2
[
L2n(θ̂2n)− L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)]
/σ̂co,n, (13)

and

Coxa = n−1/2
[
L2n(θ̂2n)− L̄2n(θ̂2n; θ̂1n)

]
/σ̂ca,n, (14)

are asymptotically standard normal, if σ2
c,n is bounded away from zero.

Since L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)
≥ L̄2n(θ̂2n; θ̂1n) as noted earlier, Coxo ≤ Coxa asymptotically under H0. We

shall digest a little bit more on the two versions of the Cox test under the alternative hypothesis. Let θ20

be the true parameter of the model (2) which generates the data, and θ̄1n,2 be the pseudo true value of the

model (1). Under the alternative hypothesis,

1

n

[(
L2n(θ̂2n)− L1n(θ̂1n)

)
−
(
L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)
− L̄1n(θ̂1n; θ̂1n)

)]
=

1

n

[(
L̄2n(θ20; θ20)− L̄1n(θ̄1n,2; θ20)

)
−
(
L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)
− L̄1n(θ̂1n; θ̂1n)

)]
+ oP (1),

(15)

and

1

n

[(
L2n(θ̂2n)− L1n(θ̂1n)

)
−
(
L̄2n(θ̂2n; θ̂1n)− L̄1n(θ̂1n; θ̂1n)

)]
=

1

n

[(
L̄2n(θ20; θ20)− L̄1n(θ̄1n,2; θ20)

)
−
(
L̄2n(θ̂2n; θ̂1n)− L̄1n(θ̂1n; θ̂1n)

)]
+ oP (1).

(16)

By Jensen’s inequality (the information inequality), L̄2n(θ20; θ20) ≥ L̄1n(θ̄1n,2; θ20), L̄1n(θ̂1n; θ̂1n) ≥ L̄2n

(
θ̄2n(θ̂1n); θ̂1n

)
and L̄1n(θ̂1n; θ̂1n) ≥ L̄2n

(
θ̂2n; θ̂1n

)
, so the leading order terms of (15) and (16) are non-negative. The Cox

tests thus have one-sided critical regions such that we reject the null hypothesis if the Cox statistics are

greater than the critical value u1−α, where u1−α is the (1−α) quantile of the standard normal distribution

16Note that for Coxa below, if we use θ̂2n for θ̄2n,1 in σ2
c,n, then there is no need to compute θ̄2n(θ̂1n). In the Monte Carlo

study, for Coxo, we use θ̄2n(θ̂1n) for θ̄2n,1; for Coxa, we use θ̂2n.
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for the chosen level of significance α. If the leading order terms of (15) and (16) are bounded away from

zero, and σ̂co,n and σ̂ca,n are stochastically bounded under the alternative hypothesis, then the Cox tests are

consistent. From (15) and (16), the two Cox-type test statistics are generally not asymptotically equivalent

under the alternative hypothesis.

3. Relationship and Comparison between the Cox-type and J-type Tests

In this section, we first investigate whether there is an equivalence relationship between the Cox and

J-type tests for SARAR models and then shortly compare these two types of tests.

To investigate the relationship between the Cox and J-type tests for SARAR models, we start from a

short review on establishing the asymptotic equivalence of the Cox and J tests for univariate regressions

under the null hypothesis, and then examine whether a similar relationship of these two types of tests for

SARAR models would exist or not.

Consider the problem of testing a nonlinear univariate regression model against another one:

H0 : yni = f1i(X1n,i, β1) + ε1n,i, ε1n,i’s are i.i.d.N(0, σ2
1), θ1 = (β′1, σ

2
1)′, (17)

H1 : yni = f2i(X2n,i, β2) + ε2n,i, ε2n,i’s are i.i.d.N(0, σ2
2), θ2 = (β′2, σ

2
2)′, (18)

where yni’s are observations on a dependent variable, X1n,i’s and X2n,i’s are vectors of exogenous variables,

and θ1 and θ2 are vectors of parameters. To test H0 against H1 by the J test (Davidson and MacKinnon,

1981), the following compound model is considered:

yni = (1− τ)f1i(X1n,i, β1) + τf2i(X2n,i, β2) + ε1n,i. (19)

As β1 disappears from the model when τ = 1 and β2 disappears when τ = 0, the compound model suffers

from Davies’s problem (Davies, 1977). The J test circumvents the problem by substituting an estimator

β̂2n of β2 from H1 into (19) and then estimating τ and β1 jointly. The t statistic for τ = 0, which is

asymptotically standard normal, is the J test statistic. Davidson and MacKinnon (1981) has proved that

the J test is asymptotically equivalent to the Cox test under H0. Gourieroux and Monfort (1994) note that

the Cox test statistic is asymptotic equivalent to a score test statistic for η = 0 under H0, computed as if an

estimator θ̂2n of θ2 from H2 was deterministic, in a model with the following probability density function

l1−η1 (yn, X1n, θ1)lη2(yn, X2n, θ̂2n)∫
l1−η1 (yn, X1n, θ1)lη2(yn, X2n, θ̂2n) dyn

=
(2π)−

n
2 (σ2

1)−
1−η
2 n(σ̂2

2n)−
η
2n exp

(
− 1−η

2σ2
1

∥∥yn − f1(X1n, β1)
∥∥2 − η

2σ̂2
2n

∥∥yn − f2(X2n, β̂2n)
∥∥2
)

∫
(2π)−

n
2 (σ2

1)−
1−η
2 n(σ̂2

2n)−
η
2n exp

(
− 1−η

2σ2
1

∥∥yn − f1(X1n, β1)
∥∥2 − η

2σ̂2
2n

∥∥yn − f2(X2n, β̂2n)
∥∥2
)
dyn

, (20)

where yn = (yn1, . . . , ynn)′, Xjn = (X ′jn,1, . . . , X
′
jn,n)′, fj(Xjn, βj) =

(
fj1(Xjn,1, β1), . . . , fjn(Xjn,n, βj))

′ for

j = 1, 2; || . . . || denotes the Euclidean vector norm; and l1n(yn, X1n, θ1) and l2n(yn, X2n, θ2) are, respectively,

11



the likelihood functions of H0 and H1. The asymptotic equivalence of the J and Cox tests is not surprising,

since (20) is the likelihood function of the regression model17

yni =
(1− η)σ̂2

2n

ησ2
1 + (1− η)σ̂2

2n

f1i(X1n,i, β1) +
ησ2

1

ησ2
1 + (1− η)σ̂2

2n

f2i(X2n,i, β̂2n) + ξni, (21)

where ξni’s are i.i.d. N
(
0, σ2

1 σ̂
2
2n/[ησ

2
1 + (1 − η)σ̂2

2n]
)
, which is the same as (19) after reparameterization.

Given the equivalence result on the models (17) and (18), it is tempting to just use the J-type tests but

ignore the Cox-type tests for other models. However, no such equivalence result exists for SARAR models.

For the SARAR models (1) and (2), the spatial J test, as described in Kelejian and Piras (2011), is

obtained by augmenting the spatial Cochrane-Orcutt transformed null model

R1n(ρ1)yn = λ1R1n(ρ1)W1nyn +R1n(ρ1)X1nβ1 + ε1n

to the model

R1n(ρ1)yn = λ1R1n(ρ1)W1nyn +R1n(ρ1)X1nβ1 + αR1n(ρ1)S−1
2n (λ2)X2nβ2 + ε1n, (22)

or

R1n(ρ1)yn = λ1R1n(ρ1)W1nyn +R1n(ρ1)X1nβ1 + αR1n(ρ1)(λ2W2nyn +X2nβ2) + ε1n, (23)

as both S−1
2n (λ2)X2nβ2 and (λ2W2nyn + X2nβ2) are predictors of yn with some estimator for θ2 plugged

in. In the first step of the spatial J test, we can get an estimator ρ̂1n of ρ10 from the null model and an

estimator θ̂2n of θ2 from the alternative model. Then R1n(ρ̂1n)yn, R1n(ρ̂1n)W1nyn, R1n(ρ̂1n)X1n, and the

predictors R1n(ρ̂1n)S−1
2n (λ̂2n)X2nβ̂2n or R1n(ρ̂1n)(λ̂2nW2nyn +X2nβ̂2n), can be computed. After that, (22)

and (23) can be estimated by 2SLS in order to construct a t statistic to test whether α is equal to zero or

not. We call the J test statistic based on (22) J1 and the other J2. The Monte Carlo study in Kelejian and

Piras (2011) shows similar finite sample results for J1 and J2. For computational convenience, they suggest

the use of J2.

Let the likelihood functions of the models (1) and (2) still be denoted by l1(yn, X1n, θ1) and l2(yn, X2n, θ2),

respectively. The compound model with a probability density function corresponding to (20) is

l1−η1 (yn, X1n, θ1)lη2(yn, X2n, θ̂2n)∫
l1−η1 (yn, X1n, θ1)lη2(yn, X2n, θ̂2n) dyn

= cn·(σ2
1)−

1−η
2 n(σ̂2

2n)−
η
2n exp

(
−1− η

2σ2
1

∥∥R1n(ρ1)[S1n(λ1)yn−X1nβ1]
∥∥2

− η

2σ̂2
2n

∥∥R2n(ρ̂2n)[S2n(λ̂2n)yn −X2nβ̂2n]
∥∥2
)∣∣S1n(λ1)R1n(ρ1)

∣∣1−η∣∣S2n(λ̂2n)R2n(ρ̂2n)
∣∣η, (24)

where cn only depends on n. The score test for η = 0 in (24), computed as if θ̂2n is non-stochastic, can be

shown to be asymptotically equivalent to the Cox test under H0. The score test is based on the asymptotic

17See Atkinson (1970), among others.
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distribution of the score

1√
n

[
ln l2(yn, X2n, θ̂2n)− ln l1(yn, X1n, θ̂1n)−

∫
[ln l2(yn, X2n, θ̂2n)− ln l1(yn, X1n, θ̂1n)]l1(yn, X1n, θ̂1n) dyn

]
,

(25)

where θ̂1n is from H0. The asymptotic variance of (25) is computed as if θ̂2n were deterministic. (25)

is equal to the numerator of Atkinson (1970)’s version of the Cox test statistic. To derive the asymptotic

distribution of (25), as noted in (D.1) and (D.2), θ̂2n can be replaced by the non-stochastic pseudo true value

θ̄2n,1. Once the analytical form of the asymptotic variance for (25) is found, θ̄2n,1 may be substituted by θ̂2n

to approximate the asymptotic variance. Thus the score test for η = 0 deduced from (24) is asymptotically

equivalent to the Cox test under H0.

On the other hand, (24) is not equivalent to (22), (23) or any other simple combinations of the models (1)

and (2). The exponent in (24) written in the quadratic form is equal to − 1
2 (A

1
2
nyn−A

− 1
2

n bn)′(A
1
2
nyn−A

− 1
2

n bn)

plus a term not involving yn, whereAn = 1−η
σ2
1
S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)+ η

σ̂2
2n
S′2n(λ̂2n)R′2n(ρ̂2n)R2n(ρ̂2n)S2n(λ̂2n)

and bn = 1−η
σ2
1
S′1n(λ1)R′1n(ρ1)R1n(ρ1)X1nβ1 + η

σ̂2
2n
S′2n(λ̂2n)R′2n(ρ̂2n)R2n(ρ̂2n)X2nβ̂2n. The corresponding

model with i.i.d. normal disturbances would be

A
1
2
nyn = A

− 1
2

n bn + un, (26)

which is not linear in parameter and does not correspond to any simple linear combination of the original

models. In particular, this model is very different from the compound models (22) and (23) (or the one

in Kelejian (2008)). Therefore, the Cox-type and J-type tests for SARAR models cannot be shown to be

asymptotically equivalent under the null hypothesis by showing that the exponential compound model (24)

is equivalent to (22) or (23). It seems not to be surprising that there is no such an equivalence relationship

because of the spatial dependence.

The original J-type tests in Kelejian and Piras (2011) employ the generalized spatial 2SLS (GS2SLS)

proposed in Kelejian and Prucha (1998) to estimate the null and alternative models, and the 2SLS to

estimate the augmented model. Since the GS2SLS or 2SLS only uses linear instruments, which is less

efficient than the QML or the GMM which uses both linear and quadratic moments, the power can be low

due to the estimation method, especially when the variation in exogenous variables cannot explain much of

the variation in the dependent variable. We may estimate the null, alternative and augmented models by the

GMM or QML for the J-type tests, which is computational more involved. For the estimation of the null and

alternative models in the J-type tests, an advantage of the generalized spatial 2SLS is that it can be robust

to unknown heteroskedasticity while the QML is not.18 The Cox-type tests are built upon the QMLEs of

the null and alternative models, which involve nonlinear objective functions, thus identification conditions

are needed. The J-type tests only involve the GS2SLS and 2SLS, where an identification condition is only

18The GMM can also be robust to unknown heteroskedasticity, see Lin and Lee (2010).
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needed for the spatial error dependence parameter.19 Also related to the nonlinear objective functions, the

QML needs the compact parameter space assumption while the GS2SLS does not need that assumption.

4. Consistency of the Bootstrap for Cox-type Tests

In this section, we show that the bootstrap is consistent for Cox-type tests. The bootstrap testing

procedure is as follows:20

(i) Compute the QML estimator (λ̂1n, ρ̂1n, β̂
′
1n)′ and the corresponding residual vector e1n = R1n(ρ̂1n)[S1n(λ̂1n)yn−

X1nβ̂1n] for the model (1). Compute the Cox-type test statistics.

(ii) Draw an n-dimensional vector e∗1n of random samples from the residuals in e1n using sampling with

replacement and generate data y∗n according to y∗n = S−1
1n (λ̂1n)[X1nβ̂1n +R−1

1n (ρ̂1n)e∗1n].

(iii) Compute various test statistics using the data y∗n.

(iv) Repeat (ii) and (iii) s times, and obtain the bootstrapped p-values.21

(v) The bootstrap tests consist in rejecting the null hypothesis if the bootstrapped p-value is smaller than

the chosen level of significance and not rejecting otherwise.

Using y∗n, we have the estimators θ̂∗1n, θ̂∗2n and θ̄2n(θ̂∗1n), corresponding to the estimators θ̂1n, θ̂2n and

θ̄2n(θ̂1n) respectively. Denote the bootstrapped versions of σ̂co,n, σ̂ca,n, Coxo, Coxa by, respectively, σ̂∗co,n,

σ̂∗ca,n, Cox∗o, Cox
∗
a. Let P∗ be the probability distribution induced by the bootstrap sampling process.

From (10), the Cox-type test statistics can be approximated by a linear-quadratic form of disturbances,

thus we can apply a theorem in Jin and Lee (2012), who establish that the bootstrap is consistent for

spatial econometric statistics that can be approximated by a linear-quadratic form. The result is based on

the uniform convergence of the distribution for a linear-quadratic form to the normal distribution. The

consistency result for Cox-type test statistics needs a stronger assumption on the disturbances—namely, the

existence of eighth moment—than assumed earlier, for non-normal disturbances. One reason of the stronger

assumption is that the numerators for the Cox-type tests generally involve estimators of the fourth moments

of the disturbances. The stronger condition is needed for the rate of convergence of the estimators.

Assumption 17. {ε1n,i}’s in ε1n = (ε1n,1, . . . , ε1n,n)′, i = 1, . . . , n, are i.i.d. with mean zero and variance

σ2
10, and the moment E(ε81n,i) exists.

19The identification condition is not explicitly stated in Kelejian and Piras (2011). They assume instead the high level

condition that the limits of some matrices involving parameter estimates for the alternative model have nonsingular probability

limits.
20The resampling procedure above has been used by Burridge and Fingleton (2010).
21For the Cox-type tests, as they are one-sided tests, the bootstrapped p-value is the percentage of test statistics calculated

from the bootstrapped samples that are greater than the corresponding test statistic obtained in (i). For two-sided tests, the

bootstrapped p-value is the equal-tail bootstrapped p-value which is equal to 2 times the smaller one of the percentages of test

statistics that are greater and non-greater than the test statistic in (i) (MacKinnon, 2009).
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Proposition 6. Under H0 and Assumptions 2–17, supx |P∗(Cox∗o ≤ x) − P(Coxo ≤ x)| = oP (1) and

supx |P∗(Cox∗a ≤ x)− P(Coxa ≤ x)| = oP (1).

5. Monte Carlo Study

We compare the finite sample size and power properties of the tests derived in this paper with those of

the spatial J tests (Kelejian and Piras, 2011) with Monte Carlo experiments. In addition, we also compare

them with a test derived from a comprehensive model. For the SARAR models (1) and (2), a natural

comprehensive model for them is

yn = λ1W1nyn + λ2W2nyn +X1nβ1 +X2n,aβ2a + u1n, u1n = ρ1M1nu1n + ρ2M2nu1n + ε1n, (27)

where X2n,a contains the variables in X2n that are different from any in X1n, and β2a is the corresponding

parameter vector. We test whether λ2, ρ2 and β2a are jointly zero with a Lagrangian multiplier (LM) test.

Denote the corresponding test statistic by Aug . In the experiments, the spatial weights matrix in the spatial

error process is set to be the same as that in the spatial lag equation for the two SARAR models, and the

two models either have the same spatial weights matrix or the same exogenous variable matrix. For the

J test statistics J1 and J2, first estimate the model (1) to obtain ρ̂1n by the generalized spatial 2SLS, as

described in Kelejian and Prucha (1998), with instrumental variables [X1n,W1nX1n,W
2
1nX1n]LI , where LI

denotes the linear independent columns of a matrix, then estimate the model (2) with instrumental variables

[X2n,W2nX2n,W
2
2nX2n]LI to obtain yn’s predictors, and finally (22) and (23) are estimated with the instru-

mental variables [X1n,W1nX1n,W2nX1n,W
2
1nX1n,W

2
2nX1n,W1nW2nX1n,W2nW1nX1n]LI when X1n = X2n

but W1n 6= W2n; or [X1n, X2n,W1nX1n,W1nX2n,W
2
1nX1n,W

2
1nX2n]LI when W1n = W2n but X1n 6= X2n.

As an alternative, we first estimate the model (2) by the QML to derive the predictor S−1
2n (λ̂2n)X2nβ̂2n

or (λ̂2nW2nyn + X2nβ̂2n), and then estimate (22) and (23) by the GMM with both linear and quadratic

moments.22 Denote the J tests with the alternative estimation methods as J1a and J2a respectively. The

linear instruments for J1a and J2a are the same for J1 and J2, and the matrices for the quadratic moments

include different matrices of W1n, W2n, W 2
1n−tr(W 2

1n)In/n, W 2
2n−tr(W 2

2n)In/n, W1nW2n−tr(W1nW2n)In/n

and W2nW1n − tr(W2nW1n)In/n. Note that for the extended Wald and score tests, we use the asymptotic

chi-square critical values with degrees of freedom equal to the number of parameters in the alternative model

to evaluate the empirical size and power.

22Note that our GMM approach estimates ρ1 jointly with λ1 and β1 in (22) and (23). This is different from the original

approach in Kelejian and Piras (2011) where ρ1 is first estimated in the model (1) and then the estimate is plugged into

the augmented model. The GMM estimation of (22) and (23) involving quadratic moments with an initial estimate of ρ1

plugged in would generate a complicated variance-covariance matrix because a part of the variance-covariance would be from

the estimation error of ρ1’s estimator.
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Table 1: Sets of Experiments

Experiments H0 H1

Set I Wa, Xa Wb, Xa

Set II Wc, Xa Wb, Xa

Set III Wc, Xb Wc, Xa

The experimental design is based on former Monte Carlo studies of spatial models (see, e.g., Anselin and

Florax 1995, Kelejian and Prucha 1999, Arraiz et al. 2010 and Kelejian and Piras 2011). We consider three

different spatial weights matrices Wa, Wb and Wc: Wa is generated according to the rook criterion, Wb is

generated according to the queen criterion and Wc is a block diagonal matrix with the diagonal blocks being

the continuity matrix for 49 neighborhoods in Columbus, OH from Anselin (1988). We use row normalized

matrices. Two exogenous variable matrices Xa and Xb are used: Xa contains a vector of ones and a vector

of random samples drawn from the standard normal, and Xb contains a vector of ones, a variable drawn

from the uniform distribution U(0, 1), and a variable equal to 2 times the second variable plus 1/2 times a

variable drawn from the chi-square distribution with 2 degrees of freedom. For Xb, the correlation coefficient

between the second and third variables is 0.5. The three sets of experiments considered are shown in Table 1.

For each set of experiments, the disturbances are drawn from either the standard normal or a normalized

chi-square (χ2(3)− 3)/
√

6 with mean zero and variance one. The true parameter vector is either (0.5, 0.5)′

or (0.5, 2)′ corresponding to Xa, and either (0.5,−1, 0.5)′ or (0.5, 4, 1)′ corresponding to Xb, leading to the

ratio of the variance of Xβ with the sum of the variance of Xβ and that of the error terms to be equal to 0.2

and 0.8, respectively.23 Denote this ratio by R̃2. When the null and alternative models generate the data,

i.e., when the empirical size and power are considered, λ1 in the null model and λ2 in the alternative model,

or, ρ1 in the null model and ρ2 in the alternative model, are the same, taking value of 0.2 or 0.8. Denote

the two parameters by λ and ρ respectively in the reported tables. In total, we have 3× 2× 2× 2× 2 = 48

experiments for each sample size n. We consider a small size n = 98 and a large sample size n = 1519.24 The

nominal level of significance is set to 5% and the number of Monte Carlo repetitions is 1000. For n = 98,

bootstrapped tests of various test statistics are also implemented.25 We set the number of resampling s to

199, leading to a standard error of the bootstrapped p-value being equal to 1.5%.

The Monte Carlo results for n = 98 are reported in Tables 2–7. Using the asymptotic p-values, J1, J2,

23This kind of Monte Carlo setting for spatial models follows from Lee (2007) and Lee and Liu (2010).
24For n = 98, the Wa and Wb are first generated on a 10× 10 grid, then the last two rows and last two columns are deleted,

and finally they are row-normalized to have row sun 1 by dividing each element in a row by the sum of all elements in that

row. The Wa and Wb for n = 1519 are similarly derived.
25For n = 1519, implementing bootstrap tests for all statistics with 1000 repetitions takes too long, so bootstrap tests are

not implemented.
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Aug and Score generally have small size distortions while other statistics have large size distortions in some

cases. The empirical sizes of J1 deviate from the nominal one by no more than 3 percentage points in all

experiments, the empirical size of J2 can be as large as 9.7% as shown in Table 3, Aug in experiment set

III and Score in experiment sets II and III with chi-square disturbances significantly under-reject the true

null hypothesis. The J1a and J2a almost have no size distortion in experiment set III, but have large size

distortion in the first two sets of experiments. The empirical size of J2a can be over 40% when R̃2 = 0.2

in experiment set I. The Wald have empirical sizes larger than 50% in many cases. The size distortion of

Cox o and Coxa is no more than 3.7 percentage points in experiment set I, but the size of Cox o can be as

large as 20.2% in experiment set II and 30.2% in experiment set III, and the size of Coxa can be as large as

23.2% in experiment set II and 22.6% in experiment set III. The empirical sizes based on the bootstrapped

critical values show that the bootstrap removes the size distortion of various statistics in most cases. We

thus compare the empirical powers of different statistics based on the bootstrapped p-values.

Several patterns for the empirical powers of the bootstrapped tests can be summarized as follows: none

of the tests can dominate the rest of tests in power in all experiments, but the Cox-type statistics usually

have high powers compared to other statistics and dominate other ones in some cases; in most cases of all

experiments, J1a is more powerful than J1; in most cases, J2a is more powerful than J2 in experiment sets

II and III, but less powerful in experiment set I; J2 is more powerful than J1 in almost all cases. We now

investigate the results for experiment set I with normal disturbances in some detail, and briefly summarize

results for other experiments. Table 2 presents the results for experiment set I with normal disturbances.

The powers of Cox o and Coxa are similar, which are the highest among all the test statistics, and the powers

of other statistics are significantly lower in most cases. Taking the case with R̃2 = 0.8, λ = 0.2 and ρ = 0.8

as an example, Cox o and Coxa have powers higher than 90%, Aug has a power of 73.7%, Score has a power

of 52.5%, but the powers of the rest statistics are all below 21%. In all cases except the one with R̃2 = 0.2,

λ = 0.2 and ρ = 0.2, J2 has a higher power than J1. When R̃2 = 0.8, λ = 0.8 and ρ = 0.8, J2 has a

power of 84.0%, while J1 has a power of only 52.6%.26 Table 3 presents the results for experiment set I with

chi-square disturbances. Changing the distributions of the disturbances from normal to chi-square has not

led to big changes in the results. For experiment set II, Tables 4 and 5 show that, J2a, Aug , Score, Cox o

and Coxa have similar magnitude of power, among which Coxa has the highest power in most cases, and

other statistics have significantly lower powers. For experiment set III, all statistics, except J1 and Wald

in some cases, have powers close or equal to 100%. The Wald has very low power compared to other test

statistics.

The empirical size and power based on the asymptotic p-values for n = 1519 are reported in Tables 8–10.

26In the Monte Carlo study of Kelejian and Piras (2011), their Monte Carlo design has produced high powers for the J tests,

where in general J2 is also relatively more powerful than J1, but due to their high power, their differences seem small.
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Most statistics have no significant size distortion with a sample size of 1519, except for Wald , Cox o and

Coxa in some cases, which have much smaller size distortion compared to that with a sample size of 98.

The Wald still has significant size distortion for all experiments. For experiment set I, Cox o and Coxa have

empirical sizes close to the nominal level. For experiment set II, Cox o and Coxa have large size distortion

only when λ = 0.2 and ρ = 0.2. For experiment set III, Cox o and Coxa still have large distortion in some

cases. For example, when R̃2 = 0.2, λ = 0.2, ρ = 0.8 and the disturbances are normal, Cox o and Coxa

with n = 1519 have empirical sizes equal to 17.2% and 17.3% respectively, smaller than the sizes 22.9% and

22.6% for n = 98. All the statistics have powers close or equal to 100% with the large sample size except for

J1, J2 and J1a. For experiment set I, when R̃2 = 0.2 and λ = 0.2, J1 and J2 have very low powers, less than

27%, and J1a has powers lower than 76% with ρ = 0.2 and lower than 41% with ρ = 0.8. For experiment

set II, when R̃2 = 0.2 and λ = 0.2, J1, J2 and J1a have powers lower than 60%. All statistics in experiment

set III have powers close or equal to 100%. Note that with n = 1519, J2a may still have slightly lower power

than Cox o and Coxa, e.g., in experiment set I with R̃2 = 0.2, λ = 0.8, ρ = 0.2 and chi-square disturbances,

J2a has a power of 98.5%, while both Cox o and Coxa have a power of 100%.

The Cox-type tests are computationally more involved than the J-type tests, especially for large sample

sizes.27 First, the Cox-type tests are based on the QMLEs. However, with the development of more

advanced computers and computational techniques28, the QMLE can be efficiently computed. A further

computational problem in calculating the Cox-type test statistics after deriving the QMLEs is on the traces

involving the inverses S−1
1n (λ̂1n) and R−1

1n (ρ̂1n) or on the product of S−1
1n (λ̂1n) and a vector (see Appendix

A). LeSage and Pace (2009, pp. 110–113) have discussed some techniques in computing such terms. Those

approaches may make the computation practically easier.

6. Empirical Illustration

We illustrate the use of the Cox-type tests with the housing data set in Harrison and Rubinfeld (1978).

Pace and Gilley (1997) added longitude-latitude coordinates for census tracts to the data set. With the

augmented data set, LeSage (1999, pp. 83–94) estimates a SARAR model, where the dependent variable

is the studentized log of median housing prices for each of the 506 census tracts, the explanatory variables

include 13 covariates, and the spatial weights matrix for both the spatial lag and the spatial error dependence

is a first order contiguity matrix (call it Wfoc). We create a row-normalized spatial weights matrix based

on 5 nearest neighbors (call it W5nn), where the elements corresponding to a census tract’s five nearest

27For Experiment Set I with the sample size of n = 1519, when R̃2 = 0.8, λ = 0.2, ρ = 0.2 and the disturbances are normal,

Computing J1, J2, J1a, J2a, Coxo and Coxa once take, respectively, 0.3, 0.3, 7.8, 7.8, 101.6 and 17.6 seconds on average, using

Matlab on a desktop computer with Intel Core i7-2600 processor and 8 gigabyte memory.
28See, e.g., Pace and LeSage (2009) and Smirnov and Anselin (2009).
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Table 2: Empirical size and power for experiment set I with normal disturbances

and n = 98†

Asymptotic† Bootstrap† Asymptotic† Bootstrap†

Size Power Size Power Size Power Size Power

R̃2=0.2, λ=0.2, ρ=0.2 R̃2=0.2, λ=0.2, ρ=0.8

J1 6.7 5.0 5.8 4.4 5.0 5.4 8.9 8.4

J2 5.5 5.1 4.0 3.3 6.7 20.9 5.9 17.8

J1a 12.8 14.7 4.7 4.9 11.5 16.6 5.3 6.7

J2a 46.8 26.8 4.1 2.5 24.3 12.3 4.0 1.2

Aug 6.5 5.2 5.4 5.1 5.3 35.7 5.6 35.0

Wald 70.3 74.2 2.3 2.9 50.4 80.5 4.5 3.1

Score 6.6 3.9 6.6 4.0 4.7 15.2 4.0 17.0

Coxo 6.7 24.7 3.1 8.8 5.3 74.2 5.0 57.4

Coxa 7.0 19.4 4.0 10.4 3.9 72.7 4.9 55.2

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 2.8 3.2 7.7 5.4 2.3 1.3 6.5 5.7

J2 5.3 24.9 4.6 22.1 4.3 35.9 5.2 35.6

J1a 10.4 29.7 4.7 10.5 8.4 23.1 5.3 13.9

J2a 43.2 13.6 4.7 1.2 25.5 40.0 4.5 14.2

Aug 5.9 38.2 5.3 38.6 7.3 92.4 6.2 92.2

Wald 50.5 87.5 4.1 6.3 30.6 98.8 2.8 0.6

Score 5.7 17.3 4.8 17.5 6.9 76.5 5.3 77.5

Coxo 5.1 77.8 4.2 59.8 3.4 99.4 4.9 97.3

Coxa 3.2 75.9 4.4 58.2 1.8 99.6 3.8 97.3

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 5.2 18.8 3.6 11.6 6.3 15.9 4.1 12.9

J2 5.6 21.0 4.2 13.2 7.5 27.4 4.1 20.5

J1a 14.6 31.2 4.9 12.6 11.1 30.7 4.6 16.9

J2a 9.3 35.3 4.5 16.7 13.3 49.3 5.9 18.0

Aug 5.3 19.9 5.1 18.3 6.3 75.5 5.6 73.7

Wald 53.0 81.0 2.6 9.3 27.6 64.2 4.8 13.1

Score 6.6 12.7 6.3 12.2 5.7 53.4 4.9 52.5

Coxo 8.7 57.2 4.4 31.4 7.6 93.9 5.7 92.1

Coxa 8.7 49.3 4.5 28.8 6.5 94.3 5.0 91.5

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 6.1 91.8 5.8 92.3 6.1 58.3 6.3 52.6

J2 5.2 98.9 4.7 99.0 6.3 95.2 8.2 84.0

J1a 18.5 88.8 5.0 77.1 14.3 89.9 4.9 79.1

J2a 9.5 83.7 5.2 57.5 13.3 73.5 5.1 63.9

Aug 5.3 97.7 4.8 97.2 5.7 99.5 5.8 99.5

Wald 26.0 97.1 3.9 88.0 34.7 96.6 4.5 81.2

Score 5.8 92.9 5.1 91.4 6.8 97.2 5.7 96.8

Coxo 5.0 100.0 4.9 99.9 3.9 100.0 4.8 100.0

Coxa 4.2 99.9 5.4 99.9 2.3 100.0 5.1 100.0

† All empirical sizes and powers are expressed as percentages with the sign

% being omitted. The “Asymptotic” and “Bootstrap” mean that the

reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 3: Empirical size and power for experiment set I with chi-square disturbances

and n = 98†

Asymptotic Bootstrap Asymptotic Bootstrap

Size Power Size Power Size Power Size Power

R̃2=0.2, λ=0.2, ρ=0.2 R̃2=0.2, λ=0.2, ρ=0.8

J1 5.7 5.1 5.4 4.8 5.3 4.2 10.9 7.3

J2 6.1 6.4 4.1 4.9 7.8 20.8 7.3 16.9

J1a 10.3 13.7 2.8 4.7 8.8 15.3 4.3 5.8

J2a 44.2 29.2 4.5 2.3 23.0 11.4 3.1 1.0

Aug 5.5 4.4 5.2 4.8 4.9 33.9 5.2 34.8

Wald 51.7 54.6 3.4 4.2 42.1 70.4 3.5 2.8

Score 1.8 0.7 5.8 3.9 2.6 9.2 5.7 22.8

Coxo 6.0 22.1 2.9 7.6 5.0 72.3 4.9 56.3

Coxa 5.7 17.5 4.2 10.6 4.2 74.8 5.5 60.1

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 3.3 3.6 7.4 4.8 2.2 1.5 8.9 5.5

J2 6.6 25.3 5.6 22.3 4.1 36.5 5.6 36.3

J1a 7.6 26.3 3.6 9.7 6.3 23.0 4.1 11.4

J2a 41.8 14.3 3.4 0.8 22.8 39.5 4.1 13.6

Aug 4.9 35.6 5.1 36.9 7.4 92.7 6.5 92.5

Wald 42.2 83.6 5.6 6.4 24.7 97.0 3.5 0.2

Score 2.3 11.1 5.3 23.8 3.0 69.6 5.9 84.8

Coxo 4.4 75.9 4.7 58.2 3.1 99.3 4.0 97.9

Coxa 3.1 75.6 3.7 58.9 1.6 98.7 4.5 97.3

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 5.3 19.3 4.7 12.5 7.3 18.0 4.6 11.9

J2 5.6 22.1 4.8 14.8 9.7 28.7 5.2 20.9

J1a 11.5 34.8 4.4 13.0 9.3 33.6 4.9 14.4

J2a 9.2 35.8 3.9 17.2 13.5 50.4 5.7 16.5

Aug 5.1 20.5 4.5 20.7 6.2 76.7 5.6 75.2

Wald 33.6 58.5 4.1 5.8 21.6 36.2 5.7 6.5

Score 2.2 5.2 4.8 14.4 2.5 46.7 5.2 58.6

Coxo 8.4 56.0 4.9 31.4 6.3 95.0 4.8 92.6

Coxa 8.2 45.8 5.0 30.1 6.9 94.7 5.7 91.7

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 4.2 90.7 3.4 92.6 7.5 62.2 8.0 54.6

J2 3.9 98.7 4.0 98.4 6.7 94.2 9.4 84.5

J1a 16.3 88.1 3.8 76.8 11.4 89.7 4.1 77.0

J2a 9.5 81.8 4.2 56.2 12.2 73.2 6.0 58.5

Aug 4.6 98.2 4.2 97.6 5.9 99.7 5.5 99.7

Wald 20.6 93.4 3.7 85.2 26.0 93.7 4.4 72.5

Score 2.9 89.7 4.7 94.6 2.6 96.9 5.1 98.6

Coxo 4.0 99.9 4.5 99.9 2.8 99.9 4.1 100.0

Coxa 3.6 100.0 4.5 100.0 2.5 100.0 4.4 100.0

† All empirical sizes and powers are expressed as percentages with the sign

% being omitted. The “Asymptotic” and “Bootstrap” mean that the

reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 4: Empirical size and power for experiment set II with normal disturbances

and n = 98†

Asymptotic Bootstrap Asymptotic Bootstrap

Size Power Size Power Size Power Size Power

R̃2=0.2, λ=0.2, ρ=0.2 R̃2=0.2, λ=0.2, ρ=0.8

J1 3.7 8.0 4.8 7.9 5.2 22.5 6.5 25.0

J2 2.7 17.3 4.6 19.1 2.1 74.5 7.5 78.3

J1a 7.8 13.2 4.8 10.8 7.1 26.0 4.7 29.4

J2a 11.7 61.6 4.7 45.4 14.9 99.6 5.2 99.3

Aug 4.6 44.7 5.4 44.8 5.4 99.9 5.7 99.9

Wald 60.5 88.4 2.5 8.7 64.0 99.6 5.1 17.3

Score 4.0 34.3 4.4 34.9 4.3 99.5 5.3 99.5

Coxo 18.6 83.3 2.6 37.4 3.7 99.9 4.2 99.9

Coxa 19.0 70.0 4.8 42.4 3.8 100.0 4.3 100.0

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 3.8 37.1 4.5 34.9 5.0 33.5 5.6 34.3

J2 2.0 81.7 5.9 82.1 1.5 97.4 4.9 97.6

J1a 7.9 39.4 5.1 41.3 7.4 55.0 4.1 55.9

J2a 15.7 99.5 5.1 99.1 15.5 100.0 4.2 100.0

Aug 5.3 99.9 5.9 99.9 7.2 100.0 6.2 100.0

Wald 67.3 99.3 5.3 17.4 71.2 99.4 5.0 41.1

Score 3.8 99.8 5.0 99.7 5.3 99.4 5.2 99.3

Coxo 4.0 99.9 4.9 99.9 5.0 100.0 5.4 100.0

Coxa 3.2 100.0 4.0 100.0 2.3 100.0 6.1 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 4.8 31.6 5.3 23.6 5.8 33.4 5.2 36.4

J2 4.6 39.7 4.8 30.5 5.0 55.7 5.3 54.3

J1a 9.8 45.8 4.3 26.5 7.8 43.7 3.8 38.6

J2a 11.3 76.4 5.1 55.6 10.2 97.8 5.5 96.0

Aug 4.7 59.7 5.0 60.0 4.8 99.9 5.7 99.9

Wald 37.8 93.0 1.7 30.2 34.1 100.0 5.5 96.5

Score 5.1 49.2 5.2 48.7 5.3 99.9 5.0 99.9

Coxo 20.2 92.4 3.1 53.0 4.5 99.9 4.2 99.9

Coxa 23.2 83.7 4.9 58.7 4.9 100.0 3.6 100.0

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 4.0 99.1 5.0 98.7 6.0 62.1 6.6 62.4

J2 3.4 99.9 5.0 99.9 4.7 98.6 6.4 98.5

J1a 9.6 93.9 3.9 92.0 8.2 62.2 4.5 62.9

J2a 10.7 100.0 5.1 100.0 12.8 100.0 5.5 100.0

Aug 4.2 100.0 4.0 100.0 6.2 100.0 6.1 100.0

Wald 57.0 100.0 4.7 98.6 66.2 100.0 5.6 87.6

Score 4.7 100.0 4.8 100.0 5.0 99.7 4.8 99.6

Coxo 7.9 100.0 5.3 100.0 5.7 100.0 4.3 100.0

Coxa 6.2 100.0 5.2 100.0 3.3 100.0 5.7 100.0

† All empirical sizes and powers are expressed as percentages with the sign

% being omitted. The “Asymptotic” and “Bootstrap” mean that the

reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 5: Empirical size and power for experiment set II with chi-square disturbances

and n = 98†

Asymptotic Bootstrap Asymptotic Bootstrap

Size Power Size Power Size Power Size Power

R̃2=0.2, λ=0.2, ρ=0.2 R̃2=0.2, λ=0.2, ρ=0.8

J1 4.6 7.6 4.6 8.3 4.5 20.5 6.2 22.2

J2 1.9 15.1 3.9 15.7 1.9 71.6 5.2 74.9

J1a 7.8 17.3 5.6 13.5 7.8 27.6 4.8 18.5

J2a 8.8 61.8 3.7 47.6 10.7 99.2 4.8 98.1

Aug 3.8 42.9 5.4 44.1 4.3 100.0 5.1 100.0

Wald 48.3 74.0 2.4 8.6 59.1 99.5 5.1 17.3

Score 0.2 16.7 4.6 37.7 2.0 99.0 4.9 99.9

Coxo 15.5 80.3 2.5 37.0 3.2 100.0 4.2 99.9

Coxa 13.8 70.1 4.8 49.2 1.4 99.9 3.6 99.9

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 4.6 36.1 5.4 37.2 2.0 30.4 2.8 35.9

J2 2.1 85.2 4.8 86.1 0.8 96.0 4.0 96.9

J1a 7.3 40.6 4.7 40.7 8.0 55.6 4.8 57.2

J2a 14.0 99.2 4.1 99.0 14.8 100.0 5.0 100.0

Aug 4.7 100.0 5.4 100.0 5.2 100.0 4.4 100.0

Wald 64.2 99.2 5.4 18.7 64.8 99.8 6.4 32.6

Score 2.0 99.3 4.8 99.9 3.6 99.8 4.4 100.0

Coxo 4.1 100.0 4.6 100.0 1.6 100.0 2.4 100.0

Coxa 1.4 100.0 3.4 99.9 0.3 100.0 4.4 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 6.0 33.1 3.4 23.8 5.7 31.7 5.1 34.4

J2 5.6 41.1 3.7 30.9 5.0 53.0 4.7 50.7

J1a 9.8 43.7 3.1 30.9 8.4 46.0 4.6 42.6

J2a 8.0 72.4 4.8 57.5 9.0 97.4 4.7 96.2

Aug 5.0 58.3 4.7 59.1 4.3 100.0 4.8 100.0

Wald 28.5 90.0 2.6 29.9 30.2 99.9 4.9 93.8

Score 0.6 30.2 5.3 57.0 2.8 99.7 4.5 100.0

Coxo 17.6 91.8 2.3 51.9 3.6 100.0 3.6 99.8

Coxa 17.1 85.6 4.7 63.2 2.2 99.9 3.3 99.9

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 6.1 99.5 5.1 99.1 4.9 67.5 5.3 65.6

J2 4.8 99.9 5.2 99.9 3.6 98.2 4.5 98.0

J1a 9.1 93.7 4.1 91.4 9.0 65.6 4.7 63.0

J2a 10.9 100.0 5.6 100.0 9.9 100.0 4.7 100.0

Aug 5.6 100.0 6.2 100.0 4.4 100.0 4.3 100.0

Wald 53.0 100.0 3.2 96.2 60.6 99.9 4.2 81.5

Score 2.9 100.0 4.4 100.0 2.7 99.6 3.8 99.6

Coxo 7.0 100.0 4.7 100.0 5.3 100.0 5.3 100.0

Coxa 5.0 100.0 5.6 100.0 1.0 100.0 5.0 100.0

† All empirical sizes and powers are expressed as percentages with the sign

% being omitted. The “Asymptotic” and “Bootstrap” mean that the

reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 6: Empirical size and power for experiment set III with normal disturbances

and n = 98†

Asymptotic Bootstrap Asymptotic Bootstrap

Size Power Size Power Size Power Size Power

R̃2=0.2, λ=0.2, ρ=0.2 R̃2=0.2, λ=0.2, ρ=0.8

J1 5.2 92.4 3.7 91.9 4.5 74.9 8.1 81.3

J2 2.8 98.1 3.8 97.8 3.5 99.1 4.9 97.9

J1a 5.5 98.8 4.1 97.8 5.2 97.9 4.2 96.8

J2a 4.8 98.7 3.9 97.8 4.4 99.4 4.6 98.7

Aug 0.8 99.6 3.2 99.8 1.1 99.6 3.3 99.9

Wald 94.3 99.9 2.3 11.9 85.6 100.0 1.1 8.3

Score 5.0 98.9 4.3 98.5 5.5 99.4 5.3 99.4

Coxo 30.2 100.0 3.8 98.8 22.9 100.0 3.4 99.3

Coxa 18.6 100.0 4.0 99.8 22.6 100.0 5.4 100.0

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 2.7 69.9 5.3 75.7 2.0 48.0 5.9 53.3

J2 5.0 99.8 6.4 99.2 5.0 99.9 5.1 99.7

J1a 5.8 97.5 5.3 96.8 6.1 97.9 4.8 97.1

J2a 4.7 99.7 4.5 98.9 4.7 99.9 5.0 99.8

Aug 1.7 99.7 4.6 100.0 1.5 100.0 4.5 100.0

Wald 93.9 99.9 2.7 12.5 93.3 99.7 0.0 9.3

Score 5.4 98.5 4.9 97.9 8.9 100.0 7.0 99.2

Coxo 28.2 100.0 4.0 98.1 16.5 100.0 3.5 99.6

Coxa 21.1 100.0 4.8 99.8 17.5 100.0 4.9 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 4.6 100.0 5.6 100.0 6.2 99.8 4.8 99.8

J2 4.5 100.0 5.8 100.0 4.7 100.0 5.0 100.0

J1a 5.0 100.0 4.5 100.0 4.9 100.0 5.0 100.0

J2a 4.8 100.0 4.7 100.0 4.6 100.0 5.2 100.0

Aug 2.0 100.0 5.0 100.0 1.8 100.0 4.7 100.0

Wald 74.6 100.0 6.0 48.6 44.7 100.0 4.4 13.6

Score 5.2 100.0 5.2 100.0 5.8 100.0 5.2 100.0

Coxo 14.1 100.0 4.5 100.0 16.9 100.0 5.3 100.0

Coxa 10.4 100.0 5.4 100.0 15.6 100.0 5.2 100.0

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 3.5 100.0 5.9 100.0 5.9 95.3 7.2 96.4

J2 4.6 100.0 5.2 100.0 4.5 100.0 4.7 100.0

J1a 5.2 100.0 5.0 100.0 5.0 97.6 4.8 95.2

J2a 5.0 100.0 5.6 100.0 4.5 100.0 4.5 100.0

Aug 1.9 100.0 4.7 100.0 1.6 100.0 4.5 100.0

Wald 78.3 99.9 4.9 8.3 50.8 100.0 3.6 6.4

Score 4.9 100.0 4.3 100.0 6.8 100.0 6.0 100.0

Coxo 14.6 100.0 4.8 100.0 10.0 100.0 4.3 100.0

Coxa 9.8 100.0 4.8 100.0 12.3 100.0 5.3 100.0

† All empirical sizes and powers are expressed as percentages with the sign

% being omitted. The “Asymptotic” and “Bootstrap” mean that the

reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 7: Empirical size and power for experiment set III with chi-square distur-

bances and n = 98†

Asymptotic Bootstrap Asymptotic Bootstrap

Size Power Size Power Size Power Size Power

R̃2=0.2, λ=0.2, ρ=0.2 R̃2=0.2, λ=0.2, ρ=0.8

J1 6.2 91.9 5.4 92.1 5.0 75.8 8.0 79.4

J2 4.8 98.2 4.0 97.2 4.5 98.6 3.9 97.6

J1a 5.8 98.3 4.8 97.4 5.1 97.8 3.6 96.6

J2a 5.3 97.8 4.9 96.6 4.5 98.4 4.0 97.7

Aug 1.5 99.0 5.5 99.8 1.7 99.1 5.7 99.9

Wald 75.6 100.0 2.6 24.3 66.5 100.0 3.7 11.7

Score 0.7 95.4 5.2 99.1 0.7 96.9 4.7 99.7

Coxo 20.8 100.0 5.1 98.1 17.7 100.0 4.9 99.1

Coxa 13.5 99.9 4.6 99.7 14.3 100.0 5.2 99.9

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 3.3 69.7 6.3 76.3 3.0 47.2 6.8 55.6

J2 5.6 99.2 4.7 98.4 5.0 99.7 4.0 99.3

J1a 5.4 97.7 4.5 96.2 5.9 97.6 4.5 96.0

J2a 5.8 99.3 5.6 98.6 4.9 100.0 3.6 99.4

Aug 1.5 99.0 4.9 99.7 1.7 99.7 6.0 100.0

Wald 71.7 100.0 4.1 16.1 84.4 100.0 2.1 22.5

Score 0.7 93.5 5.9 99.3 1.4 97.2 6.3 99.7

Coxo 16.7 100.0 4.2 98.3 12.6 100.0 4.7 99.1

Coxa 12.4 100.0 5.0 99.7 10.0 100.0 5.4 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 4.2 100.0 3.9 100.0 7.3 100.0 6.4 100.0

J2 5.3 100.0 4.7 100.0 4.6 100.0 4.7 100.0

J1a 5.8 100.0 4.7 100.0 5.3 100.0 5.0 99.9

J2a 5.9 100.0 4.7 100.0 5.2 100.0 5.5 100.0

Aug 1.7 100.0 5.1 100.0 1.9 100.0 5.6 100.0

Wald 59.5 100.0 7.1 64.2 39.3 100.0 6.8 20.2

Score 1.7 100.0 4.1 100.0 1.7 100.0 4.7 100.0

Coxo 11.1 100.0 5.4 100.0 11.8 100.0 5.5 100.0

Coxa 8.7 100.0 4.9 100.0 10.2 100.0 5.8 100.0

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 3.6 100.0 4.4 100.0 5.6 94.4 6.1 95.8

J2 5.2 100.0 4.8 100.0 4.8 100.0 4.9 100.0

J1a 6.1 100.0 5.5 100.0 5.9 98.9 5.6 96.9

J2a 5.4 100.0 4.8 100.0 5.5 100.0 5.7 100.0

Aug 1.7 100.0 4.9 100.0 1.8 100.0 5.5 100.0

Wald 48.1 100.0 5.0 9.6 47.2 100.0 4.1 8.7

Score 1.0 100.0 4.1 100.0 0.9 100.0 5.0 100.0

Coxo 8.0 100.0 4.2 100.0 5.3 100.0 3.6 100.0

Coxa 8.8 100.0 6.0 100.0 7.0 100.0 6.0 100.0

† All empirical sizes and powers are expressed as percentages with the sign

% being omitted. The “Asymptotic” and “Bootstrap” mean that the

reported empirical size and power are computed by using, respectively,

the asymptotic and bootstrapped p-values.
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Table 8: Empirical size and power computed using asymptotic p-values for experiment set I

with n = 1519†

Normal Chi-square Normal Chi-squares

Size Power Size Power Size Power Size Power

R̃2 = 0.2, λ = 0.2, ρ = 0.2 R̃2 = 0.2, λ = 0.2, ρ = 0.8

J1 5.3 16.1 4.4 15.1 6.2 14.9 5.6 14.0

J2 4.4 19.4 3.9 17.3 7.7 26.1 8.3 24.2

J1a 5.3 75.2 5.0 73.5 5.6 37.2 5.1 40.6

J2a 4.6 97.9 5.0 97.7 4.8 99.5 6.0 99.4

Aug 4.5 98.4 4.4 98.1 5.1 100.0 4.8 100.0

Wald 72.1 99.7 65.5 99.3 40.1 100.0 39.0 100.0

Score 4.6 95.8 1.8 91.9 3.9 100.0 3.6 100.0

Cox o 2.8 99.8 5.6 99.9 4.4 100.0 5.4 100.0

Coxa 4.3 99.9 3.6 99.7 5.5 100.0 6.7 100.0

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 5.0 85.3 4.6 85.0 6.2 47.8 7.6 47.6

J2 3.7 97.6 4.4 97.4 6.1 92.4 6.4 92.9

J1a 5.9 99.4 6.3 99.1 3.2 95.1 4.1 95.1

J2a 6.1 98.8 7.2 98.5 7.6 100.0 8.0 99.9

Aug 4.0 100.0 4.6 100.0 5.0 100.0 4.2 100.0

Wald 31.2 100.0 31.0 100.0 10.4 100.0 9.1 100.0

Score 5.0 100.0 3.8 100.0 4.6 100.0 3.7 100.0

Cox o 5.1 100.0 6.2 100.0 1.7 100.0 3.1 100.0

Coxa 5.2 100.0 6.5 100.0 2.1 100.0 2.5 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 4.7 97.0 4.7 96.5 5.0 85.3 4.8 85.6

J2 4.8 97.1 4.5 97.0 5.1 87.7 5.2 87.2

J1a 5.5 98.3 4.5 97.9 5.1 97.6 4.7 98.0

J2a 4.8 100.0 5.4 100.0 5.4 100.0 4.6 100.0

Aug 4.9 100.0 4.8 100.0 4.7 100.0 5.5 100.0

Wald 20.6 100.0 17.9 100.0 11.2 100.0 10.9 100.0

Score 4.0 100.0 2.8 100.0 4.9 100.0 5.0 100.0

Cox o 5.4 100.0 7.8 100.0 3.9 100.0 6.1 100.0

Coxa 4.0 100.0 5.2 100.0 4.9 100.0 4.4 100.0

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 4.6 100.0 5.0 100.0 4.7 100.0 4.1 100.0

J2 3.9 100.0 5.0 100.0 5.2 100.0 4.7 100.0

J1a 4.1 100.0 6.6 100.0 5.1 100.0 5.0 100.0

J2a 4.3 99.9 6.3 99.6 4.6 100.0 6.5 100.0

Aug 3.1 100.0 4.6 100.0 5.0 100.0 5.3 100.0

Wald 6.2 100.0 6.8 100.0 15.9 100.0 13.5 100.0

Score 5.3 100.0 4.4 100.0 4.3 100.0 3.5 100.0

Cox o 5.1 100.0 5.1 100.0 3.1 100.0 5.5 100.0

Coxa 4.4 100.0 4.5 100.0 3.1 100.0 3.8 100.0

† All empirical sizes and powers are expressed as percentages with the sign %

being omitted.
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Table 9: Empirical size and power computed using asymptotic p-values for experiment set II

with n = 1519†

Normal Chi-square Normal Chi-squares

Size Power Size Power Size Power Size Power

R̃2 = 0.2, λ = 0.2, ρ = 0.2 R̃2 = 0.2, λ = 0.2, ρ = 0.8

J1 5.6 29.2 5.5 28.3 6.8 34.4 5.8 35.4

J2 4.6 37.3 5.3 35.9 5.9 58.9 5.0 56.0

J1a 6.4 42.3 6.8 40.2 5.5 45.8 4.7 47.1

J2a 5.4 100.0 5.7 99.9 5.4 100.0 6.9 100.0

Aug 5.0 100.0 5.6 100.0 5.0 100.0 6.2 100.0

Wald 69.4 100.0 63.5 100.0 16.8 100.0 16.1 100.0

Score 4.8 100.0 2.8 100.0 5.8 100.0 5.0 100.0

Cox o 12.7 100.0 12.6 100.0 5.5 100.0 5.4 100.0

Coxa 11.8 100.0 12.9 100.0 4.5 100.0 4.9 100.0

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 5.5 99.5 4.5 99.3 5.1 69.8 5.0 70.4

J2 4.6 100.0 4.6 99.9 3.4 99.1 3.0 99.0

J1a 5.0 56.6 5.3 54.4 6.0 48.2 4.5 47.8

J2a 6.1 100.0 5.4 100.0 5.7 100.0 6.0 100.0

Aug 5.0 100.0 4.7 100.0 4.5 100.0 4.9 100.0

Wald 16.8 100.0 16.6 100.0 33.5 100.0 34.2 100.0

Score 5.9 100.0 4.8 100.0 4.2 100.0 2.9 100.0

Cox o 5.0 100.0 6.5 100.0 7.3 100.0 9.2 100.0

Coxa 4.9 100.0 4.8 100.0 7.1 100.0 6.5 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 5.4 100.0 5.4 99.8 6.4 82.7 5.2 83.1

J2 4.7 100.0 6.1 99.8 6.2 88.2 5.5 88.0

J1a 5.8 99.8 5.8 99.8 6.0 93.2 5.6 90.8

J2a 4.9 100.0 6.7 100.0 4.8 100.0 6.7 100.0

Aug 4.8 100.0 6.3 100.0 4.9 100.0 6.3 100.0

Wald 9.6 100.0 9.7 100.0 16.7 100.0 16.8 100.0

Score 5.4 100.0 3.6 100.0 5.7 100.0 4.5 100.0

Cox o 9.4 100.0 9.3 100.0 6.0 100.0 5.1 100.0

Coxa 8.4 100.0 7.4 100.0 5.1 100.0 5.5 100.0

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 5.5 100.0 5.5 100.0 5.4 100.0 5.0 100.0

J2 5.0 100.0 5.9 100.0 4.7 100.0 5.8 100.0

J1a 5.6 100.0 5.6 100.0 4.8 97.1 4.9 97.6

J2a 5.6 100.0 6.0 100.0 5.2 100.0 6.8 100.0

Aug 4.8 100.0 5.2 100.0 4.9 100.0 5.6 100.0

Wald 15.5 100.0 16.6 100.0 12.9 100.0 14.0 100.0

Score 5.6 100.0 5.2 100.0 5.2 100.0 4.0 100.0

Cox o 5.7 100.0 6.1 100.0 5.2 100.0 7.0 100.0

Coxa 6.6 100.0 6.0 100.0 5.7 100.0 5.9 100.0

† All empirical sizes and powers are expressed as percentages with the sign %

being omitted.
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Table 10: Empirical size and power computed using asymptotic p-values for experiment set

III with n = 1519†

Normal Chi-square Normal Chi-squares

Size Power Size Power Size Power Size Power

R̃2 = 0.2, λ = 0.2, ρ = 0.2 R̃2 = 0.2, λ = 0.2, ρ = 0.8

J1 9.2 100.0 11.4 100.0 8.8 99.9 10.5 99.9

J2 5.8 100.0 5.7 100.0 5.1 100.0 5.3 100.0

J1a 6.4 100.0 6.4 100.0 7.1 100.0 7.7 100.0

J2a 5.8 100.0 5.5 100.0 5.4 100.0 5.6 100.0

Aug 1.6 100.0 2.2 100.0 1.0 100.0 2.2 100.0

Wald 95.9 88.3 92.7 100.0 66.6 83.1 62.4 100.0

Score 4.8 100.0 1.5 100.0 5.5 99.5 1.7 100.0

Cox o 21.7 100.0 22.1 100.0 17.2 100.0 14.3 100.0

Coxa 18.3 100.0 12.3 100.0 17.3 100.0 12.4 100.0

R̃2 = 0.2, λ = 0.8, ρ = 0.2 R̃2 = 0.2, λ = 0.8, ρ = 0.8

J1 5.2 100.0 6.6 100.0 4.2 99.7 5.4 99.5

J2 5.6 100.0 5.8 100.0 5.6 100.0 5.7 100.0

J1a 5.4 100.0 6.8 100.0 6.3 100.0 7.5 100.0

J2a 5.7 100.0 5.8 100.0 5.6 100.0 5.9 100.0

Aug 1.8 100.0 2.1 100.0 1.0 100.0 2.1 100.0

Wald 89.6 87.7 60.0 100.0 79.6 88.5 70.4 100.0

Score 6.1 100.0 2.0 100.0 5.6 100.0 2.8 100.0

Cox o 19.9 100.0 13.3 100.0 5.4 100.0 5.2 100.0

Coxa 21.3 100.0 11.0 100.0 6.7 100.0 4.3 100.0

R̃2 = 0.8, λ = 0.2, ρ = 0.2 R̃2 = 0.8, λ = 0.2, ρ = 0.8

J1 4.9 100.0 5.7 100.0 6.0 100.0 6.9 100.0

J2 5.7 100.0 5.7 100.0 5.4 100.0 5.7 100.0

J1a 5.2 100.0 5.2 100.0 5.1 100.0 5.8 100.0

J2a 5.5 100.0 5.4 100.0 5.5 100.0 5.9 100.0

Aug 1.7 100.0 2.1 100.0 1.0 100.0 2.1 100.0

Wald 71.6 98.1 73.1 100.0 46.7 99.5 48.5 100.0

Score 5.8 100.0 3.7 100.0 5.7 100.0 4.2 100.0

Cox o 9.2 100.0 8.6 100.0 8.6 100.0 7.5 100.0

Coxa 8.4 100.0 7.1 100.0 7.6 100.0 8.4 100.0

R̃2 = 0.8, λ = 0.8, ρ = 0.2 R̃2 = 0.8, λ = 0.8, ρ = 0.8

J1 4.9 100.0 5.2 100.0 4.7 100.0 5.4 100.0

J2 5.7 100.0 5.6 100.0 5.4 100.0 5.5 100.0

J1a 1.2 100.0 1.3 100.0 4.8 100.0 5.1 100.0

J2a 0.7 100.0 0.9 100.0 5.5 100.0 5.7 100.0

Aug 1.7 100.0 2.1 100.0 1.1 100.0 2.0 100.0

Wald 36.0 99.3 25.0 100.0 32.8 98.9 36.6 100.0

Score 6.0 100.0 2.9 100.0 7.0 99.9 5.1 100.0

Cox o 7.2 100.0 8.1 100.0 6.1 100.0 4.2 100.0

Coxa 7.1 100.0 6.8 100.0 6.2 100.0 5.5 100.0

† All empirical sizes and powers are expressed as percentages with the sign %

being omitted.
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neighbors are 0.2 and other elements are zero. The matrix is then used to re-estimate the SARAR model

and we test the SARAR model with Wfoc against the one with W5nn and vice versa.

The estimation of the SARAR model with W5nn generates similar parameter estimates and inference to

that of the SARAR model with Wfoc, with the exception of the parameter for proportion of owner-occupied

units built prior to 1940, which becomes significant at the 5% level. The coefficient of determination29 and

log likelihood with W5nn are, respectively, 0.888 and -18.9, higher than the corresponding values 0.866 and

-56.0 for the SARAR model with Wfoc.

We compute various test statistics for the SARAR models with the two different spatial weights matrices.

To compute the Cox-type test statistics, (3) and (A.2) can be used for the numerators and (A.14)–(A.17)

can be used for the denominators. The testing results at the 5% level are reported in Table 11. For the

test of the SARAR model with Wfoc against that with W5nn, the results with asymptotic and bootstrapped

p-values are the same: H0 is rejected for all tests except J1. For the test of the SARAR model with W5nn

against that with Wfoc, J1 and J1a generate different results with asymptotic and bootstrapped p-values

while other test statistics generate the same result. Based on the bootstrapped p-values, the null hypothesis

with W5nn cannot be rejected for all test statistics except Wald and Score. For the J-type and Cox-type

tests based on the bootstrapped p-values, J2, J1a, J2a, Coxo and Coxa are in favor of W5nn, but J1 is not

able to distinguish the two matrices with the given data. In conclusion, most tests are in favor of W5nn.

7. Conclusion

In this paper, we derive the Cox-type tests of non-nested hypotheses for SARAR models. We show

that they are not asymptotically equivalent to the spatial J tests under the null hypothesis. We also prove

that the bootstrap is consistent for Cox-type tests. The bootstrap may be used to remove the possible size

distortion of the Cox-type tests in finite samples.

The performances of the Cox-type tests, spatial J tests, a LM test from a simple augmented model, the

extended Wald and extended score tests (derived in the appendices) are compared in a Monte Carlo study.

The extended Wald and Cox-type test statistics have large size distortions in some cases. But a simple

bootstrap procedure essentially removes the size distortions of all tests. Using bootstrapped p-values, the

Cox tests have relatively high power in all experiments and can outperform other tests in some cases. For

the J-type tests, it turns out that alternative estimation methods may significantly improve the power over

the ones based on spatial 2SLS estimation methods. With alternative estimation methods to implement

the J test procedure, the Cox-type and such J-type tests can be complimentary to each other for some

29The coefficient of determination is defined as usual, i.e., one minus the ratio of the residual sum of squares over the total

sum of squares.
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Table 11: Testing results with a housing data set (Whether H0 is rejected or

not)†

Wfoc against W5nn W5nn against Wfoc

Statistic Asymptotic Bootstrap Asymptotic Bootstrap

J1 No No Yes No

J2 Yes Yes No No

J1a Yes Yes Yes No

J2a Yes Yes No No

Aug Yes Yes No No

Wald Yes Yes Yes Yes

Score Yes Yes Yes Yes

Cox o Yes Yes No No

Coxa Yes Yes No No

† The “Asymptotic” and “Bootstrap” mean that test statistics

are computed by using, respectively, the asymptotic and boot-

strapped p-values. The “Yes” and “No” mean that H0 is, respec-

tively, rejected and not rejected at the 5% level of significance.
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cases. For the two versions of the Cox test, we suggest the use of Atkinson’s version (in (14)) because of its

computational simplicity.

Appendix A. Notations and Expressions

For j = 1, 2, φj = (λj , ρj)
′, θj = (φ′j , β

′
j , σ

2
j )′, Rjn(ρj) = In − ρjMjn, Sjn(λj) = In − λjWjn, Ljn(θj)

is the log likelihood function of the model (j), L̄jn(θj ; θi) is the expected value of Ljn(θj) when the model

(i) with the parameter θi generates the data, and θj0 is the true parameter vector of the model (j) when it

generates the data. The θ̄jn(θi) is the pseudo true value of the model (j) when the DGP is the model (i)

with the parameter θi, and θ̄jn,i = θ̄jn(θi0). Denote Rjn = Rjn(ρ̄jn,1), Sjn = Sjn(λ̄jn,1), Q1n = W1nS
−1
1n ,

Q2n = W2nS
−1
1n and T1n = M1nR

−1
1n . For any square matrix A, As = A+A′.

As many identical terms appear in various matrices needed for the computation of test statistics in the

paper, we define the following expressions:

RX 1n = R1nX1n, RSSRn = R2nS2nS
−1
1n R

−1
1n , RDn = R2n(S2nS

−1
1nX1nβ10 −X2nβ̄2n,1),

RX 2n = R2nX2n, MSSRn = M2nS2nS
−1
1n R

−1
1n , MDn = M2n(S2nS

−1
1nX1nβ10 −X2nβ̄2n,1),

RQR1n = R1nQ1nR
−1
1n , RQXβ1n = R1nQ1nX1nβ10, RSSQRn = R2nS2nS

−1
1n Q1nR

−1
1n ,

RQR2n = R2nQ2nR
−1
1n , RQXβ2n = R2nQ2nX1nβ10, RSSQXβn = R2nS2nS

−1
1n Q1nX1nβ10,

RSSX n = R2nS2nS
−1
1nX1n.

The concentrated quasi log likelihood function Ljn(φj) = maxβj ,σ2
j
Ljn(θj) for j = 1, 2 is equal to

Ljn(φj) = −n
2

[ln(2π) + 1]− n

2
ln σ̂2

jn(φj) + ln |Sjn(λj)|+ ln |Rjn(ρj)|, (A.1)

where σ̂2
jn(φj) = n−1y′nS

′
jn(λj)R

′
jn(ρj)Hjn(ρj)Rjn(ρj)Sjn(λj)yn with

Hjn(ρj) = In −Rjn(ρj)Xjn[X ′jnR
′
jn(ρj)Rjn(ρj)Xjn]−1X ′jnR

′
jn(ρj). The L̄jn(θj ; θ10) = ELjn(θj) is

L̄jn(θj ; θ10) = −n
2

ln(2π)− n

2
lnσ2

j + ln |Sjn(λj)|+ ln |Rjn(ρj)|

− σ2
10

2σ2
j

tr[R′−1
1n S

′−1
1n S′jn(λj)R

′
jn(ρj)Rjn(ρj)Sjn(λj)S

−1
1n R

−1
1n ]

− 1

2σ2
j

[Sjn(λj)S
−1
1nX1nβ10 −Xjnβj ]

′R′jn(ρj)Rjn(ρj)[Sjn(λj)S
−1
1nX1nβ10 −Xjnβj ].

(A.2)

By the maximization of L̄2n(θ2; θ10) for a given φ2, we have

β̄2n(φ2; θ10) = [X ′2nR
′
2n(ρ2)R2n(ρ2)X2n]−1X ′2nR

′
2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1nX1nβ10, (A.3)

σ̄2
2n(φ2; θ10) =

σ2
10

n
tr[R′−1

1n S
′−1
1n S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n R
−1
1n ]

+
1

n
(X1nβ10)′S′−1

1n S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1nX1nβ10.

(A.4)
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Then L̄jn(φj ; θ10) = maxβj ,σ2
j
L̄jn(θj ; θ10) is

L̄jn(φj ; θ10) = −n
2

[ln(2π) + 1]− n

2
ln σ̄2

jn(φj ; θ10) + ln |Sjn(λj)|+ ln |Rjn(ρj)|. (A.5)

The first order derivatives of L1n(θ1) at θ10 are

1√
n

∂L1n(θ10)

∂λ1
=

1√
nσ2

10

[ε′1nRQR1nε1n − σ2
10 tr(Q1n)] +

1√
nσ2

10

RQXβ′1nε1n, (A.6)

1√
n

∂L1n(θ10)

∂ρ1
=

1√
nσ2

10

[ε′1nT1nε1n − σ2
10 tr(T1n)], (A.7)

1√
n

∂L1n(θ10)

∂β1
=

1√
nσ2

10

RX ′1nε1n, (A.8)

1√
n

∂L1n(θ10)

∂σ2
1

=
1

2
√
nσ4

10

(ε′1nε1n − nσ2
10), (A.9)

The first order derivatives of L2n(θ2) at θ̄2n,1 with yn expressed as the model (1) being the DGP are

∂L2n(θ̄2n,1)

∂λ2
=

1

σ̄2
2n,1

(RD ′nRQR2n + RQXβ′2nRSSRn)ε1n

+
1

σ̄2
2n,1

[ε′1nRQR′2nRSSRnε1n − σ2
10 tr(RQR′2nRSSRn)],

(A.10)

∂L2n(θ̄2n,1)

∂ρ2
=

1

σ̄2
2n,1

(MD ′nRSSRn + RD ′nMSSRn)ε1n

+
1

σ̄2
2n,1

[ε′1nMSSR′nRSSRnε1n − σ2
10 tr(MSSR′nRSSRn)],

(A.11)

∂L2n(θ̄2n,1)

∂β2
=

1

σ̄2
2n,1

RX ′2nRSSRnε1n, (A.12)

∂L2n(θ̄2n,1)

∂σ2
2

=
1

σ̄4
2n,1

RD ′nRSSRnε1n +
1

2σ̄4
2n,1

[ε′1nRSSR′nRSSRnε1n − σ2
10 tr(RSSR′nRSSRn)]. (A.13)

For any n-dimensional square matricesAn andBn, and n-dimensional vectors an and bn, let Π1(An, an, Bn, bn) =

E
[(
ε′1nAnε1n − σ2

0 tr(An) + a′nε1n
)(
ε′1nBnε1n − σ2

0 tr(Bn) + b′nε1n
)]

, which is the covariance of two linear-

quadratic forms. The detailed expression for Π1(An, an, Bn, bn) is given in Lemma 1. Denote Π1(An, an) =

Π1(An, an, An, an) for short. Let µ31 be the third moment of ε1n, 0i×j be an i × j matrix of zeros, and

vecD(An) be a column vector consisting of the diagonal elements of An. Then according to (A.6)–(A.9), the

symmetric matrix Ω1n,1 in (5) is30

Ω1n,1 =
1

nσ4
10

·
Π1(RQR1n, RQXβ1n) ∗ ∗ ∗

Π1(T1n, 0n×1, RQR1n, RQXβ1n) Π1(T1n, 0n×1) ∗ ∗

RX ′1n[µ31 vecD(RQR1n) + σ2
10RQXβ1n] µ31RX

′
1n vecD(T1n) σ2

10RX
′
1nRX1n ∗

1
2σ2

10
Π1(In, 0n×1, RQR1n, RQXβ1n) 1

2σ2
10

Π1(In, 0n×1, T1n, 0n×1) µ31

2σ2
10

vecD
′(In)RX1n

1
4σ4

10
Π1(In, 0n×1)

 .

30When ε1n,i’s are normal, as Ω1n,1 = Σ1n,1, only Ω1n,1 or Σ1n,1 needs to be estimated.
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According to (A.10)–(A.13), the symmetric matrix Ω2n,1 in (7) may be written as a 4× 4 block matrix,

where the (1, 1)th block is

1

nσ̄4
2n,1

Π1(RQR′2nRSSRn, RQR
′
2nRDn + RSSR′nRQXβ2n),

the (2, 1)th block is

1

nσ̄4
2n,1

Π1(MSSR′nRSSRn,MSSR′nRDn + RSSR′nMDn, RQR
′
2nRSSRn, RQR

′
2nRDn + RSSR′nRQXβ2n),

the (2, 2)th block is
1

nσ̄4
2n,1

Π1(MSSR′nRSSRn,MSSR′nRDn + RSSR′nMDn),

the (3, 1)th, (3, 2)th and (3, 3)th blocks form the vector

1

nσ̄4
2n,1

RX ′2nRSSRn[µ31 vecD(RQR′2nRSSRn) + σ2
10(RQR′2nRDn + RSSR′nRQXβ2n),

µ31 vecD(MSSR′nRSSRn) + σ2
10(MSSR′nRDn + RSSR′nMDn), σ2

10RSSR′nRX2n],

and, the (4, 1)th, (4, 2)th, (4, 3)th and (4, 4)th blocks form the vector

1

nσ̄6
2n,1

[
Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn, RQR

′
2nRSSRn, RQR

′
2nRDn + RSSR′nRQXβ2n

)
,

Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn,MSSR′nRSSRn,MSSR′nRDn + RSSR′nMDn

)
,(µ31

2
vecD

′(RSSR′nRSSRn) + σ2
10RD

′
nRSSRn

)
RSSR′nRX2n,Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn

)]
.

For computational simplicity, Σ1n,1 in (5) may be estimated by 1
n
∂2L1n(θ̂1n)
∂θ1∂θ′1

, and Σ2n,1 in (7) may be

estimated by 1
n
∂2L2n(θ̂2n)
∂θ2∂θ′2

, as shown in the proof of Proposition 4. We thus only give the expressions for

∂2Ljn(θj)
∂θj∂θ′j

. For j = 1, 2,

∂2Ljn(θj)

∂λ2
j

= − tr[WjnS
−1
jn (λj)WjnS

−1
jn (λj)]−

1

σ2
j

y′nW
′
jnR

′
jn(ρj)Rjn(ρj)Wjnyn,

∂2Ljn(θj)

∂λj∂ρj
= − 1

σ2
j

y′nW
′
jn[M ′jnRjn(ρj) +R′jn(ρj)Mjn][Sjn(λj)yn −Xjnβj ],

∂2Ljn(θj)

∂λj∂βj
= − 1

σ2
j

X ′jnR
′
jn(ρj)Rjn(ρj)Wjnyn,

∂2Ljn(θj)

∂λj∂σ2
j

= − 1

σ4
j

y′nW
′
jnR

′
jn(ρj)Rjn(ρj)[Sjn(λj)yn −Xjnβj ],

∂2Ljn(θj)

∂ρj∂ρj
= − tr[MjnR

−1
jn (ρj)MjnR

−1
jn (ρj)]−

1

σ2
j

[Sjn(λj)yn −Xjnβj ]
′M ′jnMjn[Sjn(λj)yn −Xjnβj ],

∂2Ljn(θj)

∂ρj∂βj
= − 1

σ2
j

X ′jn[M ′jnRjn(ρj) +R′jn(ρj)Mjn][Sjn(λj)yn −Xjnβj ],

∂2Ljn(θj)

∂ρj∂σ2
j

= − 1

σ4
j

[Sjn(λj)yn −Xjnβj ]
′M ′jnRjn(ρj)[Sjn(λj)yn −Xjnβj ],
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∂2Ljn(θj)

∂βj∂β′j
= − 1

σ2
j

X ′jnR
′
jn(ρj)Rjn(ρj)Xjn,

∂2Ljn(θj)

∂βj∂σ2
j

= − 1

σ4
j

X ′jnR
′
jn(ρj)Rjn(ρj)[Sjn(λj)yn −Xjnβj ],

∂2Ljn(θj)

∂(σ2
j )2

=
n

2σ4
j

− 1

σ6
j

[Sjn(λj)yn −Xjnβj ]
′R′jn(ρj)Rjn(ρj)[Sjn(λj)yn −Xjnβj ].

In (11) which gives the expression for σ2
c,n, C2n,1 is equal to

C2n,1 = − 1

n

[ 1

σ̄2
2n,1

RD′nRSSQXβn +
σ2

10

σ̄2
2n,1

tr(RSSQR′nRSSRn),

σ2
10

σ̄2
2n,1

tr(RSSR′nRSSRnT1n),
1

σ̄2
2n,1

RD′nRSSX n,
1

2σ̄2
2n,1

tr(RSSR′nRSSRn)
]′
,

(A.14)

1

n
var

(
[L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)]

∂L1n(θ10)
∂θ1

)
=

 1
n var

(
L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)

)
1
n E
(
L2n(θ̄2n,1)∂L1n(θ10)

∂θ′1

)
1
n E
(
L2n(θ̄2n,1)∂L1n(θ10)

∂θ1

)
Ω1n,1

 ,

(A.15)

where

var
(
L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)

)
=

1

σ̄4
2n,1

Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn

)
, (A.16)

and

E
(
L2n(θ̄2n,1)

∂L1n(θ10)

∂θ′1

)
= − 1

σ2
10σ̄

2
2n,1

[
Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn, RQR1n, RQXβ1n

)
,Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn, T1n, 0n×1

)
,

(µ31

2
vec′D(RSSR′nRSSRn) +RD′nRSSRn

)
RX1n,

1

2σ2
10

Π1

(1

2
RSSR′nRSSRn,RSSR′nRDn, In, 0n×1

)]
.

(A.17)
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For P2n,1 = 1
n
∂2L̄2n(θ̄2n,1;θ10)

∂θ2∂θ′1
in (B.2), we have

∂2L̄2n(θ̄2n,1; θ10)

∂λ2∂λ1
=

1

σ̄2
2n,1

(RD′nR2nQ2nQ1nX1nβ10 + RSSQXβ′nRQXβ2n)

+
σ2

10

σ̄2
2n,1

tr
(
RSSQR′nRQR2n +R′−1

1n Q
′
1nQ

′
2nR

′
2nRSSRn

)
,

∂2L̄2n(θ̄2n,1; θ10)

∂λ2∂ρ1
=

σ2
10

σ̄2
2n,1

tr
(
T ′1n(RSSR′nRQR2n)s

)
,

∂2L̄2n(θ̄2n,1; θ10)

∂λ2∂β1
=

1

σ̄2
2n,1

(RSSX ′nRQXβ2n +X ′1nQ
′
2nR

′
2nRDn),

∂2L̄2n(θ̄2n,1; θ10)

∂λ2∂σ2
1

=
1

σ̄2
2n,1

tr(RSSR′nRQR2n),

∂2L̄2n(θ̄2n,1; θ10)

∂ρ2∂λ1
=

1

σ̄2
2n,1

(MD ′nR2n +RD′nM2n)S2nS
−1
1n Q1nX1nβ10

+
σ2

10

σ̄2
2n,1

tr
(
R′−1

1n Q
′
1nS

′−1
1n S′2n(M ′2nRSSRn +R′2nMSSRn)

)
,

∂2L̄2n(θ̄2n,1; θ10)

∂ρ2∂ρ1
=

σ2
10

σ̄2
2n,1

tr
(
T ′1n(MSSR′nRSSRn)s

)
,

∂2L̄2n(θ̄2n,1; θ10)

∂ρ2∂β1
=

1

σ̄2
2n,1

X ′1nS
′−1
1n S′2n(M ′2nRDn +R′2nMDn),

∂2L̄2n(θ̄2n,1; θ10)

∂ρ2∂σ2
1

=
1

σ̄2
2n,1

tr(RSSR′nMSSRn),
∂2L̄2n(θ̄2n,1; θ10)

∂β2∂λ1
=

1

σ̄2
2n,1

RX ′2nRSSQXβn,

∂2L̄2n(θ̄2n,1; θ10)

∂β2∂ρ1
= 0k2×1,

∂2L̄2n(θ̄2n,1; θ10)

∂β2∂β′1
=

1

σ̄2
2n,1

RX ′2nRSSX n,

∂2L̄2n(θ̄2n,1; θ10)

∂β2∂σ2
1

= 0k2×1,
∂2L̄2n(θ̄2n,1; θ10)

∂σ2
2∂ρ1

=
σ2

10

σ̄4
2n,1

tr(T ′1nRSSR′nRSSRn),

∂2L̄2n(θ̄2n,1; θ10)

∂σ2
2∂β1

=
1

σ̄4
2n,1

RSSX ′nRDn,
∂2L̄2n(θ̄2n,1; θ10)

∂σ2
2∂σ

2
1

=
1

2σ̄4
2n,1

tr(RSSR′nRSSRn),

∂2L̄2n(θ̄2n,1; θ10)

∂σ2
2∂λ1

=
1

σ̄4
2n,1

[RD′nRSSQXβn + σ2
10 tr(RSSR′nRSSQRn)].

The V2n,1 in (B.3) is

V2n,1 = [Ik2 ,−P2n,1Σ−1
1n,1]

 Ω2n,1
1
n E
(∂L2n(θ̄2n,1)

∂θ2

∂L1n(θ10)
∂θ′1

)
1
n E
(∂L1n(θ̄10)

∂θ1

∂L2n(θ̄2n,1)
∂θ′2

)
Ω1n,1

( Ik2
−Σ−1

1n,1P
′
2n,1

)
,

where the expression for 1
n E
(∂L2n(θ̄2n,1)

∂θ2

∂L1n(θ10)
∂θ′1

)
can be derived from (A.6)–(A.13).

Appendix B. The Extended Wald and Extended Score Tests

Appendix B.1. The Extended Wald Test

Under the null hypothesis, both θ̂2n and θ̄2n(θ̂1n) are estimators of the pseudo-true value θ̄2n,1 and their

difference can be shown to converge to zero in probability. We would like to test whether this difference,
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after being properly scaled, is significantly different from zero, i.e., whether the null hypothesis could explain

the alternative model significantly well. This gives rise to the extended Wald test, which is based on

√
n
(
θ̂2n − θ̄2n(θ̂1n)

)
=
√
n
(
θ̂2n − θ̄2n,1

)
−
√
n
(
θ̄2n(θ̂1n)− θ̄2n,1

)
. (B.1)

The first term on the right hand side of the above equation has been shown to be asymptotically normal

with mean zero by using (6). The second term is also asymptotically normal. Jointly, the asymptotical

distribution of
√
n
(
θ̂2n − θ̄2n(θ̂1n)

)
can be obtained. By the mean value theorem,

0 =
∂L̄2n(θ̄2n(θ̂1n); θ̂1n)

∂θ2
=
∂L̄2n(θ̄2n,1; θ̂1n)

∂θ2
+
∂2L̄2n(θ̃2n,1; θ̂1n)

∂θ2∂θ′2

(
θ̄2n(θ̂1n)− θ̄2n,1

)
,

where θ̃2n,1 is between θ̄2n,1 and θ̄2n(θ̂1n). Thus,

√
n
(
θ̄2n(θ̂1n)− θ̄2n,1

)
=
(
− 1

n

∂2L̄2n(θ̃2n,1; θ̂1n)

∂θ2∂θ′2

)−1 1√
n

∂L̄2n(θ̄2n,1; θ̂1n)

∂θ2

= Σ−1
2n,1P2n,1

√
n(θ̂1n − θ10) + oP (1)

= Σ−1
2n,1P2n,1Σ−1

1n,1

1√
n

∂L1n(θ10)

∂θ1
+ oP (1),

where P2n,1 = 1
n
∂2L̄2n(θ̄2n,1;θ10)

∂θ2∂θ′1
. Therefore,

√
n
(
θ̂2n − θ̄2n(θ̂1n)

)
= Σ−1

2n,1

( 1√
n

∂L2n(θ̄2n,1)

∂θ2
− P2n,1Σ−1

1n,1

1√
n

∂L1n(θ10)

∂θ1

)
+ oP (1). (B.2)

The partial derivatives of the log-likelihood functions at the true or pseudo-true values have been shown to

be linear-quadratic forms of ε1n, so
√
n(θ̂2n − θ̄2n,1) is asymptotically normal.

Proposition 7. Under H0 and Assumptions 1–4, 9—16,

√
n(θ̂2n − θ̄2n(θ̂1n))

d−→ N
(
0, lim
n→∞

(Σ−1
2n,1V2n,1Σ−1

2n,1)
)
, (B.3)

where V2n,1 = var
(

1√
n

∂L2n(θ̄2n,1)
∂θ2

− P2n,1Σ−1
1n,1

1√
n
∂L1n(θ10)

∂θ1

)
. When ε1n,i’s are normally distributed, V2n,1 =

Ω2n,1 − P2n,1Σ−1
1n,1P

′
2n,1.

When ε1n,i’s are normally distributed, L1n(θ10) is the true probability density function. Then P2n,1 =

E
(

1
n
∂L2n(θ̄2n,1)

∂θ2

∂L1n(θ10)
∂θ′1

)
and the information matrix equality holds for L1n(θ10). Similar to the case

of non-spatial models (Gourieroux et al., 1983), avar
(√
n(θ̂2n − θ̄2n(θ̂1n))

)
= avar

(√
n(θ̂2n − θ̄2n,1)

)
−

avar
(√
n(θ̄2n(θ̂1n) − θ̄2n,1)

)
, where avar(·) denotes the asymptotic VC matrix. Thus θ̄2n(θ̂1n) as an esti-

mator for θ̄2n,1 is more efficient than θ̂2n.

Let Σ̂2n,1 and V̂2n,1 be, respectively, estimators of Σ2n,1 and V2n,1 such that Σ̂2n,1 − Σ2n,1 = oP (1) and

V̂2n,1−V2n,1 = oP (1), and V̂ +
2n,1 be a generalized inverse of V̂2n,1. If limn→∞ Pr

(
rk(V̂2n,1) = rk(limn→∞ V2n,1)

)
=
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1 (Andrews, 1987), where rk(·) denotes the rank of a matrix, then under the null hypothesis, the extended

Wald test statistic

Wald = n
(
θ̂2n − θ̄2n(θ̂1n)

)′
Σ̂2n,1V̂

+
2n,1Σ̂2n,1

(
θ̂2n − θ̄2n(θ̂1n)

)
(B.4)

is asymptotically distributed as a chi-square with degrees of freedom df given by the rank of limn→∞ V2n,1.

The extended Wald test of H0 against H1 rejects H0 if Walde > χ2
1−α(df), where χ2

1−α(df) is the (1 − α)

quantile of a chi-square distribution with df degrees of freedom for the chosen level of significance α, and

does not reject otherwise.

The V2n,1, even in the case where the DGP has normal i.i.d. disturbances, has a complicated form and

the rank of limn→∞ V2n,1 is hard to check. One solution is to test rank constraints and estimate the rank via

a series of tests. But this kind of procedure often fails when the estimated matrix is positive semidefinite.31

Another solution is to modify the test statistic to make sure that the involved matrix has full rank.32

Appendix B.2. The Extended Score Test

Under the null hypothesis,

1√
n

∂L2n

(
θ̄2n(θ̂1n)

)
∂θ2

= Σ2n,1

√
n(θ̄2n(θ̂1n)− θ̂2n) + oP (1), (B.5)

which is asymptotically normal with mean zero and limiting VC matrix limn→∞ V2n,1. Then the extended

score test statistic

Score =
1

n

(∂L2n(θ̄2n(θ̂1n))

∂θ′2

)
V̂ +

2n,1

(∂L2n(θ̄2n(θ̂1n))

∂θ2

)
(B.6)

is asymptotically chi-square distributed with degrees of freedom df , if limn→∞ P
(
rk(V̂2n,1) = rk(limn→∞ V2n,1)

)
=

1. From (B.2) and (B.4)–(B.6), it is clear that the extended Wald and score statistics are asymptotically

equivalent under the null hypothesis.

Appendix C. Lemmas

Lemma 1. Suppose that An and Bn are n-dimensional square matrices, an and bn are n-dimensional

vectors, and εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. with mean zero, variance σ2
0, third moment µ3 and finite

fourth moment µ4. Then,

i) E(εn · ε′nAnεn) = µ3 vecD(An),

ii) E(ε′nAnεn · ε′nBnεn) = (µ4 − 3σ4
0)vec′D(An) vecD(Bn) + σ4

0 tr(An) tr(Bn) + σ4
0 tr(AnB

s
n).

iii) E
[(
ε′nAnεn − σ2

0 tr(An) + a′nεn
)(
ε′nBnεn − σ2

0 tr(Bn) + b′nεn
)]

= (µ4 − 3σ4
0)vec′D(An) vecD(Bn) +

σ4
0 tr(AnB

s
n) + µ3

(
a′n vecD(Bn) + b′n vecD(An)

)
+ σ2

0a
′
nbn.

31See, e.g., Donald et al. (2007, 2010) and the cited references therein.
32See Lütkepohl and Burda (1997).
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Proof. For i) and ii), see Lin and Lee (2010). Compared to Lin and Lee (2010), the additional terms

µ3 vecD(An), (µ4− 3σ4
0)vec′D(An) vecD(Bn) and σ4

0 tr(An) tr(Bn) appear because we do not assume that An

and Bn have zero diagonals. iii) is a direct result of i) and ii). �

Lemmas 2–6 are elementary, and can be found, for example, in Lee (2004b). Lemma 7 is from Kelejian

and Prucha (2001).

Lemma 2. Suppose that An is uniformly bounded in either row or column sum norm, elements of the n×k

matrices Xn are uniformly bounded, and limn→∞
1
nX
′
nXn exists and is nonsingular. Then tr(MXnAn) =

tr(An) +O(1), where MXn = In −Xn(X ′nXn)−1X ′n.

Lemma 3. Suppose that n-dimensional square matrices {An} are bounded in either row or column sum

norm and εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. with mean zero, variance σ2
0 and finite fourth moment.

Then, E(ε′nAnεn) = O(n), var(ε′nAnεn) = O(n), ε′nAnεn = OP (n) and 1
nε
′
nAnεn − 1

n E(ε′nAnεn) = oP (1).

Lemma 4. Suppose that An is an n × n matrix with its column sum norm being bounded, elements of

the n × k matrix Cn are uniformly bounded, and elements εni’s of εn = (εn1, . . . , εnn)′ are i.i.d. (0, σ2
0).

Then 1√
n
C ′nAnεn = OP (1). Furthermore, if the limit of 1

nC
′
nAnA

′
nCn exists and is positive definite, then

1√
n
C ′nAnεn

d−→ N(0, σ2
0 limn→∞

1
nC
′
nAnA

′
nCn).

Lemma 5. Suppose that the elements of the sequences of n-dimensional vectors Pn and Qn are uniformly

bounded, and n-dimensional square matrices {An} are bounded in either row or column sum norm, then

|Q′nAnPn| = O(n).

Lemma 6. Suppose that n × n matrices {||Wn||} and {||S−1
n (λ0)||} are bounded, where || · || is a matrix

norm and Sn(λ) = In−λWn. Then the sequence {||S−1
n (λ)||} is uniformly bounded in a neighborhood of λ0.

Lemma 7. Suppose that n× n symmetric matrices {An = [an,ij ]} are UB, bn = (bn1, . . . , bnn)′ is a vector

such that supn n
−1
∑n
i=1 |bni|2+η1 < ∞ for some η1 > 0, and εni’s in εn = (εn1, · · · , εnn)′ are mutually

independent, with mean zero, variance σ2
ni and finite moment of order higher than four such that E(|εni|4+η2)

for some η2 > 0 are uniformly bounded for all n and i. Let σ2
Qn

be the variance of Qn where Qn =

ε′nAnεn + b′nεn −
∑n
i=1 an,iiσ

2
ni. Assume that σ2

Qn
/n is bounded away from zero. Then, Qn/σQn

d−→ N(0, 1).

Lemma 8. Suppose that n× n matrices {Mn} are UB. The smallest eigenvalue of R′n(ρ)Rn(ρ) is bounded

away from zero uniformly over the interval [−δ, δ], where Rn(ρ) = In − ρMn. Elements of the n × k

matrix Xn are uniformly bounded. The limit of 1
nX
′
nR
′
n(ρ)Rn(ρ)Xn exists and is nonsingular for any

ρ ∈ [−δ, δ]. Then elements of ( 1
nX
′
nR
′
n(ρ)Rn(ρ)Xn)−1 are uniformly bounded in [−δ, δ], and Hn(ρ) =

In −Rn(ρ)Xn(X ′nR
′
n(ρ)Rn(ρ)Xn)−1X ′nR

′
n(ρ) is UB uniformly in ρ ∈ [−δ, δ].
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Proof. As the smallest eigenvalue of R′n(ρ)Rn(ρ) is bounded away from zero uniformly on [−δ, δ], there

exists a constant κ > 0 such that the smallest eigenvalue of R′n(ρ)Rn(ρ) is greater or equal to κ for any n and

ρ ∈ [−δ, δ]. Write R′n(ρ)Rn(ρ) = Γ′n(ρ)Λn(ρ)Γn(ρ), where Γn(ρ) is an n×n orthonormal matrix and Λn(ρ) is

a diagonal matrix with the diagonal elements being the eigenvalues of R′n(ρ)Rn(ρ). Then R′n(ρ)Rn(ρ)−κIn =

Γ′n(ρ)[Λn(ρ)−κIn]Γn(ρ) is positive semi-definite, which implies that ( 1
nκX

′
nXn)−1−( 1

nX
′
nR
′
n(ρ)Rn(ρ)Xn)−1

is also positive semi-definite. Thus, elements of ( 1
nX
′
nR
′
n(ρ)Rn(ρ)Xn)−1 and

Xn(
1

n
X ′nR

′
n(ρ)Rn(ρ)Xn)−1X ′n

are uniformly bounded in ρ ∈ [−δ, δ]. It follows that 1
nXn( 1

nX
′
nR
′
n(ρ)Rn(ρ)Xn)−1X ′n is UB uniformly in

ρ ∈ [−δ, δ]. As Rn(ρ) is UB uniformly in ρ ∈ [−δ, δ], Hn(ρ) is also UB uniformly in ρ ∈ [−δ, δ]. �

Lemma 9. Let Wn, Mn and An be n×n matrices that are UB, bn be an n-dimensional vector with uniformly

bounded elements, Xn be an n × k matrix with uniformly bounded elements, and εn = (εn1, . . . , εnn)′ be a

random vector with i.i.d. elements that have mean zero, variance σ2
0 and finite fourth moment. Assume

that limn→∞
1
nX
′
nR
′
n(ρ)Rn(ρ)Xn exists and is nonsingular for any ρ ∈ [−δ, δ], where Rn = In − ρMn.

Let Sn(λ) = In − λWn, and Tn(φ) = G′n(φ)Hn(ρ)Gn(φ) with φ = (λ, ρ)′, Gn(φ) = Rn(ρ)Sn(λ) and

Hn(ρ) = In − Rn(ρ)Xn(X ′nR
′
n(ρ)Rn(ρ)Xn)−1X ′nR

′
n(ρ). Then 1

nb
′
nTn(φ)Anεn = oP (1) uniformly on the

parameter space Φ = [−δ, δ]× [−δ, δ], 1
n [ε′nA

′
nTn(φ)Anεn− σ2

0 tr(A′nTn(φ)An)] = oP (1) uniformly on Φ, and

1
n tr[A′n(G′n(φ)Gn(φ)− Tn(φ))An] = o(1) uniformly on Φ.

Proof. By 21.9 Theorem on p. 337 of Davidson (1994), the uniform convergence of a sequence of stochatic

functions {fn(φ)} on Φ follows from the pointwise convergence in probability fn(φ) = oP (1) for every φ ∈ Φ

and the stochastic equicontinuity of {fn(φ)}. For the stochastic equicotinuity, by 21.10 Theorem on p. 339

of Davidson (1994), a sufficient condition is that |fn(φ∗)− fn(φ)| ≤ enh(||φ∗−φ||), for any φ∗, φ ∈ Φ, where

{en} is a stochastically bounded sequence not depending on φ, h(x) is nonstochastic which goes down to 0

as x goes down to 0, and || · || denotes the Euclidean vector norm. By Lemma 8, Hn(ρ) is UB uniformly

over the parameter space. Then 1
nb
′
nTn(φ)Anεn = oP (1) for any φ = (λ, ρ)′ in Φ and 1

n [ε′nA
′
nTn(φ)Anεn −

σ2
0 tr(A′nTn(φ)An)] = oP (1) for any φ ∈ Φ by Lemma 4, and 1

n tr[A′nG
′
n(φ)Pn(ρ)Gn(φ)An] = o(1) for any

φ ∈ Φ by Lemma 2, where Pn(ρ) = In − Hn(ρ). It remains to show the stochastic equicontinuity of the

sequences { 1
nb
′
nTn(φ)Anεn}, { 1

n [ε′nA
′
nTn(φ)Anεn−σ2

0 tr(A′nTn(φ)An)]} and { 1
n tr[AnG

′
n(φ)Pn(ρ)Gn(φ)An]}.

By the mean value theorem,

1

n
b′nTn(φ∗)Anεn −

1

n
b′nTn(φ)Anεn =

1

n
b′n
∂Tn(φ̃)

∂λ
Anεn(λ∗ − λ) +

1

n
b′n
∂Tn(φ̃)

∂ρ
Anεn(ρ∗ − ρ),

where ∂Tn(φ)
∂λ = −G′n(φ)Hn(ρ)Rn(ρ)Wn −W ′nR′n(ρ)Hn(ρ)Gn(φ),

∂Tn(φ)

∂ρ
= −G′n(φ)Hn(ρ)MnSn(λ)− S′n(λ)M ′nHn(ρ)Gn(φ) +G′n(φ)

∂Hn(ρ)

∂ρ
Gn(φ)
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with

∂Hn(ρ)

∂ρ
= MnXn[X ′nR

′
n(ρ)Rn(ρ)Xn]−1X ′nR

′
n(ρ) +Rn(ρ)Xn[X ′nR

′
n(ρ)Rn(ρ)Xn]−1X ′nM

′
n

−Rn(ρ)Xn[X ′nR
′
n(ρ)Rn(ρ)Xn]−1[X ′nMnRn(ρ)Xn +X ′nR

′
n(ρ)MnXn][X ′nR

′
n(ρ)Rn(ρ)Xn]−1X ′nR

′
n(ρ),

and φ̃ is between φ∗ and φ. Since Xn[X ′nR
′
n(ρ)Rn(ρ)Xn]−1X ′n and Hn(ρ) are UB uniformly in ρ by Lemma 8,

Rn(ρ) is linear in ρ and Sn(λ) is linear in λ, there exists a finite constant c such that all elements of

| 1nb
′
n
∂Tn(φ̃)
∂λ An| and | 1nb

′
n
∂Tn(φ̃)
∂ρ An| are bounded by c. Hence,

| 1
n
b′nTn(φ∗)Anεn −

1

n
b′nTn(φ)Anεn| ≤

2c

n

n∑
i=1

|εni| · ||φ∗ − φ||,

where 1
n

∑n
i=1 |εni| = OP (1) by Markov’s inequality. Then { 1

nb
′
nTn(φ)Anεn} is stochastically equicontinuous.

For { 1
n [ε′nA

′
nTn(φ)Anεn − σ2

0 tr(A′nTn(φ)An)]}, by the mean value theorem,

1

n
[ε′nA

′
nTn(φ∗)Anεn − σ2

0 tr(A′nTn(φ∗)An)]− 1

n
[ε′nA

′
nTn(φ)Anεn − σ2

0 tr(A′nTn(φ)An)]

=
1

n
ε′nA

′
n

∂Tn(φ̃)

∂λ
Anεn(λ∗ − λ) +

1

n
ε′nA

′
n

∂Tn(φ̃)

∂ρ
Anεn(ρ∗ − ρ)

− σ2
0

n
tr[A′n

∂Tn(φ̃)

∂λ
An](λ∗ − λ)− σ2

0

n
tr[A′n

∂Tn(φ̃)

∂ρ
An](ρ∗ − ρ)

≤
[ 1

n
|ε′nA′n

∂Tn(φ̃)

∂λ
Anεn|+

1

n
|ε′nA′n

∂Tn(φ̃)

∂ρ
Anεn|

+
σ2

0

n
| tr[A′n

∂Tn(φ̃)

∂λ
An]|+ σ2

0

n
| tr[A′n

∂Tn(φ̃)

∂ρ
An]
]
||φ∗ − φ||,

where φ̃ lies in between φ∗ and φ. As A′n
∂Tn(φ̃)
∂λ An is symmetric, by the eigenvalue-eigenvector decomposition,

there exists othornormal matrix Γn and eigenvalue matrix Λn = Diag{λn1, · · · , λnn} such that

1

n
|ε′nA′n

∂Tn(φ̃)

∂λ
Anεn| =

1

n
|ε′nΓnΛnΓ′nεn| ≤

1

n
max

i=1,··· ,n
|λni| · ε′nεn

≤ 1

n
||A′n

∂Tn(φ̃)

∂λ
An||∞ · ε′nεn ≤

c1
n
ε′nεn = OP (1),

by the spectral radius theorem, for some constant c1, because A′n
∂Tn(φ)
∂λ An is UB uniformly in φ ∈ Φ.

Similarly, 1
n |ε
′
nA
′
n
∂Tn(φ̃)
∂ρ Anεn| ≤ c1

n ε
′
nεn = OP (1). Furthermore, 1

n tr[A′n
∂Tn(φ)
∂λ An] and 1

n tr[A′n
∂Tn(φ)
∂ρ An] are

bounded uniformly on Φ. Then { 1
n [ε′nA

′
nTn(φ)Anεn − tr(A′nTn(φ)AnΣn)]} is stochastically equicontinuous.

For { 1
n tr(A′nG

′
n(φ)Pn(ρ)Gn(φ)An)}, its derivative is 1

n
∂
∂φ tr(A′nG

′
n(φ)Gn(φ)An)− 1

n
∂
∂φ tr(A′nTn(φ)An),

which is bounded by a constant not depending on φ in absolute value. Then by the mean value theorem,

1
n tr(A′nG

′
n(φ)Pn(ρ)Gn(φ)An) is equicontinuous.

The results in the lemma follow from the pointwise convergence and stochastic equicontinuity. �

The following lemmas are for the consistency of the bootstrap for Cox-type tests. Let ε̂∗1n be the residual

vector from the QML estimation of the the model (1) with the bootstrapped data y∗n, E∗ be the expectation

induced by the bootstrap sampling process and || · || be the Euclidean matrix norm.
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Lemma 10. For any integer r, if E |ε1n,i|r <∞, E∗ ε∗r1n,i = E εr1n,i+oP (1), n−1
∑n
i=1 ε̂

r
1n,i = E εr1n,i+oP (1),

E∗ |ε1n,i|∗r = E |ε1n,i|r + oP (1) and n−1
∑n
i=1 |ε̂1n,i|r = E |ε1n,i|r + oP (1). If E ε2r1n,i < ∞, n1/2[E∗ ε∗r1n,i −

E εr1n,i] = OP (1) and n1/2[n−1
∑n
i=1 ε̂

r
1n,i − E εr1n,i] = OP (1).

Proof. This is Lemma 5 in Jin and Lee (2012). �

Lemma 11. For η > 0 and an integer r, P∗(|n−1
∑n
i=1 ε̂

∗r
1n,i − E∗ ε∗r1n,i| > η) = oP (1) if E |εni|r <∞.

Proof. This is Lemma 7 in Jin and Lee (2012). �

Lemma 12. 1√
n

∥∥∂2L1n(θ̃1n)
∂θ1∂θ′1

−∂
2L̄1n(θ10;θ10)
∂θ1∂θ′1

∥∥ = OP (1), 1√
n

∥∥∂2L2n(θ̃2n)
∂θ2∂θ′2

−∂
2L̄2n(θ̄2n,1;θ10)

∂θ2∂θ′2

∥∥ = oP (1), 1
n

∥∥∂2L̄2n(θ̃2n;θ̃1n)
∂θ1∂θ′1

−
∂2L̄2n(θ̄2n,1;θ10)

∂θ1∂θ′1

∥∥ = oP (1), 1
n

∥∥∂2L̄2n(θ̃2n;θ̃1n)
∂θ1∂θ′2

−∂
2L̄2n(θ̄2n,1;θ10)

∂θ1∂θ′2

∥∥ = oP (1) and 1
n

∥∥∂2L̄2n(θ̃2n;θ̃1n)
∂θ2∂θ′2

−∂
2L̄2n(θ̄2n,1;θ10)

∂θ2∂θ′2

∥∥ =

oP (1), where θ̃1n is between θ̂1n and θ10, and θ̃2n is between θ̂2n and θ̄2n,1.

Proof. We prove the first result by showing that (i) n−1/2
∥∥∂2L1n(θ̃1n)

∂θ1∂θ′1
− ∂2L1n(θ10)

∂θ1∂θ′1

∥∥ = OP (1) and (ii)

n−1/2
∥∥∂2L1n(θ10)

∂θ1∂θ′1
− E ∂2L1n(θ10)

∂θ1∂θ′1

∥∥ = OP (1). To prove (i), apply the mean value theorem to each term in

the second order derivative. Specifically, we investigate n−1/2
∥∥∂2L1n(θ̃1n)

∂λ2
1

− E ∂2L1n(θ10)
∂λ2

1

∥∥. Results for other

terms can be derived similarly. By the mean value theorem,

1√
n

(∂2L1n(θ̃1n)

∂λ2
1

− ∂2L1n(θ10)

∂λ2
1

)
= B1n +

2

σ̌2
1n

B2n

√
n(ρ̃1n − ρ̌1n) +B3n,

where B1n = −2n−1 tr
[(
W1nS

−1
1n (λ̌1n)

)3]
n1/2(λ̃1n − λ̂1n), B2n = n−1y′nW

′
1nM

′
1nR1n(ρ̌1n)W1nyn and B3n =

(nσ̌4
1n)−1y′nW

′
1nR

′
1n(ρ̌1n)R1n(ρ̌1n)W1nynn

1/2(σ̃2
1n − σ̂2

1n) with θ̌1n being between θ̃1n and θ10. By the u-

niform boundedness of S−1
1n (λ1) in λ1 ∈ Λ1, B1n = OP (1). Note that B2n = B2n,1 + B2n,2(ρ10 − ρ̌1n),

where B2n,1 = n−1y′1nW
′
1nM

′
1nR1nW1nyn = OP (1) and B2n,2 = n−1y′1nW

′
1nM

′
1nM1nW1nyn = OP (1), then

2σ̌−2
1nB2nn

1/2(ρ̃1n − ρ̌1n) = OP (1). Similarly, B3n = OP (1). Hence (i) holds. (ii) follows from Chebyshev’s

inequality.

The proof of the second result resembles the above proof and the rest results are proved by a similar use

of the mean value theorem. �

Lemma 13. For η > 0, P∗(||θ̂∗1n − θ̂1n|| > η) = oP (1), P∗(||θ̂∗2n − θ̂2n|| > η) = oP (1) and P∗(||θ̄2n(θ̂∗1n) −

θ̄2n(θ̂1n)|| > η) = oP (1).

Proof. We first prove the result on θ̂∗1n. Let L̄1n(φ1; θ10) = maxβ1,σ2
1
L̄1n(θ1; θ10), L∗1n(θ1) be the log likeli-

hood function of the the model (1) with the dependent variable y∗n, and L̄1n(φ1; θ̂1n,a) = maxβ1,σ2
1

E∗ L∗1n(θ1),

where θ̂1n,a = (λ̂1n, ρ̂1n, β̂
′
1n,E

∗ ε∗21n,i)
′, then

L̄1n(φ1; θ10) = −n
2

[ln(2π) + 1]− n

2
ln σ̄2

1n(φ1) + ln |S1n(λ1)|+ ln |R1n(ρ1)|,

L̄1n(φ1; θ̂1n,a) = −n
2

[ln(2π) + 1]− n

2
ln σ̄∗21n(φ1) + ln |S1n(λ1)|+ ln |R1n(ρ1)|,
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where

σ̄2
1n(φ1) =

1

n
σ2

10 tr
(
R′−1

1n S
′−1
1n S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n R
−1
1n

)
+

1

n
(X1nβ10)′S′−1

1n S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1nX1nβ10,

σ̄∗21n(φ1) =
1

n
(E∗ ε∗21n,i) tr

(
R′−1

1n (ρ̂1n)S′−1
1n (ρ̂1n)S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n (λ̂1n)R−1
1n (ρ̂1n)

)
+

1

n
(X1nβ̂1n)′S′−1

1n (λ̂1n)S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1n (λ̂1n)X1nβ̂1n,

with H1n(ρ1) = In−R1n(ρ1)X1n[X ′1nR
′
1n(ρ1)R1n(ρ1)X1n]−1X ′1nR

′
1n(ρ1) being UB uniformly on %1 (see the

proof of Proposition 3). By the mean value theorem,

1

n
[L̄1n(φ1; θ̂1n,a)− L̄1n(φ1; θ10)] = −1

2

σ̄∗21n(φ1)− σ̄2
1n(φ1)

σ̃2
1n

,

where σ̃2
1n is between σ̄2

1n(φ1) and σ̄∗21n(φ1), and

σ̄∗21n(φ1)− σ̄2
1n(φ1)

=
1

n
(E∗ ε∗21n,i − σ2

0) tr
(
R′−1

1n (ρ̌1n)S′−1
1n (ρ̌1n)S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n (λ̌1n)R−1
1n (ρ̌1n)

)
+

2

n
(X1nβ̌1n)′S′−1

1n (λ̌1n)S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1n (λ̌1n)X1n(β̂1n − β10)

+
2σ̌2

1n

n
tr
(
R′−1

1n (ρ̌1n)S′−1
1n (ρ̌1n)S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n (λ̌1n)R−1
1n (ρ̌1n)M1nR

−1
1n (ρ̌1n)

)
(ρ̂1n − ρ10)

+
2σ̌2

1n

n
tr
(
R′−1

1n (ρ̌1n)S′−1
1n (ρ̌1n)S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n (λ̌1n)W1nS
−1
1n (λ̌1n)R−1

1n (ρ̌1n)
)
(λ̂1n − λ10)

+
2

n
(X1nβ̌1n)′S′−1

1n (λ̌1n)S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1n (λ̌1n)W1nS

−1
1n (λ̌1n)X1nβ̌1n(λ̂1n − λ10),

with γ̌1n = (λ̌1n, ρ̌1n, β̌1n)′ being between γ10 and γ̂1n, and σ̌2
1n being between σ2

10 and E∗ ε∗21n,i. By Lemma 10,

supφ1∈ϕ1
|σ̄∗21n(φ1)− σ̄2

1n(φ1)| = oP (1). As σ̄2
1n(φ1) is bounded away from zero uniformly on Φ1 (see the proof

of Proposition 3 for a similar result on σ̄2
2n(φ2; θ10)), supφ1∈ϕ1

|n−1[L̄1n(φ1; θ̂1n,a)− L̄1n(φ1; θ10)]| = oP (1).

If ||φ1 − φ̂1n|| > η, ||φ1 − φ10|| ≥ ||φ1 − φ̂1n|| − ||φ̂1n − φ10|| > η/2 with probability 1− o(1). Note that

1

n

(
L̄1n(φ̂1n; θ̂1n,a)− L̄1n(φ1; θ̂1n,a)

)
=

1

n

(
L̄1n(φ̂1n; θ̂1n,a)− L̄1n(φ̂1n; θ10)

)
− 1

n

(
L̄1n(φ1; θ̂1n,a)− L̄1n(φ1; θ10)

)
+

1

n

(
L̄1n(φ10; θ10)− L̄1n(φ1; θ10)

)
− 1

n

(
L̄1n(φ10; θ10)− L̄1n(φ̂1n; θ10)

)
,

given η > 0, there exists a κ > 0, such that ||φ1−φ̂1n|| > η implies that n−1
(
L̄1n(φ̂1n; θ̂1n,a)−L̄1n(φ1; θ̂1n,a)

)
≥

κ with probability 1− o(1). Then

P∗(||φ̂∗1n − φ̂1n|| > η)

≤ P∗
(
n−1

(
L̄1n(φ̂1n; θ̂1n,a)− L̄1n(φ̂∗1n; θ̂1n,a)

)
≥ κ

)
+ o(1)

≤ P∗
(
n−1

(
L̄1n(φ̂1n; θ̂1n,a)− L∗1n(φ̂1n) + L∗1n(φ̂∗1n)− L̄1n(φ̂∗1n; θ̂1n,a)

)
≥ κ

)
+ o(1)

≤ P∗
(
2n−1 sup

φ1∈ϕ1

∣∣L∗1n(φ1)− L̄1n(φ1; θ̂1n,a)
∣∣ ≥ κ)+ o(1),
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where ϕ1 is the parameter space of φ1, L∗1n(φ1) = maxβ1,σ2
1
L∗1n(θ1), and

1

n

(
L∗1n(φ1)− L̄1n(φ1; θ̂1n,a)

)
= − σ̂

∗2
1n(φ1)− σ̄∗21n(φ1)

2σ̌2
1n(φ1)

,

with σ̌∗21n(φ1) being between σ̂∗21n(φ1) and σ̄∗21n(φ1), and

σ̂∗21n(φ1)− σ̄∗21n(φ1) =
1

n
ε∗
′

1nR
′−1
1n (ρ̂1n)S′−1

1n (λ̂1n)S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1n (λ̂1n)R−1

1n (ρ̂1n)ε∗1n

−
E∗ ε∗21n,i

n
tr[R′−1

1n (ρ̂1n)S′−1
1n (λ̂1n)S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n (λ̂1n)R−1
1n (ρ̂1n)]

+
2

n
(X1nβ̂1n)′S′−1

1n (λ̂1n)S′1n(λ1)R′1n(ρ1)H1n(ρ1)R1n(ρ1)S1n(λ1)S−1
1n (λ̂1n)R−1

1n (ρ̂1n)ε∗1n.

The σ̂∗21n(φ1)−σ̄∗21n(φ1) is equal to a LQ form plus n−1(E∗ ε∗21n,i) tr[R′−1
1n (ρ̂1n)S′−1

1n (λ̂1n)S′1n(λ1)R′1n(ρ1)(H1n(ρ1)−

In)R1n(ρ1)S1n(λ1)S−1
1n (λ̂1n)R−1

1n (ρ̂1n)]. Since R1n(ρ1) is linear in ρ1, S1n(λ1) is linear in λ1 and H1n(ρ1)

is UB uniformly in ρ1 ∈ %1, Chebyshev’s inequality implies that nP∗(supφ1∈ϕ1
|σ̂∗21n(φ1) − σ̄∗21n(φ1)| > η)

for η > 0 is bounded by a term depending only on β̂1n, E ε∗21n,i, E ε∗31n,i and E ε∗41n,i, which has the order

OP (1) by Lemma 10. Then P∗(supφ1∈ϕ1
|σ̂∗21n(φ1) − σ̄∗21n(φ1)| > η) = oP (1). It has been shown above that

supφ1∈ϕ1
|σ̄∗21n(φ1) − σ̄2

1n(φ1)| = oP (1) with σ̄2
1n(φ1) being bounded away from zero uniformly on Φ1, then

P∗(||φ̂∗1n− φ̂1n|| > η) = oP (1). Now the mean value theorem and the formulas of β̂∗1n and σ̂∗21n as functions of

φ̂∗1n can be used to show that we also have P∗(||β̂∗1n− β̂1n|| > η) = oP (1) and P∗(||σ̂∗21n− σ̂2
1n|| > η) = oP (1).

The result on θ̂∗2n can be similarly proved. For the result on θ̄2n(θ̂∗1n), some modifications are needed.

First, by the mean value theorem, we can show that P∗(supφ2∈ϕ2
n−1|L̄2n(φ2; θ̂∗1n) − L̄2n(φ2; θ̂1n)| > η) =

oP (1) for η > 0, where L̄2n(φ2; θ1) = maxβ2,σ2
2
L̄2n(θ2; θ1). Given η > 0, there exists a κ > 0, such that

||φ2 − φ̄2n(θ̂1n)|| > η implies that n−1
(
L̄2n(φ̄2n(θ̂1n); θ̂1n) − L̄2n(φ2; θ̂1n)

)
≥ κ with probability 1 − o(1),

where φ̄2n(θ̂1n) = maxβ2,σ2
2
L̄2n(θ2; θ̂1n). Then

P∗(||φ̄2n(θ̂∗1n)− φ̄2n(θ̂1n)|| > η)

≤ P∗
(
n−1

(
L̄2n(φ̄2n(θ̂1n); θ̂1n)− L̄2n(φ̄2n(θ̂∗1n); θ̂1n)

)
≥ κ

)
+ o(1)

≤ P∗
(
n−1

(
L̄2n(φ̄2n(θ̂1n); θ̂1n)− L̄2n(φ̄2n(θ̂1n); θ̂∗1n) + L̄2n(φ̄2n(θ̂∗1n); θ̂∗1n)− L̄2n(φ̄2n(θ̂∗1n); θ̂1n)

)
≥ κ

)
+ o(1)

≤ P∗
(

sup
φ2∈ϕ2

n−1|L̄2n(φ2; θ̂1n)− L̄2n(φ2; θ̂∗1n)| > κ
)

+ o(1) = oP (1).

The rest proof is similar to that for θ̂∗1n. �

Lemma 14. For η > 0, P∗
(
n−1

∥∥∂2L∗1n(θ̃∗1n)
∂θ1∂θ′1

−E∗
∂2L∗1n(θ̂1n)
∂θ1∂θ′1

∥∥ > η
)

= oP (1), P∗
(
n−1

∥∥∂2L∗2n(θ̃∗2n)
∂θ2∂θ′2

−E∗
∂2L∗2n(θ̂2n)
∂θ2∂θ′2

∥∥ >
η
)

= oP (1), P∗
(
n−1

∥∥∂2L̄2n(θ̃∗2n;θ̃1n)
∂θ1∂θ′1

− ∂2L̄2n(θ̂2n;θ̂1n)
∂θ1∂θ′1

∥∥ > η
)

= oP (1), P∗
(
n−1

∥∥∂2L̄2n(θ̃∗2n;θ̃1n)
∂θ1∂θ′2

− ∂2L̄2n(θ̂2n;θ̂1n)
∂θ1∂θ′2

∥∥ >
η
)

= oP (1) and P∗
(
n−1

∥∥∂2L̄2n(θ̃∗2n;θ̃1n)
∂θ2∂θ′2

− ∂2L̄2n(θ̂2n;θ̂1n)
∂θ2∂θ′2

∥∥ > η
)

= oP (1), where θ̃1n is between θ̂1n and θ10,

θ̃∗1n is between θ̂∗1n and θ̂1n, and θ̃∗2n is between θ̂∗2n and θ̂2n.

Proof. We prove the first result in the lemma by showing that (i) P∗
(
n−1

∥∥∂2L∗1n(θ̃∗1n)
∂θ1∂θ′1

− ∂2L∗1n(θ̂1n)
∂θ1∂θ′1

∥∥ > η
)

=

oP (1) and (ii) P∗
(
n−1

∥∥∂2L∗1n(θ̂1n)
∂θ1∂θ′1

− ∂2 E∗ L∗1n(θ̂1n)
∂θ1∂θ′1

∥∥ > η
)

= oP (1). As in the proof of Lemma 12, use the
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mean value theorem for each term in the second order derivative to prove (i). Here we only investigate

n−1
∣∣∂2L∗1n(θ̃1n)

∂λ2
1

− ∂2L∗1n(θ̂1n)

∂λ2
1

∣∣. Results for other terms are similarly derived. By the mean value theorem,

1

n

(∂2L∗1n(θ̃∗1n)

∂λ2
1

− ∂2L∗1n(θ̂1n)

∂λ2
1

)
= B∗1n +

2

σ̌2
1n

B∗2n(ρ̃∗1n − ρ̂1n) +B∗3n,

where B∗1n = −2n−1 tr
((
W1nS

−1
1n (λ̌∗1n)

)3)
(λ̃∗1n − λ̂1n), B∗2n = n−1y∗

′

nW
′
1nM

′
1nR1n(ρ̌∗1n)W1ny

∗
n and B∗3n =

(nσ̌∗41n)−1y∗
′

nW
′
1nR

′
1n(ρ̌∗1n)R1n(ρ̌∗1n)W1ny

∗
n(σ̃∗21n− σ̂2

1n) with θ̌∗1n being between θ̃∗1n and θ̂1n. By Lemma 13 and

the uniform boundedness of S−1
1n (λ1), P∗(|B∗1n| > η) = oP (1). Let B∗2n,1 = n−1y∗

′

nW
′
1nM

′
1nR1n(ρ̂1n)W1ny

∗
n

and B∗2n,2 = n−1y∗
′

nW
′
1nM

′
1nM1nW1ny

∗
n. Then P∗(|B∗1n,1 − E∗B∗1n,1| > η) = oP (1) and P∗(|B∗2n,1 −

E∗B∗2n,1| > η) = oP (1). Since B∗2n = B∗2n,1 + B∗2n,2(ρ̂1n − ρ̌∗1n), P∗
(∣∣2σ̌∗−2

1n B∗2n(ρ̃∗1n − ρ̂1n)
∣∣ > η

)
= oP (1).

Similarly, P∗(|B∗3n| > η) = oP (1). Therefore, P∗
(
n−1

∣∣∂2L∗1n(θ̃∗1n)

∂λ2
1

− ∂2L∗1n(θ̂1n)

∂λ2
1

∣∣ > η
)

= oP (1). (ii) is proved

by using Chebyshev’s inequality.

The proof of the second result is almost the same. The rest of results are proved by using the mean

value theorem. �

Lemma 15. n−1
∥∥E∗

∂2L∗1n(θ̂1n)
∂θ1∂θ′1

− E ∂2L1n(θ10)
∂θ1∂θ′1

∥∥ = oP (1), n−1
∥∥E∗

∂2L∗2n(θ̂2n)
∂θ2∂θ′2

− E
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

∥∥ = oP (1) and

n−1
∥∥∂L̄2n(θ̂2n;θ̂1n)

∂θ1
− ∂L̄2n(θ̄2n,1;θ10)

∂θ1

∥∥ = oP (1).

Proof. The lemma is proved by using the mean value theorem and Lemma 10. �

Lemma 16. For η > 0 and 0 ≤ a < 1
2 , P∗(na||θ̂∗1n − θ̂1n|| > η) = oP (1), P∗(na||θ̂∗2n − θ̂2n|| > η) = oP (1)

and P∗(na||θ̄2n(θ̂∗1n)− θ̄2n(θ̂1n)|| > η) = oP (1).

Proof. We only prove the result on θ̂∗1n, as the proofs for the rest of results are similar. By the mean value

theorem,

na(θ̂∗1n − θ̂1n) =
(
− 1

n

∂2L∗1n(θ̃∗1n)

∂θ1∂θ′1

)−1

na−1 ∂L
∗
1n(θ̂1n)

∂θ1
,

where θ̃∗1n is between θ̂∗1n and θ̂1n. Then

P∗(na||θ̂∗1n − θ̂1n|| > η) ≤ P∗
(∥∥ 1

n

∂2L∗1n(θ̃∗1n)

∂θ1∂θ′1
− 1

n
E∗

∂2L∗1n(θ̂1n)

∂θ1∂θ′1

∥∥ > η
)

+ P∗
(
na||θ̂∗1n − θ̂1n|| > η,

∥∥ 1

n

∂2L∗1n(θ̃∗1n)

∂θ1∂θ′1
− 1

n
E∗

∂2L∗1n(θ̂1n)

∂θ1∂θ′1

∥∥ ≤ η).
The result follows from Lemmas 10–15 and Chebyshev’s inequality. �

Lemma 17. For η > 0 and 0 ≤ a < 1
2 , P∗

(
na−1

∥∥∂2L∗1n(θ̃∗1n)
∂θ1∂θ′1

− E∗
∂2L∗1n(θ̂1n)
∂θ1∂θ′1

∥∥ > η
)

= oP (1), where θ̃∗1n is

between θ̂∗1n and θ̂1n.

Proof. The proof is similar to that for Lemma 14 except for the adjustments of orders and the application

of Lemma 16. �
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Appendix D. Proofs

Propositions 1 and 2 present the consistency and asymptotic normality of the QMLE for the null model.

Their proofs are similar to those of Theorems 3.1 and 3.2 in Lee (2004a), except for some modifications to

allow for SAR disturbances. Thus we omit their proofs, but focus on proving the results on the QMLE for

the alternative model (Propositions 3 and 4), where necessary conditions and modifications will be pointed

out.

Proof of Proposition 3. The convergence of θ̂2n− θ̄2n,1 to zero in probability will follow from the uniform

convergence of 1
n [L2n(φ2)− L̄2n(φ2; θ10)] to zero on Φ2 and the unique identification condition (White, 1994,

Theorem 3.4).

We first show that supφ2∈Φ2
| 1nL2n(φ2) − 1

n L̄2n(φ2; θ10)| = oP (1). For any φ2 ∈ Φ2, 1
n

(
L̄2n(φ2; θ10) −

L̄2n(φ̄2n,1; θ10)
)
≤ 0 implies that

1

2
ln
(
σ̄2

2n(φ2; θ10)
)
≥ 1

2
ln(σ̄2

2n,1)− 1

n

(
ln |S2n| − ln |S2n(λ2)|

)
− 1

n

(
ln |R2n| − ln |R2n(ρ2)|

)
.

As in the proof of Theorem 3.1 in Lee (2004a), 1
n

(
ln |S2n| − ln |S2n(λ2)|

)
is bounded uniformly in λ2 ∈ Λ2

and 1
n

(
ln |R2n| − ln |R2n(ρ2)|

)
is bounded uniformly in ρ2 ∈ %2. Since σ̄2

2n,1 is bounded away from zero by

Assumption 15 and (A.4), ln(σ̄2
2n,1) is also bounded. Thus, σ̄2

2n(φ2; θ10) is bounded away from zero uniformly

in φ2 ∈ Φ2. By the mean value theorem,

1

n
[L2n(φ2)− L̄2n(φ2; θ10)] = − σ̂

2
2n(φ2)− σ̄2

2n(φ2; θ10)

2σ̃2
2n(φ2; θ10)

,

where σ̃2
2n(φ2; θ10) is between σ̂2

1n(φ2) and σ̄2
1n(φ2; θ10), and σ̂2

2n(φ2) − σ̄2
2n(φ2; θ10) = n−1[ε′1nG1nε1n −

σ2
10 tr(G2n) +G3n] with

G1n = R′−1
1n S

′−1
1n S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n R
−1
1n ,

G2n = R′−1
1n S

′−1
1n S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n R
−1
1n ,

G3n = 2(X1nβ10)′S′−1
1n S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n R
−1
1n ε1n.

By Lemma 8, X2n(X ′2nR
′
2n(ρ2)R2n(ρ2)X2n)−1X ′2n and H2n(ρ2) are UB uniformly on %2.33 By Lem-

ma 9, n−1[ε′1nG1nε1n − σ2
10(G2n)] = oP (1) uniformly on Φ2 and n−1G3n = oP (1) uniformly on Φ2. Then

σ̂2
2n(φ2)− σ̄2

2n(φ2; θ10) = oP (1) uniformly on Φ2. Consequently, supφ2∈Φ2

1
n |L2n(φ2)− L̄2n(φ2; θ10)| = oP (1),

as σ̃2
2n(φ2; θ10) is bounded away from zero uniformly on Φ2 in probability.

With the uniform boundedness in both row and column sum norms of H2n(ρ2), 1
n L̄2n(φ2; θ10) is uniformly

equicontinuous on Φ2 as in the proof of Theorem 3.1 in Lee (2004a). The identification unique condition is

33Similarly, H1n(ρ1) is UB uniformly on %1 for the proof of Proposition 1.
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guaranteed by Assumption 14.34 It follows that θ̂2n − θ̄2n,1 = oP (1). �

Proof of Proposition 4. The proof is based on (6) obtained from the mean value theorem. We first prove

that 1
n
∂2L2n(θ̃2n)
∂θ2∂θ′2

−E
(

1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
= oP (1), which is done by showing that i) 1

n
∂2L2n(θ̃2n)
∂θ2∂θ′2

− 1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
=

oP (1) and ii) 1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
−E

(
1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
= oP (1). After that, limn→∞ E

(
1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
is shown to be

nonsingular in Step iii). Finally, applying the central limit theorem in Lemma 7 to 1√
n

∂L2n(θ̄2n,1)
∂θ2

and using

Slutsky’s Lemma, we obtain the asymptotic distribution of
√
n(θ̂2n − θ̄2n,1).

i) Prove that 1
n
∂2L2n(θ̃2n)
∂θ2∂θ′2

− 1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
= oP (1). By the mean value theorem and Assumption 12,

n−1 tr
[(
W2nS

−1
2n (λ̃2n)

)2] − n−1 tr[(W2nS
−1
2n )2] = 2n−1(λ̃2n − λ̄2n,1) tr

[(
W2nS

−1
2n (λ̌2n)

)3]
= oP (1), where

λ̌2n is between λ̃2n and λ̄2n,1. Similarly, n−1 tr
[(
M2nR

−1
2n (ρ̃2n)

)2] − n−1 tr[(M2nR
−1
2n )2] = oP (1). For

the other terms in 1
n
∂2L2n(θ̃2n)
∂θ2∂θ′2

, we may first rewrite S2n(λ̃2n) = S2n + (λ̄2n,1 − λ̃2n)W2n, R2n(ρ̃2n) =

R2n + (ρ̄2n,1 − ρ̃2n)M2n and β̃2n = β̄2n,1 + (β̃2n − β̄2n,1), and then expand these terms. Noting that

σ̃2
2n is bounded away from zero in probability, yn = S−1

1nX1nβ10 + S−1
1n R

−1
1n ε1n and S2nyn − X2nβ̄2n,1 =

[In−X2n(X ′2nR
′
2nR2nX2n)−1X ′2nR

′
2nR2n]S2nS

−1
1nX1nβ10 +S−1

1n R
−1
1n ε1n, where X2n(X ′2nR

′
2nR2nX2n)−1X ′2n

is UB as shown in the proof of Proposition 3, we have 1
n
∂2L2n(θ̃2n)
∂θ2∂θ′2

− 1
n
∂2L2n(φ̄2n,1,β̄2n,1,σ̃

2
2n)

∂θ2∂θ′2
= oP (1), by

Lemmas (3)–(5). In addition, 1
n
∂2L2n(φ̄2n,1,β̄2n,1,σ̃

2
2n)

∂θ2∂θ′2
− 1

n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
= oP (1) by the mean value theorem.

Therefore, 1
n
∂2L2n(θ̃2n)
∂θ2∂θ′2

− 1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
= oP (1).

ii) Prove that 1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
− E

(
1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
= oP (1). Terms in 1

n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
− E

(
1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
have

the form 1
n [ε′1nAnε1n − tr(An)] + 1

nc
′
nBnε1n or 1

nX
′
2nBnε1n, where the n-dimensional square matrices An

and Bn are UB, and elements of n-dimensional vector cn are uniformly bounded. By Lemmas (3) and (4),

1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2
− E

(
1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
= oP (1).

iii) Prove the non-singularity of limn→∞ E
(

1
n
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

)
. Let ψ2 = (β′2, σ

2
2)′. Then limn→∞ E

(
1
n
∂2L2n(θ̄2n,1)
∂ψ2∂ψ′2

)
=

− limn→∞
1

nσ̄2
2n,1

X ′2nR
′
2nR2nX2n 0

0 − limn→∞
1

2σ̄4
2n,1

 is nonsingular. Suppose that we have a block matrix

G =

A B

C D

, where A is a square matrix and D is invertible, then it is sufficient to show that A−BD−1C

is nonsingular to prove the nonsingularity of G, because

A B

C D

 =

A−BD−1C B

0 D

 Il 0

D−1C Im

.

In the current situation, we need to show that

limn→∞ E
(

1
n
∂2L2n(θ̄2n,1)
∂φ2∂φ′2

)
− limn→∞ E

(
1
n
∂2L2n(θ̄2n,1)
∂φ2∂ψ′2

)[
limn→∞ E

(
1
n
∂2L2n(θ̄2n,1)
∂ψ2∂ψ′2

)]−1
limn→∞ E

(
1
n
∂2L2n(θ̄2n,1)
∂ψ2∂φ′2

)
34For the identification uniqueness condition of the null model, note that 1

n
[L̄1n(φ1; θ10) − L̄1n(φ10; θ10)] can be de-

composed as the sum of 1
2n

[ln |σ2
10S
−1
1n R

−1
1nR

′−1
1n S′−1

1n | − ln |σ̄2
1n,a(φ1)S−1

1n (λ1)R−1
1n (ρ1)R′−1

1n (ρ1)S′−1
1n (λ1)|] and − 1

n
(λ10 −

λ1)2(Q1nX1nβ10)′R′1n(ρ1)H1n(ρ1)R1n(ρ1)Q1nX1nβ10/σ̃2
1n with both terms being non-positive, where σ̃2

1n is between

σ̄2
1n(φ1; θ10) and σ̄2

1n,a(φ1), by the method in the proof of Theorem 3.1 in Lee (2004a). Then Assumption 7 provides suf-

ficient conditions for global identification.
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is nonsingular. Let ψ2n(φ2) satisfy ∂ EL2n(φ2,ψ2n(φ2))
∂ψ2

= 0 and let gn(φ2) = EL2n(φ2, ψ2n(φ2)). Taking the

derivative of ∂ EL2n(φ2,ψ2n(φ2))
∂ψ2

= 0 with respective to φ2, we have ∂2 EL2n(φ2,ψ2n(φ2))
∂ψ2∂φ′2

+

∂2 EL2n(φ2,ψ2n(φ2))
∂ψ2∂ψ′2

∂ψ2n(φ2)
∂φ′2

= 0. So limn→∞
∂ψ2n(φ2)
∂φ′2

= −
(
limn→∞

1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂ψ2∂ψ′2

)−1
limn→∞

1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂ψ2∂φ′2
.

Since ∂gn(φ2)
∂φ2

= ∂ EL2n(φ2,ψ2n(φ2))
∂φ2

, limn→∞
1
n
∂2gn(φ2)
∂φ2∂φ′2

= limn→∞
1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂φ2∂φ′2
+

limn→∞
1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂φ2∂ψ′2
limn→∞

∂ψ2n(φ2)
∂φ′2

= limn→∞
1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂φ2∂φ′2
−

limn→∞
1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂φ2∂ψ′2

(
limn→∞

1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂ψ2∂ψ′2

)−1
limn→∞

1
n
∂2 EL2n(φ2,ψ2n(φ2))

∂ψ2∂φ′2
. As ψ2n(φ̄2n,1) =

ψ̄2n,1, Assumption 16 implies that limn→∞
1
n
∂2gn(φ̄2n,1)
∂φ2∂φ′2

= limn→∞
1
n
∂2L̄2n(φ̄2n,1;θ10)

∂φ2∂φ′2
is nonsingular.35

The asymptotic distribution of
√
n(θ̂2n − θ̄2n,1) follows from the expansion in (6) by using the central

limit theorem in Lemma 7. �

Proof of Proposition 5. We only check that (10) holds, as other details are in the text. By a second

order Taylor expansion,

1√
n

[L2n(θ̄2n,1)− L2n(θ̂2n)] =
1

2
(θ̄2n,1 − θ̂2n)′

1

n

∂2L2n(θ̌2n,1)

∂θ2∂θ′2

√
n(θ̄2n,1 − θ̂2n) = oP (1), (D.1)

where θ̌2n,1 is between θ̂2n and θ̄2n,1, and 1
n
∂2L2n(θ̌2n,1)

∂θ2∂θ′2
= OP (1) can be seen from the proof of Proposition 4.

Similarly,

1√
n

[L̄2n(θ̂2n; θ̂1n)− L̄2n(θ̄2n,1; θ̂1n)]

=
1

n

∂L̄2n(θ̄2n,1; θ̂1n)

∂θ′2

√
n(θ̂2n − θ̄2n,1) +

1

2
(θ̂2n − θ̄2n,1)′

( 1

n

∂2L̄2n(θ̆2n,1; θ̂1n)

∂θ2∂θ′2

)√
n(θ̂2n − θ̄2n,1)

= (θ̂1n − θ10)′
1

n

∂2L̄2n(θ̄2n,1; θ̆1n)

∂θ1∂θ′2

√
n(θ̂2n − θ̄2n,1) + oP (1) = oP (1),

(D.2)

where θ̆2n,1 is between θ̂2n and θ̄2n,1, and θ̆1n is between θ̂1n and θ10, since 1
n
∂2L̄2n(θ̄2n,1;θ̆1n)

∂θ1∂θ′2
= OP (1) and

1
n
∂2L̄2n(θ̆2n,1;θ̂1n)

∂θ2∂θ′2
= OP (1). Furthermore,

1√
n

[L̄2n(θ̄2n,1; θ̂1n)− L̄2n(θ̄2n,1; θ10)] =
1

n

∂L̄2n(θ̄2n,1; θ10)

∂θ′1

√
n(θ̂1n − θ10) + oP (1)

= C ′2n,1Σ−1
1n,1

1√
n

∂L1n(θ10)

∂θ1
+ oP (1).

(D.3)

Combining (D.1)–(D.3) yields (10). �

Proof of Proposition 6. We prove the result for Coxa. The result for Coxo can be proved similarly.

Rewrite L2n(θ̂2n)− L̄2n(θ̂2n; θ̂1n) as

L2n(θ̂2n)− L̄2n(θ̂2n; θ̂1n)

=
(
L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)

)
−
(
L̄2n(θ̄2n,1; θ̂1n)− L̄2n(θ̄2n,1; θ10)

)
−
(
L̄2n(θ̂2n; θ̂1n)− L̄2n(θ̄2n,1; θ̂1n)

)
−
(
L2n(θ̄2n,1)− L2n(θ̂2n)

)
35For the estimation of the null model, Assumption 8 is needed instead for the non-singularity of 1

n
∂L̄1n(θ10;θ10)

∂θ1∂θ
′
1

in the limit.
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=
(
L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)

)
−
(∂L̄2n(θ̄2n,1; θ10)

∂θ′1
+

1

2
(θ̂1n − θ10)′

∂2L̄2n(θ̄2n,1; θ̃1n)

∂θ1∂θ′1

)
(θ̂1n − θ10)

−
(
(θ̂1n − θ10)′

∂2L̄2n(θ̈2n; θ̈1n)

∂θ1∂θ′2
+ (θ̇2n − θ̄2n,1)′

∂2L̄2n(θ̈2n; θ̈1n)

∂θ2∂θ′2

)
(θ̂2n − θ̄2n,1)

− 1

2
(θ̂2n − θ̄2n,1)′

∂2L2n(θ̌2n)

∂θ2∂θ′2
(θ̂2n − θ̄2n,1),

where θ̃1n and θ̈1n are both between θ̂1n and θ10, θ̇2n and θ̌2n are both between θ̂2n and θ̄2n,1, and θ̈2n is

between θ̇2n and θ̄2n,1. By the mean value theorem, θ̂1n − θ10 = Σ−1
1n,1

1
n
∂L1n(θ10)

∂θ1
+ Σ−1

1n,1

(
1
n
∂2L1n(θ̆1n)
∂θ1∂θ′1

+

Σ1n,1

)
(θ̂1n − θ10), where Σ1n,1 = − 1

n
∂L̄1n(θ10;θ10)

∂θ1∂θ′1
and θ̆1n is between θ̂1n and θ10. Let Coxa = (Dn +

En)/σ̂ca,n, where Dn = 1√
n

[L2n(θ̄2n,1)− L̄2n(θ̄2n,1; θ10)]− C ′2n,1Σ−1
1n,1

1√
n
∂L1n(θ10)

∂θ1
. Then

n1/4En = n1/4
( 1√

n

(
L2n(θ̂2n)− L̄2n(θ̂2n; θ̂1n)

)
−Dn

)
= − 1

n

∂L̄2n(θ̄2n,1; θ10)

∂θ′1
Σ−1

1n,1n
3/8
( 1

n

∂2L1n(θ̆1n)

∂θ1∂θ′1
+ Σ1n,1

)
n3/8(θ̂1n − θ10)

− 1

2
n3/8(θ̂1n − θ10)′

1

n

∂2L̄2n(θ̄2n,1; θ̃1n)

∂θ1∂θ′1
n3/8(θ̂1n − θ10)

−
(
n3/8(θ̂1n − θ10)′

1

n

∂2L̄2n(θ̈2n; θ̈1n)

∂θ1∂θ′2
+ n3/8(θ̇2n − θ̄2n,1)′

1

n

∂2L̄2n(θ̈2n; θ̈1n)

∂θ2∂θ′2

)
n3/8(θ̂2n − θ̄2n,1)

− 1

2
n3/8(θ̂2n − θ̄2n,1)′

1

n

∂2L2n(θ̌2n)

∂θ2∂θ′2
n3/8(θ̂2n − θ̄2n,1).

By Propositions (2), (4) and Lemma 12, n1/4En = oP (1). Then n1/4En/σc,n = oP (1), as σc,n is bounded

away from zero. Since σc,n is the standard deviation of the LQ form Dn, we can easily show that n1/2(σ̂2
ca,n−

σ2
c,n) = OP (1) by the mean value theorem, Propositions (2), (4) and Lemma 10. Note that n1/4(Coxa −

Dn/σc,n) = n1/4 En
σc,n

+ n3/8 σc,n−σ̂ca,n
σ̂ca,n

n−1/8 Dn
σc,n

+
σc,n−σ̂ca,n

σ̂ca,n
n1/4 En

σc,n
, then n1/4(Coxa − Dn/σc,n) = oP (1).

Let E∗n be the bootstrapped En. An expression for n1/4E∗n can be derived from n1/4En by replacing some

terms:

n1/4E∗n = n1/4
( 1√

n

(
L∗2n(θ̂∗2n)− L̄2n(θ̂∗2n; θ̂∗1n)

)
−D∗n

)
=

1

n

∂L̄2n(θ̂2n; θ̂1n)

∂θ′1

1

n

∂2 E∗ L∗1n(θ̂1n)

∂θ1∂θ′1
n3/8

( 1

n

∂2L∗1n(θ̆∗1n)

∂θ1∂θ′1
− 1

n

∂2 E∗ L∗1n(θ̂1n)

∂θ1∂θ′1

)
n3/8(θ̂∗1n − θ̂1n)

− 1

2
n3/8(θ̂∗1n − θ̂1n)′

1

n

∂2L̄2n(θ̂2n; θ̃∗1n)

∂θ1∂θ′1
n3/8(θ̂∗1n − θ̂1n)

−
(
n3/8(θ̂∗1n − θ̂1n)′

1

n

∂2L̄2n(θ̈∗2n; θ̈∗1n)

∂θ1∂θ′2
+ n3/8(θ̇∗2n − θ̂2n)′

1

n

∂2L̄2n(θ̈∗2n; θ̈∗1n)

∂θ2∂θ′2

)
n3/8(θ̂∗2n − θ̂2n)

− 1

2
n3/8(θ̂∗2n − θ̂2n)′

1

n

∂2L∗2n(θ̌∗2n)

∂θ2∂θ′2
n3/8(θ̂∗2n − θ̂2n),

where θ̃∗1n, θ̈∗1n and θ̆∗1n are between θ̂∗1n and θ̂1n, θ̇∗2n and θ̌∗2n are both between θ̂∗2n and θ̂2n, and θ̈∗2n

is between θ̇∗2n and θ̂2n. By Lemmas 14–17, P∗(n1/4|E∗n| > η) = oP (1). Since P∗(n3/8|σ̂∗ca,n − σ∗c,n| >
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η) = OP (n−1/4) and n1/4(Cox∗a − D∗n/σ
∗
c,n) = n1/4 E∗n

σ∗c,n
+ n3/8 σ

∗
c,n−σ̂

∗
ca,n

σ̂∗ca,n
n−1/8 D∗n

σ∗c,n
+

σ∗c,n−σ̂
∗
ca,n

σ̂∗ca,n
n1/4 E∗n

σ∗c,n
,

P∗(n1/4|Cox∗a − D∗n/σ
∗
c,n| > η) = oP (1). The consistency result on Coxa in the proposition holds by

Theorem 1 in Jin and Lee (2012) with δ = 1/2. �

Proof of Proposition 7. We first prove that θ̄2n(θ̂1n)− θ̄2n,1 = oP (1). For a fixed φ2, the maximization

of L̄2n(θ2; θ̂1n) yields β̄2n(φ2; θ̂1n) and σ̄2
2n(φ2; θ̂1n), whose expressions are given in (A.3) and (A.4). Then

by the mean value theorem,

β̄2n(φ2; θ̂1n)− β̄2n(φ2; θ10)

= [X ′2nR
′
2n(ρ2)R2n(ρ2)X2n]−1X ′2nR

′
2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̃1n)[W1nS
−1
1n (λ̃1n)X1nβ̃1n(λ̂1n − λ10)

+X1n(β̂1n − β10)],

σ̄2
2n(φ2; θ̂1n)− σ̄2

2n(φ2; θ10)

=
1

n
tr[R′−1

1n (ρ̃1n)S′−1
1n (λ̃1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̃1n)R−1
1n (ρ̃1n)](σ̂2

1n − σ2
10)

+
2σ̃2

1n

n
tr[R′−1

1n (ρ̃1n)M ′1nR
′−1
1n (ρ̃1n)S′−1

1n (λ̃1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̃1n)R−1

1n (ρ̃1n)](ρ̂1n − ρ10)

+
2σ̃2

1n

n
tr[R′−1

1n (ρ̃1n)S′−1
1n (λ̃1n)W ′1nS

′−1
1n (λ̃1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̃1n)R−1
1n (ρ̃1n)](λ̂1n − λ10)

+
2

n
(X1nβ̃1n)′S′−1

1n (λ̃1n)W ′1nS
′−1
1n (λ̃1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̃1n)X1nβ̃1n(λ̂1n − λ10),

+
2

n
(X1nβ̃1n)′S′−1

1n (λ̃1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̃1n)X1n(β̂1n − β10),

where θ̃1n = (φ̃1n, β̃
′
2n, σ̃

2
1n)′ is between θ̂1n and θ10. Elements of

(
n−1X ′2nR

′
2n(ρ2)R2n(ρ2)X2n

)−1
are

bounded uniformly on %2 and H2n(ρ2) is UB uniformly on %2 as in the proof of Proposition 3. Writing

β̃1n = β10 + (β̃1n−β10), then by Lemmas 5 and 6, β̄2n(φ2; θ̂1n)− β̄2n(φ2; θ10) and σ̄2
2n(φ2; θ̂1n)− σ̄2

2n(φ2; θ10)

both converge to zero in probability uniformly on Φ2. To verify that λ̄2n(θ̂1n)−λ̄2n,1 = oP (1) and ρ̄2n(θ̂1n)−

ρ̄2n,1 = oP (1), we only need to show that n−1[L̄2n(φ2; θ̂1n) − L̄2n(φ2; θ10)] converges in probability to zero

uniformly on Φ2, as the unique identification is guaranteed by Assumption 14. By the mean value theorem,

1

n
[L̄2n(φ2; θ̂1n)− L̄2n(φ2; θ10)] = − 1

2σ̃2
2n,1

[σ̄2
2n(φ2; θ̂1n)− σ̄2

2n(φ2; θ10)],

where σ̃2
2n,1 is between σ̄2

2n(φ2; θ̂1n) and σ̄2
10(φ2; θ10). Since σ̄2

2n(φ2; θ10) is bounded away from zero and

σ̄2
2n(φ2; θ̂1n)− σ̄2

2n(φ2; θ10) = oP (1) uniformly on Φ2, supφ2∈Φ2
| 1n [L̄2n(φ2; θ̂1n)− L̄2n(φ2; θ10)]| = oP (1).

An expression for
√
n[θ̄2n(θ̂1n) − θ̄2n,1] can be derived from the expansion of the first order condition

∂L̄2n(θ̄2n(θ̂1n);θ̂1n)
∂θ2

= 0 at θ̄2n,1:

0 =
∂L̄2n(θ̄2n(θ̂1n); θ̂1n)

∂θ2
=
∂L̄2n(θ̄2n,1; θ̂1n)

∂θ2
+
∂2L̄2n(θ̃2n,1; θ̂1n)

∂θ2∂θ′2
[θ̄2n(θ̂1n)− θ̄2n,1],
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where θ̃2n,1 is between θ̄2n,1 and θ̄2n(θ̂1n). Then we have

√
n[θ̄2n(θ̂1n)− θ̄2n,1] =

(
− 1

n

∂2L̄2n(θ̃2n,1; θ̂1n)

∂θ2∂θ′2

)−1 1√
n

∂L̄2n

(
θ̄2n,1; θ̂1n

)
∂θ2

=
(
− 1

n

∂2L̄2n(θ̃2n,1; θ̂1n)

∂θ2∂θ′2

)−1 1

n

∂2L̄2n(θ̄2n,1; θ̃1n)

∂θ2∂θ′1

√
n(θ̂1n − θ10),

(D.4)

where θ̃1n is between θ̂1n and θ10. We can show that

− 1

n

∂2L̄2n(θ̃2n,1; θ̂1n)

∂θ2∂θ′2
= Σ2n,1 + oP (1) and

1

n

∂2L̄2n(θ̄2n,1; θ̃1n)

∂θ2∂θ′1
=

1

n

∂2L̄2n(θ̄2n,1; θ10)

∂θ2∂θ′1
+ oP (1),

by writing θ̃2n,1 = θ̄2n,1 + (θ̃2n,1 − θ̄2n,1), θ̂1n = θ10 + (θ̂1n − θ10) and θ̃1n = θ10 + (θ̃1n − θ10), and then

expanding the expressions. Using (6), (B.1) and (D.4), we obtain (B.2). The asymptotic distribution of
√
n
(
θ̂2n − θ̄2n,1

)
follows from applying the central limit theorem in Lemma 7.

In the case that ε1n,i’s are normally distributed, We note that P2n,1 = E
(

1
n
∂L2n(θ̄2n,1)

∂θ2

∂L1n(θ10)
∂θ′1

)
and

Σ1n,1 = Ω1n,1. Then the covariance matrix between 1√
n

∂L2n(θ̄2n,1)
∂θ2

and P2n,1Σ−1
1n,1

1√
n
∂L1n(θ10)

∂θ1
is just equal

to the VC matrix of the latter, and we have V2n,1 = Ω2n,1 − P2n,1Σ−1
1n,1P

′
2n,1. �
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