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Abstract

I study a financial network in which banks are interconnected through cross-
deposits they make in other banks. The liquidity demands these banks face are
negatively correlated. Banks choose cross-deposits to insure themselves against
actual realizations of their liquidity demands so to offer the best consumption
schedule for their consumers. However, they may also be hit by an uninsurable
excess liquidity demand. Banks liquidate their investment portfolios so to serve
the excess demand they are faced with. I show that in such a framework banks
that are already facing a high liquidity demand are more likely to incur the bur-
den of excess liquidity shocks even when that shock has not directly hit them,
i.e. relatively safer banks strategically pass liquidation costs to relatively less
safe banks. I also show that private bailouts arise endogenously in this frame-
work. If the strategic behavior of a bank results in the other bank’s failure,
the first bank may choose to incur the burden of the liquidity shock by itself
to let the other bank survive and, thus, to control the indirect costs of failure
feeding back to its portfolio. Therefore, there is no complete pecking order in
banks’ liquidation decisions. I also show that for some economies the financial
network becomes more stable as the level of cross-deposits is increased from the
minimum level that fully insures banks against liquidity demand uncertainty up
to a threshold level.

Keywords: heterogeneity, financial networks, fragility, contagion, private
bailouts, strategic withdrawals

1. Introduction

I study a financial network in which consumers are ex-ante similar. But
they realize their types later and become either patient or impatient. Patient
consumers are indifferent between consuming early or late. However, impatient
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consumers do not value late consumption and only consume in the early period.
The role of financial intermediaries is to accept deposits from these consumers
and provide consumption smoothing for them. the consumer-bank relationship
in my model is similar to that of Diamond and Dybvig (1983).

Despite Diamond and Dybvig (1983), I allow for uncertainty regarding the
fraction of impatient consumers in economy. I consider an economy with dif-
ferent regions. Each region realizes either a high or low fraction of impatient
consumers among all its depositors after all intermediaries have made their in-
vestment decisions. This notion is similar to that in Allen and Gale (2000).
They study a financial network in which not only consumers are insured against
their liquidity demand uncertainty by banks, but banks are also insured against
their liquidity needs by other banks. They consider a case in which an excess
liquidity demand shock hits one bank in an state occurring with probability
zero when no liquidity demand uncertainty exists. In other words, banks are
either hit by an excess liquidity demand shock or liquidity demand uncertainty.
They show this network is vulnerable to excess liquidity shocks and if this shock
results in failure of the bank to which the shock hits, then it can spread through-
out the network and affect other banks. Despite Allen and Gale (2000), I allow
excess liquidity demand shock and liquidity demand uncertainty to indepen-
dently hit a region. Not allowing for this to happen is equivalent to arguing
that banks withdraw their cross-deposits such that they fully cancel out each
others’ deposits independent of the excess liquidity demand hitting them. I
formally model this argument by considering an excess liquidity shock hitting
different banks with different current liquidity needs. This setup lets me study
heterogeneous responses of banks to excess liquidity shocks as a function of
their liquidity demand uncertainty realizations. Eisenberg and Noe (2001) show
that there exists a market clearing payment vector that solves all intermediaries
optimization problems. This payment vector is such that some intermediaries
default and the others survive. I find the equilibrium payment vectors in all
states of my model.

I show that banks that are hit by excess liquidity shocks choose different
liquidation strategies to procure the liquidity they need. In fact, they strategi-
cally make their withdrawal decisions so to maximize the welfare of consumers
in their regions- potentially- at the cost of welfare of consumers in the other
region. if the bank is unsafe ex-post, i.e. has drawn a high liquidity demand,
it will liquidate its long-term investments to meet the liquidity demand shock
and ,thus, incurs the additional costs by itself. However, if it is safe ex-post, i.e.
has drawn a low realization of liquidity demand, it does not necessarily incur
the costs of early liquidation. In fact, it can pass the costs to the unsafe bank
by withdrawing what it has deposited in that.

Acharya et al. (2012) consider a model in which liquidity transfers between
banks occur in two markets, the interbank lending market and the asset sales
market. Banks investments are risky. Their investments may also require some
refinancing in the middle period and, thus, they may face liquidity needs. They
argue banks with surplus liquidity strategically underprovide lending to banks
with liquidity needs so to induce them to inefficiently sell their assets. I show



3

that even when banks cannot benefit from buying the at-risk banks’ assets, they
may still decide to withdraw their deposits in the unsafe bank and make that
bank default, a notion similar to lending underprovision in Acharya et al. (2012).

I also show that safe banks are concerned about unsafe banks’ stability as
the failure of unsafe banks can spread through the network and negatively affect
other banks’ asset values. Thus, if passing all the costs to the unsafe bank causes
its failure, i.e. if the shock is large enough, the safe bank may choose not to do
so to let the unsafe bank survive. This is equivalent to a private bailout from
the safe bank to the unsafe one. This result is consistent with that of Leitner
(2005) in which he also shows occurrence of private bailouts.

Acemoglu et al. (2015) show that the interconnectedness can help a system
absorb small shocks. however, it serves as a propagation mechanism for large
shocks leading to a more fragile financial system. I show that the strategic
decisions of financial intermediaries can also contribute to the fragility of a
financial system beyond the size of shocks.

In this paper the cross-deposits that banks have made in the initial period,
provides an extra liquidity source for ex-post safe banks. Thus, when they
are hit by excess liquidity demand shock, they have the option of withdraw-
ing their cross-deposits in addition to liquidating their long-term investments.
Consistent with Allen and Gale (2000), I assume excess liquidity demand shocks
hit the economy with probability zero. Therefore, banks do not consider this
ex-post difference when making cross-deposits and the hold-up problem does
not arise in their investment decisions. Nonetheless, there are some investment
portfolios that yield the first-best consumption schedule in the states happening
with nonzero probabilities, but the financial network in which they are imple-
mented are different in terms of stability. Specifically, I show that a too small
cross-deposits level cannot provide full insurance against liquidity demand un-
certainty, and a too large level makes the financial system more fragile. Thus,
a moderate level is optimal. I also show that a higher level of cross-deposits
has a disciplinary effect on ex-post safe banks. It increases the spillover costs if
the other bank defaults. Thus, the safe bank engages in more private bailouts
and is more willing to help the other bank survive. Therefore, the optimal level
of cross-deposits is larger than what is necessary to fully insure banks against
liquidity demand uncertainty.

The differential impacts of network structure on systemic risk has moti-
vated researchers to study the optimal and equilibrium network structures and
shed light on the fundamental reasons that financial networks are formed the
way they are. Stiglitz (2010) states a similar problem and considers the sys-
temic risk arising from over-connected financial networks. He, thus, proposes
a financial architecture with different regions in which each region constitutes
competitive intermediaries. However, connections between regions are kept at a
minimum to prevent the contagion effects in an event of crisis. In my model, the
amount of cross-deposits banks make in each other improves total welfare as it
is increased up to a threshold. However, it has no positive effect on total welfare
as it passes that threshold and it results in even higher fragility as it is increased
further. Therefore, my results are inline with Stiglitz (2010) arguments and in
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addition to his argument about existence of financial connections not necessarily
stabilizing the financial system, show the magnitude of those connections have
similar impacts. Babus (2016) considers a financial system similar to that of
Allen and Gale (2000) and studies the network formation motives of interme-
diaries. She considers the intra-region connections of intermediaries as given
and studies the equilibrium network structures within a region. She shows that
endogenous network structures arise in which intermediaries share their losses
through the connections they have formed. Farboodi (2017) also studies the
emergence of financial networks and shows that the familiar star network is in-
deed an equilibrium network even though it is not efficient. Egan et al. (2017)
consider a model with heterogeneous banks. However, they do not study the
network implications, but competition between banks. Chang (2018) studies a
collateralized debt network in which the lender defaults. That work can be in
part connected to mine as in my work the bank who withdraws the deposits
makes the other bank default. However, the question he studies and the model
he uses are completely different with those of mine.

2. Model

The model has three time periods. There exists an ex-ante identical con-
tinuum of consumers in each region endowed with one unit of wealth in period
zero. Consumers are either patient or impatient. Consumers do not know their
types in period zero when they deposit their endowments in banks. The utility
of consumers conditional on their types is the following,

U(c1, c2) =

{
u(c1) if impatient
u(c1 + c2) if patient

in which function u(.) is assumed to be twice continuously differentiable,
increasing and strictly concave. c1 is consumers’ period one consumption and
c2 is their period two consumption. Thus, impatient consumers always need
their endowments in period one. However, patient consumers can wait until
period two if they are better off. If not, they join impatient consumers and
consume in period one.

The economy has one long-term investment technology that returns R > 1
units in period two for each unit of endowments invested in period zero. How-
ever, premature liquidation of this investment is costly and will return r ≤ 1
units if liquidated in period one. This investment technology is perfectly di-
visible. There is also a storage technology that transfers funds across periods
without any costs, and any gains. A financial system exists in this economy
that offers liquidity insurance against being impatient through a deposit con-
tract such that consumers who become impatient in period one can consume
more than one unit in period one by sacrificing what they would have consumed
in period two if they became patient. consumers’ types are private informa-
tion, however total fraction of impatients is common knowledge. All consumers
simultaneously make their deposits in period zero. all consumers choosing to
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withdraw early (either patient or impatient) do that simultaneously and all
consumers withdrawing late do that simultaneously. the only available deposit
contract is demand deposit, so consumers can withdraw at anytime they want.
All banks respect the terms of contracts unless they are unable to and default.

There are two financial regions A and B in the economy. The banking system
in each region is fully competitive. Hereafter, I assume that a representative
bank exists in each region.1 Total fraction of impatients in the entire economy
is a known parameter π. However, similar to Allen and Gale (2000), the actual
fraction of impatient consumers in each region is not ex-ante known. In the
two equally likely states each happening with probability p = 0.5, The fraction
of impatients in region A isπ − ω in state S1 and π + ω in state S2. Since
there is no aggregate uncertainty about total fraction of impatients in these
states, the fraction of impatients in region B immediately follows. Hereafter,
the risk arising from this uncertainty of liquidity demand is called diversifiable
risk. Banks can make a deposit in each other the same way, and under similar
terms, that consumers make deposits in banks. By doing so, banks can insure
themselves against liquidity shocks arising from diversifiable risk.

There are also states occurring with zero probability in which an excess liq-
uidity demand shock hits a region, and total fraction of impatients is more than
π. This shock may hit a region that is currently facing a high liquidity demand
(π+ ω) or low liquidity demand (π− ω). It can also have different magnitudes.
Hereafter, I call these states the unconventional states and the risk arising from
the excess liquidity demand shock in these states the nondiversifiable risk. As
these states occur with zero probability, they do not affect the pre-deposit game
of banks and consumers.

My model has an important difference with that of Allen and Gale (2000).
Allen and Gale (2000) assume that unconventional states occur in absence of di-
versifiable liquidity demand shock ω or equivalently, the cross-deposits between
banks simply cancel out in unconventional states even before the nondiversifi-
able risk hits the economy. It can also be seen as a framework in which banks
first observe their diversifiable liquidity demand shocks and decide what to do
with their cross-deposits based on that, and only after that they observe should
a nondiversifiable liquidity shock hits them. Thus, a bank’s decision on how to
handle diversifiable liquidity demand shock is not affected by the nondiversifi-
able liquidity demand shock hitting it. I relax this strong assumption, allow a
shock to hit banks with different actual liquidity needs, and investigate banks’
heterogeneous responses to that shock. A full characterization of states is shown
in table 1.

2.1. Timing of the Model

Consumers are initially- in period zero- endowed with one unit of cash.
Banks in each region offer a contract- to be specified- to consumers in that

1For simplicity, I’ll refer to the representative bank in region A (B) with male (female)
pronouns. I’ll also use things’ pronouns whenever region does not matter.
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State Probability Region A Region B
S1 0.5 π − ω π + ω
S2 0.5 π + ω π − ω
S3 0 π − ω π + ω + ε
S4 0 π − ω + ε π + ω
S5 0 π + ω + ε π − ω
S6 0 π + ω π − ω + ε

Table 1: Different states of the game, their probability of occurrence, and the fraction of
impatient consumers in different regions in each state

region. Consumers choose whether to accept the terms of this contract and
deposit in a bank in their region or go to autarky. Once depositing decisions
are made, a contract pinning down the entire investment portfolio of banks-
including the amount invested in long-term investment, the amount stored in
storage technology, and the cross-deposits between banks- is proposed to banks
in both regions. Banks in each region choose whether to accept this contract or
not. If at least one of the banks does not accept the contract terms, none of the
banks can make cross-deposits in other banks.

In period one, the state of economy is observed. Consumers privately observe
their types as well. They, then, simultaneously choose whether to withdraw
early or not. Each bank observes the decision of consumers and simultaneously
chooses how to update its investment portfolio- including how much to with-
draw from cross-deposits it has made- to meet the liquidity demand given the
state of economy and considering the other bank’s strategy. If each bank is
able to incentive compatibly2 keep its promised level of payment in period one
specified in the contract, it serves the consumers withdrawing early with that
specified amount. If not, the bank defaults, liquidates all its assets, and equally
distributes them among all depositors in period one. If it survives, it harvests
its remaining long-term investments and withdraws its remaining cross-deposits.
It, then, equally distributes all the remaining resources among remaining patient
consumers in the region and the remaining deposits of other banks.

The contract between bank and consumers in each region is of demand-
deposit type. That is, consumers can withdraw their deposits whenever they
want. The contract specifies the promised level of consumption in period one,
C1, and the promised level of consumption in period two C2.3 If a consumer
wants to withdraw early, she is promised to receive C1 and if she withdraws late,
she is promised to receive C2. Repayment of these promised values is, however,
conditional on the observed state. If, there are more consumers withdrawing

2Bank should be able to serve early withdrawals with the promised level of consumption
in period one and serve late withdrawal with a consumption level at least as good as that of
period one so to avoid a run occurrence.

3Later, I will derive the actual consumption levels that are not necessarily similar to the
promised ones.
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early than what is expected, banks serve them all with C1 only if they are still
able to offer a higher amount than C1 in period two to consumers withdrawing
late so that the incentive compatibility condition of patient consumers is sat-
isfied. Otherwise, patient consumers are better of joining impatient consumers
and withdrawing in period one and banks will have to liquidate all their projects
prematurely and distribute them among all depositors in period one. Thus, if
a bank is not able to keep its promise, then it liquidates all its assets in period
one and equally distributes them among all depositors.

The contract between banks specifies the amount of liquidity to be stored
in storage technology, the amount of long-term investment and the amount of
cross-deposits between banks. Note that the cross-deposits of each bank in the
other bank should be equal so to satisfy the resource constraints of both banks.

2.2. The Optimal Consumption Schedule
Consumers are all ex-ante similar. We first consider the first-best consump-

tion schedule that a social planner can offer to these consumers in period zero.
The first-best allocation maximizes the expected ex-ante utility of a represen-
tative consumer before she observes her type. Since nondiversifiable liquidity
demand shock ε occurs with zero probability, it does not affect the optimal port-
folio designed ex-ante prior to realization of these shocks. On the other hand,
the diversifiable liquidity demand shock ω can potentially change the character-
istics of the optimal contract. Nonetheless, the availability of cross-depositing
option makes it possible to fully insure banks and consumers against this risk
and ,thus, let the financial system achieve the first-best consumption schedule.
As there is no aggregate uncertainty about total fraction of impatients- in states
happening with nonzero probability, the first best allocation is the same as that
of Diamond and Dybvig (1983).4 Thus, the optimal allocation is in a setting in
which neither diversifiable nor nondiversifiable risk are present and solves the
following problem,

max
C1,C2

πu(c1) + (1− π)U(c2)

s.t. πc1 +
(1− π)c2

R
= 1

Suppose the consumption schedule (c1, c2) = (C1, C2) solves the social plan-
ner’s optimization problem. Diamond and Dybvig (1983) show that the afore-
mentioned consumption schedule is incentive compatible C1 ≤ C2 .5 Thus,
a patient consumer does not benefit if she decides to withdraw early while

4Strictly speaking, as I have not yet shown the first-best allocation is feasible in my model,
the first-best allocation in our framework is weakly worse than that of Diamond and Dybvig
(1983) in terms of expected ex-ante utility level of consumers.

5Note that incentive compatibility holds assuming the fraction of impatient consumers is
known and that consumers play their types. If the fraction of impatient consumers deviates
from π or if consumers do not play their types, incentive compatibility is not guaranteed.
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other patient consumers wait until period two. In the next section I will show
that investment portfolios exist that result in the aforementioned consumption
schedule. Thus, the optimal contract between banks and consumers promises
(C1, C2).

2.3. Characterization of the Optimal Contract Between Banks

Banks collect deposits from consumers and other banks. They can invest
those resources in long-term investment technology whose return is high if har-
vested in period two but low if harvested prematurely, in storage technology
which transfer resources across periods, or deposit them in other banks. De-
fine x to be the amount stored in storage technology, y to be the amount of
long-term investment, and z to be the amount deposited in other banks. Since
all banks are ex-ante similar, they all cross-deposit the same amount of z and
invest similar values of x and y. Thus, total resources available in a bank is
1+ z in which 1 is total consumers’ deposits and z is deposits of other banks in
this bank. The resource constraint of banks is the following,

x+ y + z ≤ 1 + z

x+ y ≤ 1

I will show that only investment portfolios of the following characteristics
achieve the optimal consumption schedule. An optimal portfolio of a bank is
then (x, y, z) = (X,Y, Z),

X = πC1

Y = (1− π)
C2

R
(1)

Z ≥ ω

First, I argue all the aforementioned conditions in (1) are necessary to yield
the optimal consumption schedule. If x < πC1, since both banks are ex-ante
identical, total available liquidity in the economy in period one will be 2x <
2πC1. Whereas, Total fraction of impatient consumers in both regions is 2π
and total liquidity needed to serve withdrawals in period one is 2πC1. Thus,
total available liquidity is not enough and at least one bank has to prematurely
liquidate its long-term investments, a process that is costly and, thus, prevents
reaching the economy to the optimal consumption schedule. Thus, we should
have x ≥ πC1. A similar argument can be addressed for the impossibility
of meeting total second period withdrawal demands in both regions if y <
(1− π)C2

R . Thus, we should have y ≥ (1− π)C2

R .
Summing up the latter result with the former returns x + y ≥ πC1 + (1 −

π)C2

R = 1. However, resource constraint imposes the condition x + y ≤ 1. The
only solution that satisfies both inequalities is x = X and y = Y .
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Now assume z < ω. Without loss of generality, consider a bank in region A
and let the state be S2. This bank cannot meet the entire liquidity demand in
period one, i.e. (π + ω)C1, even if he uses all his available liquidity, i.e. πC1,
and withdraws all his deposits in banks in region B, i.e. zC1 < ωC1. Therefore,
he has to undertake the costly liquidation process of his long-term investments
and is no longer able to offer the optimal consumption schedule. As a result, it
is necessary for the optimal contract to have z ≥ ω.

Second, I argue that all the contracts that satisfy conditions (1), yield the
optimal consumption schedule. In other words, conditions (1) are sufficient
to reach the optimal consumption schedule. Suppose consumers have made
their deposits and banks have chosen the investment portfolios consistent with
conditions (1) in period zero. In period one, consumers privately observe their
types and all players observe state of the economy. The optimal contracts and
the optimal investment portfolios are already chosen. So banks can only decide
how to manage the withdrawals while maintaining their portfolios. Consumers
who happened to be patient, can choose whether to withdraw their deposits in
period one or period two.6

Assume the realized state is S1. Bank A is faced with a low liquidity demand
π − ω, while bank B is faced with high liquidity demand π + ω. Bank A and
B each have enough resources to meet the liquidity demand of a fraction π of
consumers. Thus, bank A has extra liquid resources, while bank B needs extra
liquid resources.

The situation is the opposite in the second period. Bank A is faced with
a fraction of (1 − π + ω) of patient investors withdrawing in period two, while
he has enough long-term investments available to distribute in period two for
only the fraction of (1− π). On the other hand, bank B is faced with a fraction
of (1 − π − ω) of patient investors withdrawing in period two, while he has
enough long-term investments available to distribute in period two for fraction
of (1−π). Thus, bank A needs extra resources in period two, while bank B has
extra resources in period two.

Taking those reciprocal resource needs into consideration, bank B withdraws
a fraction of her deposits in bank A in period one receiving the total of ωC1 and
bank A withdraws a fraction of his deposits in bank B in period two receiving
the total of ωC2. Bank A has X = πC1 units of liquid assets in period one
and now it receives another ωC1 units. Thus, bank A can meet the demand
of the fraction (1 − π + ω) in period one. In period two, bank A harvests his
Y = (1−π)C2 units of long-term investments, pays bank B total amount of ωC2

in period two and pays the total of (1 − π − ω)C2 to the remaining consumers
withdrawing in period two. Thus, all the consumers in region A consume the
first-best consumption schedule of (C1, C2). Bank B can also offer the first-best
consumption schedule by following the same argument and withdrawing her
deposits in period two. The remaining deposits of banks in each other, i.e.

6Impatient consumers do not have a choice. They only receive utility if they withdraw in
period one.
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Z − ω, are withdrawn by both sides in period one and thus, fully cancel out
each other and have no net effects.

Now consider state S2. The argument in this state is also similar to that
of state S1 with the difference being that bank B withdraws her deposits in
period one and bank A withdraws his deposits in period two. Following the
same argument, both banks achieve the first best consumption schedule.

Thus, consumers in both banks can achieve the optimal consumption sched-
ule in states S1 and S2, even though their actual liquidity needs were initially
unknown. Since states S1 and S2 are the only states occurring with nonzero
probabilities, they are the only relevant states to design the ex-ante optimal
contract. Therefore, the investment portfolios consistent with conditions (1)
are optimal for both banks and yield the first best consumption schedule for all
consumers.

Note that if Z > ω, the additional cross-deposits above ω do not improve
economy’s total welfare. Any attempt by one side to withdraw Z−ω of deposits
above what they are expected to withdraw, i.e. ω in state S1 and 0 in state
S2 for bank B, is exactly retaliated by the other side and these two opposite
withdrawals cancel each other out. However, the level of deposits is not neutral
when one side defaults. Specifically, the consumers in failing bank’s region
benefits from higher cross-deposit levels, while the consumers in the other region
incur a loss. I will discuss this issue in a more detailed manner in subsection
(4.1). All the discussions up until that section assume Z = ω.

3. Banks’ Withdrawal Decisions in Unconventional States

In this section, I discuss the banks’ strategies and their equilibrium responses
in unconventional states. Analyses of states S5 and S6 are respectively similar
to those of states S3 and S4. Thus, I will only analyze the latter two

The departing difference between these unconventional states and states S1

and S2 is that in the latter, aggregate liquidity demand is exactly equal to
aggregate liquid investments. While in the former, aggregate liquidity demand
exceeds aggregate liquid investments. Thus, partial liquidation of long-term
investments is inevitable to meet total liquidity demand. Nonetheless, banks can
choose how to manage their portfolios and which investments to liquidate. In
other words, conditional on the state and the contracts, they choose whether to
use their available liquid assets, liquidate their long-term investments, withdraw
their deposits in the other bank, or a combination of them. The withdrawal of
deposits in a bank has consequences on its response. Therefore, a shock hitting
one bank can spread to another bank connected to it. The change in other bank’s
liquidation decision will also change the value of its deposits and, thus, feeds
back to its depositors’ portfolios including the first bank. Banks consider these
spillover costs when making a decision regarding their portfolio management.

In all these unconventional states, one bank is faced with nondiversifiable
liquidity demand shock in excess to what the financial system can insure. The
affected bank liquidates some of its investments to provide the excess liquidity
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needed. It is also a possible choice for a bank to strategically collect more liq-
uidity than needed by withdrawing its deposits in the other bank or liquidating
its long-term investments. However, it is never optimal to do so. If it liquidates
its long-term investments while it does not need the excess liquidity, it should
transfer those prematurely liquidated investments to period two. An action that
is costly and inefficient compared to waiting until period two to harvest long-
term investments. Furthermore, if it withdraws its deposits in the other bank
above the liquidity level it needs, it should transfer those resources to period
two. Thus, the value of her liquidated deposits in period two equals period one
withdrawal value of a deposit which due to incentive compatibility of the con-
tracts is less than the value of period two withdrawals. Moreover, period one
withdrawals make the other bank incur some costs which will eventually affect
the first bank as well. Thus, the strategic over-collection of liquidity is never
optimal.

It is not surprising to see a bank using its liquid investments to meet the
liquidity demand in period one. However, what it does if it is faced with ex-
cess liquidity demand is more complex. Unlike Allen and Gale (2000), there
is no complete liquidation pecking order. A bank chooses between long-term
investments to be liquidated or its deposits to be withdrawn so to maximize the
value of its investments, that is total welfare of its depositors. I study payments
to consumers in cases when the entire network defaults, when just one bank
defaults, and then proceed to the full solution of banks’ equilibrium responses.

3.1. Liquidation Process

When the state is realized, banks pay off their liabilities using their resources.
They may or may not be able to pay the unexpected costs arising from excess
liquidity demand. If they are unable to meet the liabilities, they will default
and liquidate all their assets and equally distribute them among all depositors.
Eisenberg and Noe (2001) argue that there exists a transfer payment vector that
clears the liabilities of all banks in a network. I investigate the market clearing
payment vectors when default occurs.

Full Liquidation
Total welfare is minimum when the only market clearing payment vector is

that of the case in which all banks default. In such cases, all banks liquidate
all their assets in period one and equally distribute them among all depositors
including the other bank, patient, and impatient consumers. Since total deposits
a bank has made equals total deposits deposited in that bank, when both sides
default the repayments of these deposits completely cancel each other out. So
banks behave as if they have no cross-deposit channel connections whatsoever.
I define Call

liq as the withdrawal amount offered to consumers when the entire
network defaults. Call

liq has the following value which constitutes the value of
liquid assets plus the liquidation value of iliquid assets.

Call
liq = X + rY = πC1 + r(1− πC1) (2)
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Note that r < Call
liq < 1.

Partial liquidation
Full liquidation of the entire network is not the only possible outcome. It

is also possible that one bank cannot meet the excess liquidity demand shock
it is faced with and so defaults while the other bank is still able to manage its
withdrawals, that is the other bank is still able to respect its contract. Without
loss of generality, suppose bank A defaults and bank B survives. Bank B pays
back C1 units for each unit bank A has deposited in her bank. However, bank
A is not able to respect his contract and, thus, provides Cliq units for each unit
bank B has deposited in him. Since he liquidates all his assets and distributes
them in period one, the amount he is able to pay back is the following,

Cliq(Z) =
X + rY + ZC1

1 + Z
=

πC1 + r(1− πC1) + ZC1

1 + Z

Cliq =
πC1 + r(1− πC1) + ωC1

1 + ω
if Z = ω (3)

Note that r < Call
liq < Cliq(Z) < C1. Bank A in this case can offer a higher

final consumption to his depositors compared to when the entire financial system
defaults, because he is paid C1 for her deposits in other banks, but he pays Cliq

for the other bank’s deposits in his.

3.2. State S3

In period one, bank B is faced with excess liquidity demand shock. Since
her total liquid investments and the withdrawal value of her deposits in bank
A worth (π + ω)C1 and total amount of liquidity she needs in period one is
(π + ω + ε)C1, she is not able to pay back all her liabilities without liquidating
a fraction of her long-term investments.

Bank B withdraws all her deposits in bank A in period one. Otherwise,
she has to inefficiently liquidate some of her long-term investments to compen-
sate for her unwithdrawn deposits which can never be optimal. Bank A can
also withdraw the entire or a fraction of his deposits in bank B in period one.
Nonetheless, he does not need any additional liquidity in period one and such
unnecessary withdrawal would result in less second period consumption level,
incur more costs to bank B, and push it toward failure which will negatively
affect bank A’s asset values as well. Thus, bank A has no incentives to withdraw
his deposits in bank B in period one.

Bank B should manage the excess liquidity demand she is faced. She has
X units of liquid assets and ω units of cross-deposits that she fully withdraws.
Since she needs (π+ω+ ε)C1, she liquidates the amount of εC1

r of her long-term
investments. Thus, she will be left with Y − εC1

r untouched long-term investment
in period one which yields R(Y − εC1

r ) in period two. The remaining depositors,
a fraction 1−π−ω−ε of consumers in region B as well as bank A, will withdraw
in period two, constituting a total fraction 1− π − ε of depositors.
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Depositors are promised to receive C2 units of consumption for each unit they
have deposited in period zero. However, the costs incurred to bank B due to the
excess liquidity demand shock, makes the optimal second period consumption
infeasible. She, nonetheless, offers the the maximum feasible consumption for
second period withdrawals. Patient depositors and bank A accept this offer as
long as they are better off compared to those withdrawing in period one. If not,
they will join the impatient consumers and withdraw early, causing a run and
making bank B default.

If bank B liquidates too much of its long-term investments, there will be no
enough untouched long-term investment to be harvested in period two that can
provide an incentive compatible consumption for those withdrawing in period
two. Therefore, a maximum level of nondiversifiable liquidity demand shock εth1
exists above which bank B’s contract is not incentive compatible. If ε exceeds
this threshold, then she has to default and liquidate all her investments in period
one and distribute them among all depositors.

The threshold value εth1 is the maximum nondiversifiable liquidity shock that
can be incentive compatibly managed without causing a run. Thus, if ε = εth1 ,
patient consumers will get the exact C1 value in period two. Bank B equally
distributes all the resources among all depositors. Thus, total withdrawals when
ε = εth1 holds equals to (1−π−εth1 )C1 while total value of bank’s assets equals to
R(Y − εth1 C1

r ). Therefore, the incentive compatibility condition is the following,

R(Y − εth1 C1

r
) = (1− π − εth1 )C1

(1− π)C2 −
εth1 RC1

r
= (1− π − εth1 )C1

εth1 =
(1− π)(C2 − C1)

(Rr − 1)C1

(4)

Thus, if ε ≤ εth1 , then bank B can offer an incentive compatible consumption
schedule to the depositors without causing a run. On the other hand, if ε > εth1 ,
then bank B has to default and liquidate all her assets in period one and equally
distribute them among all depositors.

Contagion
In this state and other unconventional states, if the bank paying the actual

cost of premature liquidation of long-term investments, e.g. bank B in state S3,
does not default, i.e. ε ≤ εth1 , the other bank connected to that does not default
as well. The reason is that bank B can pay C1 in period one to early withdrawals
and a withdrawal amount greater than that in period two to late withdrawals.
If there had been no excess liquidity demand shock, bank A connected to this
bank would have paid C1 to the early withdrawals he was faced out of his liquid
investments and his withdrawals from bank B. Now that bank B is affected
but survives, the withdrawal amount she pays is the same amount C1. Thus,
nothing is changed in terms of what all the banks can pay in period one with
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or without ε. In period two, however, bank B would have offered C2 for late
withdrawals. But she now offers a value less than C2 and greater than C1.
Bank A’s portfolio constitutes a portion of resources harvested from long-term
investments yielding C2 for each unit of deposits and the remaining resources
withdrawn from bank B yielding C2 > CB

2 > C1. Thus, the average withdrawal
value paid in second period is no less than CB

2 which itself is greater than C1.
Thus, bank A’s actual consumption schedule is also incentive compatible and
none of the banks default.

If ε > εth1 holds so that bank B defaults, the payments depositors receive from
bank B depends on the payments Bank A offers for bank B’s deposits. If bank A
is able to tolerate the loss incurred by Bank B’s default, then it offers the same
C1 amount for all early withdrawals. However, Bank A’s late payments should
satisfy the incentive compatibility of patient depositors in his region preferring
to withdraw late as well. Bank A receives the withdrawal value of Cliq given in
equation (3). Bank A thus receives total value of ωCliq for his deposits in bank
B in period one. His liquid investments also worth πC1. On the other hand,
bank A’s total liquidity demand is (π−ω)C1 and the withdrawal value of bank
B deposits in bank A also worths ωC1. Therefore, total liquidity demand is less
than available liquid resources. and he does not need to prematurely liquidate
any of his long-term investments. The remaining unused liquidity resources will
be transferred to the second period.

In the second period, bank A can harvest his long-term investments and
receive RY . He also transfers the unused liquidity of total value ωCliq to period
two. He serves the remaining patient consumers, a fraction of (1− π+ ω) of all
consumers in region A, in period two. Thus, bank A’s incentive compatibility
constraint is as follows,

RY + ωCliq ≥ (1− π + ω)C1

(1− π)(C2 − C1) ≥ ω(C1 − Cliq) (5)

ω ≤ ωth
1 (6)

A little algebra shows that the RHS of inequality (5) is increasing in ω.
Thus, it is equivalent to inequality (6). If inequality (5) holds, bank A is indeed
able to tolerate the costs of bank B’s defaulting and survive, verifying my initial
guess. If not, failure of bank B results in failure of bank A.

Therefore, if the ε > εth1 holds so that bank B defaults, the payments depos-
itors receive from bank B equals CB

liq = Cliq if inequality (5) holds and bank
A does not default, and equals CB

liq = Call
liq if inequality (5) does not hold and

bank A also defaults.

3.3. State S4

In this state bank A is faced with low realization of liquidity demand un-
certainty and bank B is faced with the opposite. Bank A is also hit by a
nondiversifiable liquidity demand shock. If bank B fully withdraws her deposits
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in bank A in period one, and uses her entire liquid investments, she can serve
the liquidity demand from consumers in period one. However, if bank A also
withdraws some of his deposits in bank B, she has no more available liquidity
to serve that, unless she liquidates a fraction of her long-term investments at a
cost. That is, there is no reason that bank B liquidates her long-term invest-
ments unless she has run out of other- less costly- liquidity sources. Therefore,
bank B follows a liquidation pecking order.

Bank A, however, does not follow a liquidation pecking order. In fact, bank
A takes into account the consequences of him withdrawing his deposits in bank
B which can result in bank B’s failure and, thus, can negatively affect bank A’s
asset values. As bank B follows a clear liquidation pecking order, the behavior of
bank A can fully characterize equilibrium in this state. Bank A can strategically
withdraw his entire deposits or a fraction of it in period one. Bank A chooses
the actual level of withdrawals to maximize total welfare he can provide for his
depositors. If it wasn’t for ε, bank A wouldn’t need to withdraw any amount
in period one. However, he can strategically use this withdrawal option to
pass the costs of excess liquidation to bank B. As explained earlier, it is never
optimal for bank A to withdraw more than his actual excess liquidity demand
ε. Nonetheless, it may be optimal to withdraw the entire ε or a fraction of it.

First, suppose bank A withdraws his total excess liquidity demand ε from
his deposits in bank B in period one.7 Bank B has to pay the period one
value of bank A’s withdrawals. This additional liquidity was not expected in
period zero and her investment portfolio cannot costlessly provide this excess
liquidity need. Since her liquid assets and her deposits in bank A are already
depleted, she needs to liquidate some of her long-term investments to serve bank
A. In other words, bank B should not only manage her high liquidity needs, but
also must liquidate some of her long-term investments to serve the additional
liquidity demand caused by bank A’s passing his unexpected excess liquidity
demand to bank B.

Bank B has πC1 units of liquid assets, ωC1 units of cross-deposits in bank A
that she liquidates in period one, while she is faced with (π + ω + ε)C1 units of
liquidity demand in period one. Therefore, she has to liquidate εC1

r units of her
long-term investments. Thus, bank B is left with R(Y − εC1

r ) units of resources
in period two. She must pay a fraction 1 − π − ω of consumers’ and ω − ε of
the remaining Bank A’s deposits, summing to a total fraction of 1− π − ε. She
must pay the patient depositors at least C1 so that they prefer not to withdraw
early. Therefore, the incentive compatibility condition is the following,

7I assume that all excess liquidity shock realizations are less than total cross-deposits ω
unless otherwise stated. So that it is feasible for banks to withdraw that amount from their
cross-deposits.
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R(Y − εC1

r
) ≥ (1− π − ε)C1

(1− π)C2 −
εRC1

r
≥ (1− π − ε)C1

ε ≤ εth1 =
(1− π)(C2 − C1)

(Rr − 1)C1

Which returns an excess liquidity demand threshold level similar to that in
equation (4). Thus, the incentive compatibility constraint she faces is the same
as that of state S3. If ε ≤ εth1 , then bank B survives. Otherwise, she defaults.

By passing all the costs of excess liquidity demand in period one to bank B,
bank A only uses his liquid investments, i.e. πC1, and a fraction of his deposits
in bank B, i.e. εC1, to pay off all the claims in period one. Nonetheless, the
cost incurred to bank B will reduce the second period withdrawal amount she
can offer to her depositors including bank A which subsequently affects the
incentive compatibility constraint bank A is facing. This cost is, though, not
large enough to break the incentive compatibility constraint of bank A as long
as bank B doesn’t default. The reason is that bank A should pay off a fraction
1−π+ω− ε of his depositors in period two. He harvests RY = (1−π)C2 from
his long-term investment and withdraws (ω − ε)CB

2 of his deposits in bank B.
Therefore, he offers the following second period consumption,

CA
2 =

(1− π)C2 + (ω − ε)CB
2

1− π + ω − ε

Since CB
2 ≥ C1, it immediately follows that CA

2 ≥ C1. Therefore, if bank B
survives, bank A will survive too.

Next, consider a liquidity demand shock to bank A that is greater than Bank
B’s maximum tolerable shock, i.e. ε > εth1 , and suppose bank A liquidates his
deposits in bank B to serve the entire excess demand. Bank B cannot serve
liquidity demand in period one and defaults. Thus, she liquidates all her assets
and equally distributes them among her depositors in period one.

There are two possible equilibria regarding bank A. The first one is that
bank A also defaults and, thus, the market clearing payment is that of when the
entire network defaults, i.e. equation (2). The second equilibrium is when bank
A does not default and is still able to offer an incentive compatible consumption
schedule to his consumers. In the former, total value of bank B’s withdrawals
from bank A equals ωCall

liq , and in the latter it equals ωC1. Bank B then redis-
tributes all the funds equally among all depositors (one unit of consumers and
ω units of cross-deposits from bank A). Thus, the liquidation value for each unit
of deposits she is able to offer equals Call

liq in the former and Cliq in the latter.
I now consider bank A’s problem given bank B’s default and investigate un-

der what conditions bank A survives. Bank A is faced with bank B withdrawing
her entire deposits. His deposits in bank B are also mandatorily withdrawn and
he receives the amount ωCliq for his deposits. He must pay the excess liquidity
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demand he is faced with in period one. Depending on the relative value of what
he receives from bank B and what he must pay to serve the excess liquidity
demand, he may or may not need to liquidate some of his long-term invest-
ments. If bank A can pay off his liabilities in period one without liquidating his
long-term investments, the magnitude of the shock should satisfy the following
condition,

πC1 + ωCliq ≥ (π − ω + ε)C1 + ωC1

ωCliq ≥ εC1

ε ≤ εth2 =
ωCliq

C1
(7)

Thus, εth2 is the maximum excess liquidity demand that bank A can serve
without liquidating his long-term investments when bank B defaults. Besides,
bank A should still be able to offer an incentive compatible consumption sched-
ule for patient consumers waiting until period two. In period two, bank A har-
vests his long-term investments and receives RY . He also transfers the unused
liquidity ωCliq − εC1 from period one. He must serve the remaining consumers
which constitute a fraction (1 − π + ω − ε) of all consumers depositing in A.
Thus, the incentive compatibility constraint of bank A in the second period is
the following,

RY + ωCliq − εC1 ≥ (1− π + ω − ε)C1

which simplifies to inequality (5). If it holds, bank A will survive after a
shock with ε ≤ εth2 hitting bank A has made bank B default.

If ε > εth2 , i.e. bank A has to liquidate some of his long-term investments to
serve period one withdrawal demands, he may still be able to offer an incentive
compatible consumption schedule. He liquidates εC1−ωCliq

r units of his long-term
investments to meet the liquidity demand in period one. Thus, he will receive
R(Y − εC1−ωCliq

r ) units in period two. Similarly, he must serve the remaining
consumers which constitute a fraction (1−π+ω−ε) of all consumers depositing
in A. Thus, the incentive compatibility constraint of bank A in the second period
is the following,

R[Y − εC1 − ωCliq

r
] ≥ (1− π + ω − ε)C1

(1− π)(C2 − C1) + ω(
R

r
Cliq − C1) ≥ εC1(

R

r
− 1)

(1− π)(C2 − C1)− ω(C1 − Cliq) + ω(Rr − 1)Cliq

C1(
R
r − 1)

≥ ε

(1− π)(C2 − C1)− ω(C1 − Cliq)

C1(
R
r − 1)

+
ωCliq

C1
≥ ε
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Thus,

ε ≤ εth3 =
(1− π)(C2 − C1)− ω(C1 − Cliq)

C1(
R
r − 1)

+ εth2 (8)

ε ≤ εth3 = εth1 − ω(C1 − Cliq)

C1(
R
r − 1)

+ εth2 (9)

Thus, when bank B defaults, if ε ≤ εth3 , bank A can offer an incentive
compatible consumption schedule to his consumers. In the following lemmas,
I will investigate the circumstances under which the relative value of model
parameters are specifiable. I will use the following results when solving for
optimal bank A’s strategy.

Lemma 1. Condition εth3 > εth1 holds. Furthermore, if inequality (5) holds,
then εth3 ≥ εth2 .

Proof. Since Cliq ≥ r and C1 < R , the following holds,

R

r
Cliq ≥ R > C1 (10)

Some algebra shows that inequalities in (10) result in inequality εth2 >
ω(C1−Cliq)

C1(
R
r −1)

which itself is equivalent to inequality εth3 > εth1 . Furthermore, if

inequality (5) holds, inequality (8) directly yields εth3 ≥ εth2 .

Lemma 2. If the level of cross-deposits is less than a threshold, then εth3 ≤ 2εth1
holds.

Proof.

εth3 ≤ 2εth1

εth1 − ω(C1 − Cliq)

C1(
R
r − 1)

+ εth2 ≤ 2εth1

εth2 ≤ εth1 +
ω(C1 − Cliq)

C1(
R
r − 1)

(11)

ωCliq

C1
≤ (1− π)(C2 − C1) + ω(C1 − Cliq)

C1(
R
r − 1)

(
R

r
− 1)ωCliq ≤ (1− π)(C2 − C1) + ω(C1 − Cliq)

ω(
R

r
Cliq − C1) ≤ (1− π)(C2 − C1) (12)

ω ≤ ωth
2 (13)
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The LHS of inequality (12) is increasing in ω. Therefore a maximum level
of cross-deposits exists above which the inequality (12) is violated. Therefore,
inequality (12) is equivalent to inequality (13). 8

Lemma 1 shows that if inequality (5) holds, then εth2 ≤ εth3 . Thus, if bank A
tolerates a shock that satisfies ε ≤ εth2 , i.e. inequality (7) holds, then he will also
tolerate a larger shock that satisfies εth2 < ε ≤ εth3 . In any case, when bank B
defaults, bank A cannot tolerate a shock greater than εth3 and defaults as well.

Bank A’s Strategic Withdrawal Decision
I have considered the equilibrium of economy and its stability supposing

that bank A serves total excess demand he is faced with by withdrawing his
deposits in bank B. The optimal withdrawal decision of bank A, however, is his
parameter of choice. He may find it optimal to withdraw a different fraction of
deposits than ε. Specifically, bank A may strategically decide not to withdraw
the entire excess demand and tolerate this decision’s direct costs so to keep
bank B from defaulting , and avoid the extra costs incurred to him after bank
B defaults. On the other hand, bank A may find it optimal to make bank B
default and do so by withdrawing too much of his deposits in bank B. In this
section, I will fully solve bank A’s optimal liquidation decisions through the
following four propositions.

Proposition 1. If the shock hitting bank A is small enough, i.e. ε ≤ εth1 , then
it is always optimal for bank A to withdraw the entire excess liquidity demand
shock he is faced with from his deposits in bank B. That is, it is optimal to pass
all the direct liquidation costs to bank B.

Proof. If bank A withdraws less than ε, he has to pay the remaining excess
liquidity needs by liquidating some of his long-term investments and thus incur-
ring a loss. Whereas if bank A withdraws the entire ε from bank B, he passes
the direct withdrawal costs to her, and bank B must liquidate her long-term
investments. That results in a reduction in second period consumptions she
offers, but not her default. Since second period consumption is equal among
all depositors, bank A incurs only a fraction of this loss and other depositors
in bank B incur the remaining costs. Thus, the costs bank A incurs are less
compared to not withdrawing the entire ε. As explained earlier, withdrawal of
an amount more than ε is not optimal. Therefore, optimal withdrawal amount
is ε itself.

Proposition 2. If the shock hitting bank A is large enough, i.e. ε > εth1 , and
inequality (5) does not hold, then it is weakly optimal for bank A to withdraw
the exact amount εth1 of his deposits in bank B.

8The relative value of ωth
1 and ωth

2 depends on model parameters. For instance, for

economies with utility function of u(c) = c1−σ

1−σ
, the economy with parameter set of

(R, r, π, ω, σ) = (1.5, 1, 0.1, 0.01, 4) features ωth
1 < ωth

2 , while the economy with that of
(1.5, 0.5, 0.1, 0.01, 4) features the opposite.
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Proof. If bank A withdraws more than εth1 of his deposits in bank B, bank B
will default. Since inequality (5) does not hold, bank A also defaults conse-
quently and both banks can offer nothing better than the absolute minimum
consumption level specified in equation (2) when the entire network defaults.
Thus, withdrawing more than εth1 is not optimal. Using a similar logic to that
in Proposition 1, withdrawing less than εth1 is also not optimal.

If bank A withdraws exactly εth1 of his deposits in bank B, and incurs the costs
of remaining excess liquidity demand, he must liquidate the remaining excess
liquidity demand, i.e. C1(ε−εth1 ), from his long-term investments. Thus, he can
only harvest R[y − C1(ε−εth1 )

r ] units in period two. Besides, since he withdraws
εth1 C1 in period one from bank B, bank B is able to offer exactly C1 units of
consumption for withdrawals in period two. Thus, he receives C1(ω−εth1 ) for his
remaining deposits in bank B in period two. He must serve the fraction (1−π+
ω − ε) of consumers in period two. Thus, the following incentive compatibility
condition of patient consumers should hold so that patient consumers in bank
A wait until period two.

R[y − C1(ε− εth1 )

r
] + C1(ω − εth1 ) ≥ (1− π + ω − ε)C1

(1− π)(C2 − C1) ≥ C1(ε− εth1 )(
R

r
− 1)

ε ≤ (1− π)(C2 − C1)

C1(
R
r − 1)

+ εth1 = 2εth1 (14)

Thus, bank A can avoid the costs of defaulting of the entire network if he
is hit by a shock ε ≤ 2εth1 , in which he withdraws exactly εth1 from bank B. If
shock is very large, i.e. ε > 2εth1 , bank A will also default independent of bank
B’s defaulting. Nonetheless, the output will be similar to bank A withdrawing
εth1 . Thus, the weakly optimal withdrawal level is exactly εth1 .

I now turn to the impacts of large liquidity shocks, i.e. ε > εth1 in a ,seemingly
, more natural setting in which bank A can tolerate bank B’s failure in some
cases. that is, inequality (5) holds. In this case, bank A can either withdraw
all his deposits and make bank B default and have all his deposits liquidated
in period one at a discounted rate, or choose not to withdraw all his deposits
so that bank B survives and bank A is not faced with the contagion effects- at
least in period one. The optimal action of bank A depends on the total welfare
each option provides and those depend on the fundamental parameters of the
model and the relative value of threshold parameters.

Proposition 3. : If the shock hitting bank A is large enough, i.e. ε > εth1 , and
inequality (5) holds, and if εth3 ≤ 2εth1 , then it is weakly optimal for bank A to
let bank B survive by withdrawing a fraction εth1 of his liquidity needs from bank
B.
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Proof. If inequality (13) holds, then εth3 ≤ 2εth1 . Considering the different rela-
tive values of εth1 , εth2 and the actual liquidity demand shock ε, I partition the
entire state space to the following cases,

Case 1. εth3 ≤ 2εth1 < ε

As ε is greater than both εth3 and 2εth1 , regardless of bank A’s choice
to make bank B default or not, bank A also defaults. Thus, the only
equilibrium is that both banks default and bank A is not better off
by making bank B default.

Case 2. εth3 < ε ≤ 2εth1

If bank A makes bank B default, since εth3 < ε, bank A also defaults.
Whereas if bank A lets bank B survive by partially withdrawing his
deposits in period one, since ε ≤ 2εth1 , bank A also survives. Thus,
letting bank B survive is strictly optimal for bank A.

Case 3. εth2 ≤ εth1 < ε ≤ εth3 ≤ 2εth1 or εth1 ≤ εth2 < ε ≤ εth3 ≤ 2εth1

Since ε ≤ εth3 ≤ 2εth1 , regardless of bank A’s decision of making bank
B default or letting her survive bank A survives. Therefore, he is able
to offer C1 in first period. Thus, he chooses the strategy that results
in higher second period consumption level. If bank A chooses to make
bank B default, the following CA1

2 is the second period consumption
level he is able to offer.

(1− π + ω − ε)CA1
2 = R[y − εC1 − ωCliq

r
]

If he is to let bank B survive, he is best of by withdrawing exactly
εth1 in period one and saving the remaining deposits for period two.
Thus, the following CA2

2 is the second period consumption level he is
able to offer.

(1− π + ω − ε)CA2
2 = R[y − C1(ε− εth1 )

r
] + C1(ω − εth1 )

Bank A will choose the second option if CA1
2 ≤ CA2

2 and the first
option otherwise. Inequality CA1

2 ≤ CA2
2 is equivalent to,
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R[y − εC1 − ωCliq

r
] ≤ R[y − C1(ε− εth1 )

r
] + C1(ω − εth1 )

R

r
[C1(ε− εth1 )− (εC1 − ωCliq)] ≤ C1(ω − εth1 )

R

r
[ωCliq − C1ε

th
1 ] ≤ C1(ω − εth1 )

ω[
R

r
Cliq − C1] ≤ C1ε

th
1 [

R

r
− 1]

ω[
R

r
Cliq − C1] ≤ (1− π)(C2 − C1)

which is similar to inequality (12). Therefore, the weakly optimal
decision of bank A is to let bank B survive.

Case 4. εth1 < ε ≤ εth2 ≤ εth3 ≤ 2εth1

Since ε ≤ εth3 ≤ 2εth1 , regardless of bank A’s decision of making bank
B default or letting her survive bank A survives. Therefore, he is able
to offer C1 in the first period. He chooses the strategy that results in
higher second period consumption level. If bank A chooses to make
bank B fail, the following CA1

2 is the second period consumption level
he is able to offer.

(1− π + ω − ε)CA1
2 = Ry + ωCliq − εC1

If he is to let bank B survive, he is best of by withdrawing exactly
εth1 in period one and saving the remaining deposits for period two.
Thus, the following CA2

2 is the second period consumption level he is
able to offer.

(1− π + ω − ε)CA2
2 = R[y − C1(ε− εth1 )

r
] + C1(ω − εth1 )

Bank A will choose the second option if CA1
2 ≤ CA2

2 and the first
option otherwise. Condition CA1

2 ≤ CA2
2 is equivalent to,

Ry + ωCliq − εC1 ≤ R[y − C1(ε− εth1 )

r
] + C1(ω − εth1 )

C1(ε− εth1 )[
R

r
− 1] ≤ ω(C1 − Cliq)

ε ≤ εth1 +
ω(C1 − Cliq)

C1[
R
r − 1]

(15)
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The condition εth3 ≤ 2εth1 is equivalent to εth2 ≤ εth1 +
ω(C1−Cliq)

C1(
R
r −1)

(in-

equality (11)). Since ε ≤ εth2 inequality (15) always holds. Therefore,
Bank A’s optimal decision is to let bank B survive.

Having considered all the possible cases, Bank A is either indifferent between
the two options or strictly prefers letting bank B survive. Therefore, letting
bank B survive is bank A’s weakly optimal strategy.

Proposition 4. If the shock hitting bank A is large enough, i.e. ε > εth1 +
ω(C1−Cliq)

C1[
R
r −1]

, (not large enough, i.e. εth1 +
ω(C1−Cliq)

C1[
R
r −1]

≥ ε > εth1 ) and inequality

(5) holds, and if εth3 > 2εth1 , then it is weakly optimal for bank A to make bank
B default (let bank B survive by withdrawing a fraction εth1 of his liquidity needs
from bank B).

Proof. If inequality (12) does not hold, then εth3 > 2εth1 holds. It also im-
mediately follows by plugging in this inequality into inequality (9) that εth2 >

εth1 +
ω(C1−Cliq)

C1(
R
r −1)

> εth1 . Therefore, I partition the entire state space regarding the
relative values of threshold parameters and the actual excess liquidity demand
ε to the following cases,

Case 1. 2εth1 < εth3 < ε

ε is large enough that regardless of bank A’s decision both
banks will default. So he does not have a strict preference
on his withdrawal decisions in this case.

Case 2. 2εth1 < ε ≤ εth3

If bank A chooses to let bank B survive, he will default.
However, if bank A makes bank B fail, he will survive.
Therefore, bank A strictly prefers the latter choice.

Case 3. εth1 < εth2 < ε ≤ 2εth1 < εth3

In this case both bank A’s decisions result in his survival.
Thus, he compares second period consumption level he can
offer in each strategy. The calculations are similar to those
of case 3 of proposition 3, and bank A’s choice depends on
the direction of inequality 12. Since inequality (12) does
not hold, the optimal decision in this case is to make bank
B default.

Case 4. εth1 < ε ≤ εth2 ≤ 2εth1 < εth3 or εth1 < ε ≤ 2εth1 ≤ εth2 < εth3

Similar to case 4 of proposition 3, both bank A’s decisions
result in his survival. So he compares second period con-
sumption level he can offer in each strategy. The calcula-
tions are similar and show that making bank B default is
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bank A’s optimal strategy if εth1 +
ω(C1−Cliq)

C1[
R
r −1]

< ε ≤ εth2 and

letting bank B survive is his optimal strategy if εth1 < ε ≤
εth1 +

ω(C1−Cliq)

C1[
R
r −1]

.

4. Discussion

My model studies a financial network in which banks are subject to a regional
liquidity demand uncertainty- without aggregate effects- and excess liquidity de-
mand shocks. Similar to Allen and Gale (2000), I study stability of the financial
network when excess liquidity demand shock hit the economy. However, Allen
and Gale (2000) assume that banks are hit by either liquidity demand uncer-
tainty or liquidity demand shocks, whereas, I study a network in which banks
are heterogeneous in terms of their liquidity needs when are hit by an excess
liquidity demand shock and consequently generate heterogeneous responses. I
show when a bank with low liquidity needs- which I call the “safe” bank- is hit
by an excess liquidity demand shock, it passes the incurred direct costs of pro-
viding liquidity to the bank with high liquidity needs- which I call the “unsafe”
bank. An strategic action that benefits first bank only through second bank’s
loss.

Furthermore, unlike Allen and Gale (2000), there is no complete pecking or-
der in banks’ liquidation decisions. They choose which investments to liquidate
so to maximize their depositors’ total welfare. If the excess liquidity shock is
small enough, the safe bank chooses to pass the costs in their entirety to the
unsafe bank. However, if the shock is large enough such that passing the costs
to the unsafe bank will make it default, the safe bank may choose not to do so to
avoid the spillover costs of unsafe bank’s failure. Whether the safe bank chooses
to control the damage to the unsafe bank, depends on the fundamental parame-
ters of the economy as well as the magnitude of cross-deposits banks have made
in each other. In some cases the safe bank chooses to pass the liquidity demand
such that the unsafe bank is pushed to the brink of failure but does not default,
and incur the cost of serving the remaining excess liquidity demand by itself.
An action that- consistent with that of Leitner (2005)- can be considered as a
private bailout to let the unsafe bank survive. However, in some other cases the
safe bank chooses to make the unsafe bank default by withdrawing too much
of its deposits in the unsafe bank. Note that as shown in inequality (13), the
selection between the two cases depends on the level of cross-deposits banks
make in each other. In some cases, if banks are too connected, i.e. Z > ωth

2 ,
then it is optimal to make the unsafe bank default. Stiglitz (2010) argues that
complete financial networks are not necessarily optimal and a network struc-
ture consisting of several regions that are well-connected within each region,
but have limited connections between regions is more stable. I show that not
only the presence of financial links but the magnitude of them, if is greater than
a threshold, negatively affects network stability and triggers contagion across
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different regions. Thus, a relevant policy recommendation to stabilize the fi-
nancial system is to control the extent of connections intermediaries form with
other ones.

It is also important to note that contagion does not only depend on model
parameters as in Allen and Gale (2000), but also on whom is hit by liquidity
demand shock. Furthermore, regardless of the bank being hit by the liquidity
shock, “unsafe” banks pay the direct costs of liquidations9 and are taken to the
brink of failure, if they are not forced to default.

4.1. The Impacts of Higher Cross-deposit Levels

As discussed in subsection 2.3, all the contracts with cross-deposit levels
higher than ω, i.e. the level that is necessary to fully insure banks against
liquidity demand uncertainty, yield the first-best consumption schedule in con-
ventional states. In conventional states any excess liquidation of cross-deposits
by one side is completely retaliated by the other side, and the Nash equilib-
rium is that both sides withdraw these excess cross-deposits, i.e. Z − ω, in
period one. Thus, cross-deposit levels higher than ω are neutral in conventional
states. However, analysis of unconventional states is more complex. Suppose a
financial network similar to the one described in section (3) but with a higher
cross-deposit level ( Z > ω). First observe that when the entire network de-
faults, the payment vector banks are able to offer is similar to that for Z = ω,
and when one side defaults and the other does not, the payment amount the
failing bank is able to offer( Cliq(Z)) is increasing in Z. Thus, consumers in the
failing bank’s region benefit from a higher cross-deposit level, and consumers in
the other region incur a loss. It is the case because the other bank respects its
contract and pays C1 for each unit of deposits the failing bank has made in it
while being paid Cliq < C1 for each unit of deposits it has made in the failing
bank. More specifically, the net outflow from the surviving bank to the failing
bank is Z(C1 −Cliq), and it is, not surprizingly, increasing in Z. Thus, the cost
of one bank’s default is higher for the other bank when Z is increased.

Consider state S3. The maximum amount of excess liquidity shock a bank
can tolerate, does not depend on Z. In fact, any excess withdrawals from bank B
will be retaliated by bank A in the same manner as in conventional states. Thus,
bank B has to serve the excess liquidity demand by liquidating her long-term
assets. Equivalently, εth1 (Z) = εth1 . Nonetheless, the incentive compatibility
condition of bank A when bank B defaults, i.e. inequality (5) when Z = ω,
changes to the following condition,

(1− π)(C2 − C1) ≥ Z(C1 − Cliq(Z)) (16)

The RHS of this inequality is increasing in Z, while the LHS is constant.
Therefore, as Z is increased, it gets more difficult for bank A to survive when

9The safe bank still incurs the indirect costs of the other bank’s liquidation through network
spillover costs.
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bank B defaults. In other words, the financial system is now more prone to
contagion than it was when Z = ω.

I define εth2 (Z) as the maximum magnitude of a shock hitting bank A that
he can tolerate without liquidating any of his long-term assets when he makes
bank B default and εth3 (Z) as the maximum magnitude of a shock hitting bank
A that he can tolerate after bank A makes bank B default.10 Some algebra yield
the following results,

εth2 (Z) = ω − Z(C1 − Cliq)

C1

εth3 (Z) = εth1 + εth2 (Z)− Z(C1 − Cliq)

(Rr − 1)C1

It can be easily shown that these threshold values are both smaller than
their respective counterparts when Z = ω and are also decreasing in Z.

Next, consider state S4 when Z > ω. If Z is increased, bank A incurs more
loss when bank B defaults. On the other hand, if bank B survives, the actual
level of Z does not have welfare impacts on consumers in bank A’s region.
Therefore, as Z is increased, bank A gets more resilient to make bank B default
and more frequently engages in private bailouts to bank B. I will describe how
bank A behaves and how my results change when Z > ω in the following.

Given the conditions necessary for proposition 1, no bank defaults. Thus,
the final allocation when Z > ω will be similar to that of Z = ω. The only
exception is that both banks withdraw excess cross-deposits, i.e. Z − ω, in
period one. So the excess cross-deposits cancel each other out.

If the conditions of proposition 2 hold for an economy when Z = ω, they
will also hold for the same economy but with Z > ω. Because the incentive
compatibility condition of bank A when bank B defaults becomes more difficult
to satisfy as Z is increased. Thus, if it does not hold for Z = ω, it will not hold
for any Z > ω.

Propositions 3 needs an extra assumption to begin with. I need to assume
that incentive compatibility condition of bank A when bank B defaults is still
satisfied for larger Z. Supposing that is the case, if the conditions of proposition
3 hold for an economy when Z = ω, they will also hold for the same economy
but with Z > ω. Because, εth3 (Z) < εth3 and if εth3 ≤ 2εth1 it follows immediately
that εth3 (Z) ≤ 2εth1 . The condition εth3 > 2εth1 of proposition 4, on the other side,
become harder to satisfy for the same reason. Thus, the circumstances under
which bank A prefers to make bank B default, become less common.

The Most Stable Optimal Cross-deposit Level
In my model one bank has more ex-post liquidation decisions to make. Thus,

two sides do not have equal ex-post negotiation powers. If unconventional states

10These definitions respectively simplify to those of of εth2 and εth3 when Z = ω.
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would happen with a nonzero probability, that would bring up the hold-up
problem in banks’ ex-ante behavior which is not the case in the economies I
study. Nonetheless, there exist some investment portfolios that provide the
first-best consumption schedule in states happening with nonzero probability,
but behave differently in unconventional states. If the level of cross-deposits is
large enough so that inequality (16) is violated, then failure of one bank results in
contagion and failure of the other bank. On the other hand, as Z is increased,
the loss incurred to one bank given the default of the other bank increases,
resulting in more private bailouts and less actual failures of the unsafe bank.
Thus , one can say higher cross-deposit levels have a convoluted effect. Given
the possible choices of Z, none of investment portfolios with cross-deposits less
than a threshold, i.e. Z < ω, can provide the first-best consumption schedule.
Additionally, all the levels that violate inequality (16) make the financial system
too fragile. As the cross-deposit level is increased between the two thresholds,
it does not invert the sign of inequality (16) and it makes the banks more
cooperative and lowers the likelihood of a bank defaulting. Thus, the deposit
level that solves inequality (16) , i.e. Z = ωth

1 , is the optimal level given that
inequality 5 holds.

5. Conclusions

In a financial network with heterogeneous intermediaries, banks with low
liquidity needs pass the unexpected liquidation costs to banks with high liquidity
needs. There is no complete pecking order, and the decision of what investment
to liquidate is an endogenous, and nontrivial, decision of banks. Safe banks
may choose to engage in private bailouts to let the unsafe banks survive and,
thus, control the indirect costs of liquidation feeding bank to their asset values.
Furthermore, only moderate levels of cross-deposits are optimal. Low levels do
not yield the first-best consumption schedule, and high levels increase fragility.
In some economies, the most stable optimal contract specifies a a cross-deposit
level that is larger than the minimum level needed to fully insure banks against
liquidity demand uncertainty.
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