
Technical Appendix

(not for publication)

B Proofs

B.1 Proof of α2 ≤ 1 given NV nr
B1,α=1 ≤ 0

We prove this result by contradiction. We show that if α2 > 1, then NV nr
B1,α=1 > 0.

When α2 > 1, B1’s liquidation value at date 1 is more than enough to repay its

depositors and L1 at date 1 even when L1 recalls all of its interbank loans at date 1. Thus

we have

VB1,liq = λL(1 + R̂)− 1

2
γ(L(1 + R̂))2 > (D0 − x) + x = D0. (B1)

When NV nr
B1,α=1 > 0, B1 has more than enough assets to repay its depositors at date

2 even when L1 recalls all of its interbank loans. Thus we have

x = λl(1 + R̂)− 1

2
γ(l(1 + R̂))2, (B2)

NV nr
B1,α=1 = (L− l(x))(1 + R̂)− (D0 − x) > 0. (B3)

A simple transformation of Eq. (B3) gives us (L− l(x))(1 + R̂) + x > D0. Thus, proving

that NV nr
B1,α=1 > 0 is equivalent to proving that (L− l(x))(1 + R̂) + x > D0.

Using Eq. (B1), we find that proving that (L− l(x))(1+ R̂) + x > D0 is equivalent to

proving that (L− l(x))(1 + R̂) + x > VB1,liq. The proof is as follows. Using Eq. (B1) and

Eq. (B2), we get

(L− l(x))(1 + R̂) + x− VB1,liq

= (L− l(x))(1 + R̂) +

[
λl(x)(1 + R̂)− 1

2
γ(l(x)(1 + R̂))2

]
−

[
λL(1 + R̂)− 1

2
γ(L(1 + R̂))2

]
= (1 + R̂)(1− λ)(L− l(x)) + (L2 − l(x)2)

1

2
γ((1 + R̂))2 > 0, (B4)

because L > l(x), 0 < λ < 1, γ > 0, and 1 + R̂ > 0. Thus we prove that if α2 > 1, then

NV nr
B1,α=1 > 0. So, by contradiction, if NV nr

B1,α=1 ≤ 0, then α2 ≤ 1.
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The intuition behind this result is as follows. When α2 > 1, B1’s liquidation value at

date 1 is more than enough to repay its creditors, when all of its deposits are withdrawn

and all of its interbank loans are recalled at date 1. Now suppose that all of B1’s interbank

loans are still recalled at date 1, but its depositors wait until period 2. Then B1’s asset

value at date 2 is definitely higher than in the case where its depositors withdraw at date

1. This is because the long-term project that would otherwise be liquidated to repay

depositors at date 1 can now be carried over to date 2. Since liquidation is costly by

assumption, less liquidation always leads to a higher asset value. On the other hand,

with a zero interest rate, depositors still withdraw the same amount at date 2 as they

would have at date 1. Thus B1’s assets at date 2 must be more than enough to repay

its depositors when its depositors withdraw at date 2 and all of its interbank loans are

recalled, implying that NV nr
B1,α=1 > 0. So, by contradiction, when NV nr

B1,α=1 ≤ 0, we must

have α2 ≤ 1. �

B.2 Proof of proposition 1

Appendix A.2 gives L1’s payoff when 0 ≤ α1 < α2 ≤ 1. The following points elaborate

on all the other possible cases, which are illustrated by Fig. B1.

First, α1 ∈ [0, 1] (or equivalently NV nr
B1,α=1 ≤ 0 and NV nr

B1,α=0 ≥ 0) and α2 ≤ α1 (Fig.

B1 (a)). In this case, when α ∈ [0, α1], bank L1’s payoff, Π, is given by Eq. (A2). This is

because when α ≤ α1, a no-run equilibrium is feasible for B1, and B1 is solvent and able

to repay all the creditors at date 2. When α ∈ [α1, 1], L1’s payoff is given by Eq. (A7),

which we proved is strictly increasing in α. This is because when α > α1, B1’s depositors

will withdraw at date 1. In addition, B1 has no assets left at date 2 since α > α1 > α2.

Note that when α1 ∈ [0, 1] , L1’s payoff from its interbank loans is maximized at α = 0.

This is because when α1 ∈ [0, 1], a no-run equilibrium is always feasible for B1 at α = 0.

Second, NV nr
B1,α=1 > 0 (Fig. B1 (b)). In this case, L1’s payoff, Π, is given by Eq. (A2)

over α ∈ [0, 1]. This is because B1’s net asset value at date 2 is positive even when L1

recalls all of its interbank loans. Thus, B1 depositors will not withdraw at date 1 for all

α ∈ [0, 1], and L1’s interbank loans will be fully repaid for all α ∈ [0, 1].

Third, NV nr
B1,α=0 < 0. In this case, B1 does not have enough assets to repay its

liabilities at date 2, even when L1 does not recall any interbank loans at date 1. So B1’s
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depositors will always withdraw at date 1 for α ∈ [0, 1]. In the case of α2 ∈ (0, 1] (Fig.

B1 (c)), when α ∈ [0, α2], L1’s payoff is given by Eq. (A3), which we proved is strictly

decreasing in α. When α ∈ [α2, 1], L1’s payoff is given by Eq. (A7), which we proved is

strictly increasing in α. As a result, L1’s payoff is maximized either at α = 0 or at α = 1.

In the case of α2 ≤ 0 (Fig. B1 (d)), L1’s payoff is given by Eq. (A7) over α ∈ [0, 1], which

we proved is strictly increasing in α and is maximized at α = 1.1

1a2a0 1

Payoff of the lending bank

Depositors of the
borrowing bank
do not run

Depositors of the
borrowing bank
run at time 1

(a) 0 ≤ α1 ≤ 1, α2 < α1

0 1

Payoff of the lending bank

Depositors of the borrowing bank
do not run at time 1

(b) NV nr
B1,α=1 > 0

2a0 1

Payoff of the lending bank

Depositors of the borrowing bank
run at time 1

(c) NV nr
B1,α=0 < 0, α2 >

0

0 1

Payoff of the lending bank

Depositors of the borrowing bank
run at time 1

(d) NV nr
B1,α=0 < 0, α2 ≤

0

Figure B1: The lending bank’s payoff from interbank loans in other cases.

Considering all the combinations of α1 and α2, we find when NV nr
B1,α=0 ≥ 0, which

includes both the case of NV nr
B1,α=0 ≥ 0 and NV nr

B1,α=1 ≤ 0 and the case of NV nr
B1,α=1 > 0,2

a no-run equilibrium is feasible for B1 at α = 0. Thus at α = 0, L1 receives the maximum

interbank loan payoff, x. So α = 0 produces the highest payoff. When NV nr
B1,α=0 < 0, a

no-run equilibrium is not feasible for B1, even when L1 does not recall any interbank loans

(α = 0). Thus, B1’s depositors will always withdraw at date 1. Our analysis reveals that

in this case, when α2 > 0, L1’s payoff is first strictly decreasing in α, and then strictly

increasing in α. When α2 ≤ 0, it is strictly increasing in α. So the optimal solution is

either α = 0 or α = 1. �

B.3 Proof of corollary 1

Proof of result (1): we first prove that B1’s depositors will never initiate a bank run when

Rshock ≤ Rs
1. B1’s depositors will never initiate a run if a no-run equilibrium is feasible.

The no-run equilibrium is always feasible when B1 is solvent conditional on its depositors

1When NV nr
B1,α=0 < 0, we need only to consider the case where α2 ≤ 1, because we prove that if

NV nr
B1,α=1 ≤ 0, then α2 ≤ 1. Note that when NV nr

B1,α=0 < 0, we must have NV nr
B1,α=1 < 0, because NV nr

B1

is non-increasing in α over α ∈ [0, 1]
2Note that because NV nr

B1
is non-increasing in α over α ∈ [0, 1], when NV nr

B1,α=1 > 0, NV nr
B1,α=0 must

be greater than zero too.
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not withdrawing at date 1, that is, when L(1 + R̂) ≥ D0. Define R
s
1 as the level of Rshock

at which L(1 + R̂) = D0 (note that R̂ = R − Rshock). Thus B1’s depositors will never

initiate a run if Rshock ≤ Rs
1.

We next prove that B1’s depositors will always initiate a run if Rshock > Rs
1. This is

because in this case, L(1+ R̂) < D0 and a no-run equilibrium is infeasible. Thus we prove

that B1’s depositors follow a trigger strategy of Rs
1.

Proof of result (4): we first prove that Rs
2,c ≥ Rs

1. If Rshock ≤ Rs
1, B1 is solvent and

L1’s interbank loans can be fully repaid. As a result, L1 will never recall its interbank

loans. Thus, Rs
2,c ≥ Rs

1.

Provided that B1 experiences a run at date 1 and that L1 does not, proposition 1

reveals that L1 decides whether to recall its interbank loans or not by comparing its payoff

differential between α = 1 and α = 0. We denote this differential by Φ = PL1,α=1−PL1,α=0,

where PL1,α=1 and PL1,α=0 are L1’s interbank loan payoffs when α = 1 and α = 0,

respectively. L1 will recall its interbank loans (α = 1) if and only if Φ > 0.

Note that

PL1,α=0 = max(0, (L− lB1)(1 + R̂)), (B5)

where lB1 is given by

λlB1(1 + R̂)− 1

2
γ[lB1(1 + R̂)]2 = D0 − x. (B6)

That is, by choosing α = 0, L1 will either receive zero if B1 has no assets left for period 2

after experiencing a run, or seize B1’s remaining asset at date 2, (L − lB1)(1 + R̂), if B1

has any positive assets left for period 2 after experiencing a run.

Note that

∂(L− lB1)(1 + R̂)

∂R̂
= L− lB1 − (1 + R̂)

∂lB1

∂R̂
. (B7)

From Eq. (B6), we find

∂lB1

∂R̂
=

γl2B1
(1 + R̂)− λlB1

λ(1 + R̂)− γlB1(1 + R̂)2
= − lB1

1 + R̂
. (B8)

Thus
∂(L−lB1

)(1+R̂)

∂R̂
= L > 0. That is, when PL1,α=0 is positive, it is strictly increasing

in R̂, or equivalently strictly decreasing in Rshock since R̂ = R − Rshock. Define the level
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of R̂ at which lB1 = L as R̂∗. Note that at R̂∗, PL1,α=0 = (L − lB1)(1 + R̂) = 0. It

is straightforward to see that when R̂ ≥ R̂∗, PL1,α=0 is strictly increasing in R̂. When

R̂ < R̂∗, it stays at zero.

Note that

PL1,α=1 =
x

D0

VB1,liq. (B9)

That is, by choosing α = 1, L1 shares B1’s liquidation value proportionally with its

depositors, since B1’s liquidation value can not fully repay its liabilities. Recall that

VB1,liq =
x
D0

(
λL(1 + R̂)− 1

2
γ[L(1 + R̂)]2

)
is given by Eq. (1).

First, consider PL1,α=0 = 0 at Rs
1, that is, B1 has no assets left for period 2 after

experiencing a run at Rs
1.

3 It implies that PL1,α=0 = 0 for all Rshock > Rs
1.

4 Meanwhile,

note that PL1,α=1 is always positive. Thus Φ > 0 for all Rshock > Rs
1 in this case. Thus

L1 will choose α = 1 for all Rshock > Rs
1, implying Rs

2,c = Rs
1.

Second, consider PL1,α=0 > 0 at Rs
1, that is, B1 has some positive assets left for period

2 after experiencing a run at Rs
1. In this case, PL1,α=0 = (L− lB1)(1 + R̂), and we have

Φ = PL1,α=1 − PL1,α=0 =
x

D0

(
λL(1 + R̂)− 1

2
γ[L(1 + R̂)]2

)
− (L− lB1)(1 + R̂). (B10)

Thus

∂Φ

∂R̂
=

x

D0

[λ− γ(1 + R̂)L]L− L, (B11)

since we just proved
∂(L−lB1

)(1+R̂)

∂R̂
= L. Note that ∂Φ

∂R̂
< 0 because both x

D0
and λ− γ(1 +

R̂)L are between 0 and 1 by assumption. Hence, we prove that ∂Φ

∂R̂
< 0, or equivalently

∂Φ
∂Rshock

> 0 when PL1,α=0 > 0.

There are two possible situations when PL1,α=0 > 0 at Rs
1. In the first situation, Φ ≥ 0

at Rs
1, implying that Φ > 0 for all Rshock > Rs

1 because we just proved Φ is strictly

increasing in Rshock in this case. Thus Rs
2,c = Rs

1. In the second situation, Φ < 0 at Rs
1.

Because Φ is strictly increasing in Rshock, there exists a unique threshold level of Rshock,

Rs
2,c ∈ (Rs

1, R) above which Φ > 0 and below which Φ < 0. Note that Φ will become

3Note that here PL1,α=0 at Rs
1 is a hypothetical payoff conditional on B1 experiencing a run, which

will not occur in equilibrium. In equilibrium, a no-run equilibrium is feasible and B1 will never experience

a run. Throughout the rest of the proofs, this argument is applied to all the variables calculated at Rs
1.

4Recall that we just proved that PL1,α=0 is non-increasing in Rshock.

5



positive as long as Rshock is sufficiently high, which ensures the existence of Rs
2,c. This is

because at any given level of D0−x, we can always find a level of Rshock below 1+R that

is sufficiently high such that B1 has no assets left for date 2. As a result, Φ > 0 because

α = 1 always yields a positive payoff, while α = 0 yields a zero payoff. Thus we prove

that L1 will follow a trigger strategy of Rs
2,c > Rs

1 in the second situation.

In sum, we prove result (4), that is, L1 follows a trigger strategy of Rs
2,c ≥ Rs

1, condi-

tional on L1 not experiencing a run.

Proof of result (3): Note that Rs
3 ≥ Rs

1, because when Rshock ≤ Rs
1, a no-run equi-

librium is feasible, and L1’s depositors never initiate a run. So we need only to consider

the region of Rshock > Rs
1, where a no-run equilibrium is infeasible. In this region, B1

always experiences a run, and L1 will experience a run if and only if NVL1,t=2 < 0, where

NVL1,t=2 is L1’s maximum net asset value at date 2, conditional on L1 not experiencing

a run. More specifically, NVL1,t=2 = max(NVL1,t=2,α=0, NVL1,t=2,α=1). Here

NVL1,t=2,α=0 = PL1,α=0 + L(1 +R)−D0 − x, (B12)

where PL1,α=0 = max(0, (L− lB1)(1 + R̂)) is given by Eq. (B5). It is L1’s net asset value

at date 2 when L1 chooses α = 0.

We also have

NVL1,t=2,α=1 = PL1,α=1 + L(1 +R)−D0 − x, (B13)

where PL1,α=1 = x
D0

(
λL(1 + R̂)− 1

2
γ[L(1 + R̂)]2

)
is given by Eq. (B9). It is L1’s net

asset value at date 2 when L1 chooses α = 1.

For PL1,α=0, our previous analysis reveals that there are two possible situations . In

the first situation, it is zero for all Rshock > Rs
1. In the second situation, it is positive

when Rshock > Rs
1 is below a threshold level and remains zero above the threshold level.

In addition, it is strictly decreasing in Rshock when it is positive.

For PL1,α=1, we find that
∂PL1,α=1

∂R̂
= x

D0
[λ− γ(1 + R̂)L]L > 0 since λ− γ(1 + R̂)L > 0

by assumption. Thus it is strictly decreasing in Rshock. In addition, it is always positive.

Define PL1 = max(PL1,α=0, PL1,α=1). ThusNVL1,t=2 = max(NVL1,t=2,α=0, NVL1,t=2,α=1) =

PL1 +L(1+R)−D0−x. Note that our analysis above implies that PL1 is strictly decreas-

ing in Rshock for Rshock > Rs
1. This is because PL1 is always positive and will never equal

PL1,α=0 when it is zero. Thus PL1 equals either PL1,α=1 or PL1,α=0 when it is positive . In
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both cases, PL1 is strictly decreasing in Rshock. Because L(1+R)−D0−x is independent

of Rshock, NVL1,t=2 is also strictly decreasing in Rshock. Thus, there is a unique level of

Rshock, R
s
3, above which NVL1,t=2 < 0.5 Note that it is possible that NVL1,t=2 < 0 for all

Rshock > Rs
1. In this case, Rs

3 = Rs
1.

Thus we prove result (3), that is, L1’s depositors follow a trigger strategy of Rs
3 ≥ Rs

1.

Proof of results (2) and (5): When Rs
2,c ≤ Rs

3, L1 does not experience a run until

Rshock > Rs
3, in which case we proved that L1 will follow a trigger strategy of Rs

2,c.

However, when Rs
2,c > Rs

3, L1 will experience a run and be forced to recall all of its

interbank loans when Rshock > Rs
3 in equilibrium. Thus, in this case Rs

2 = Rs
3. The above

analysis implies that Rs
2 = min(Rs

2,c, R
s
3). Thus we prove result (5).

Proof of result (6): When Rshock ≤ Rs
1, a no-run equilibrium is always feasible for B1,

in which case we proved that B1 and L1 are solvent and do not experience a run, and

that L1 does not recall its interbank loans. This implies that Rs
1 ≤ min(Rs

2, R
s
3). Result

(5) implies that Rs
2 ≤ Rs

3. Thus we prove result (6). �

B.4 Proof of corollary 2

Fig. B2 illustrates corollary 2, that is, how Rs
2,c changes in x. We prove it as follows.

x 7x x

Rs
1

Rs
2;c

Rshock

0

Figure B2: How Rs
2,c changes in x.

5Note that our assumption of e0 < 1−R
1+RD0 ensures that at least for some values of x ∈ (0, D0),

NVL1,t=2 < 0 when Rshock is sufficiently high such that Rs
3 exists. To see this, note that this condition

implies that L(1 + R) −D0 − x = (e0 +D0)(1 + R) −D0 − x < 0 at x = D0. Thus for some values of

x < D0, L(1+R)−D0−x becomes negative. Meanwhile, when Rshock approaches 1+R, PL1
approaches

zero. Thus at some values of x and Rshock, NVL1,t=2 < 0 and Rs
3 exists.
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Define x as the level of x at which VB1,liq(R
s
1) = D0 − x, where VB1,liq(R

s
1) is B1’s

liquidation value when Rshock = Rs
1. Thus below x, VB1,liq(R

s
1) < D0 − x, and above x,

VB1,liq(R
s
1) > D0 − x. Note that a positive x must exist because at Rs

1, L(1 + R̂) = D0,

that is, B1’s total assets equal its total liabilities without any liquidation. Thus B1’s

liquidation value at Rs
1, VB1,liq(R

s
1) < L(1 + R̂) = D0 since liquidation is costly. This

condition ensures the existence of x above 0.

First, we prove that when x ∈ (0, x], Rs
2,c = Rs

1. To see this, note that when x ≤ x,

VB1,liq < D0 − x for all Rshock > Rs
1. This is because when x ≤ x, VB1,liq(R

s
1) ≤ D0 − x,

and VB1,liq is strictly decreasing in Rshock. Thus when x ∈ (0, x], B1 has no assets left

for period 2 after experiencing a run for all Rshock > Rs
1. It implies that Φ > 0 for all

Rshock > Rs
1, and Rs

2,c = Rs
1. This is because in this case α = 0 yields a zero payoff, while

α = 1 always yields a positive payoff.

When x > x, VB1,liq(R
s
1) > D0−x, implying that B1 has positive assets left for period

2 after experiencing a run at Rs
1. Define Φ(Rs

1) as the value of Φ when Rshock = Rs
1. In

this case Φ(Rs
1) is given by Eq. (B10). Note that Eq. (B10) is also applied to the case

of x = x, because lB1 = L at x such that PL1,α=0 = (L− lB1)(1 + R̂) = 0. We will prove

that Φ(Rs
1) has three properties: (1) Φ(Rs

1) is strictly deceasing in x when x ≥ x. (2)

Φ(Rs
1) > 0 at x. (3) When x is sufficiently large, Φ(Rs

1) will become negative.

We first prove that Φ(Rs
1) is strictly deceasing in x when x ≥ x. According to Eq.

(B10), we have

∂Φ

∂x
=

[
1

D0

(λL(1 + R̂)− 1

2
γ[L(1 + R̂)]2)− 1

λ− γlB1(1 + R̂)

]
, (B14)

because
∂lB1

∂x
= − 1

(1+R̂)(λ−γlB1
(1+R̂))

.

We can prove that ∂Φ
∂x

< 0 by proving that
λL(1+R̂)− 1

2
γ[(1+R̂)L]2

D0
< 1 and 1

λ−γlB1
(1+R̂)

> 1.

First, since B1 is insolvent, its liquidation value, λL(1 + R̂) − 1
2
γ[L(1 + R̂)]2 is always

below its total liabilities, D0. Thus we prove that
λL(1+R̂)− 1

2
γ[(1+R̂)L]2

D0
< 1. Second, by

assumption, 0 < λ − γlB1(1 + R̂) < 1. Thus we prove that 1

λ−γlB1
(1+R̂)

> 1. Since this

result is applied to the case of Rshock = Rs
1, we prove that Φ(Rs

1) is strictly decreasing in

x when x ≥ x.

Next we prove that Φ(Rs
1) > 0 at x. This is because by definition VB1,liq(R

s
1) = D0 − x

at x, implying that PL1,α=0 = 0. On the other hand, PL1,α=1 is always positive. Thus
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Φ(Rs
1) = PL1,α=1 − PL1,α=1 > 0 at x.

Third, we prove that when x is sufficiently large, Φ(Rs
1) will become negative. To see

this, consider the extremely case where x approaches D0. That is, B1’s deposits approach

zero. In this case, L1’s interbank loan payoff with α = 1 approaches B1’s liquidation

value, while L1’s interbank loan payoff with α = 0 approaches B1’s asset value at date 2

without any liquidation. Since liquidation is costly, it is straightforward to see that α = 0

yields a higher payoff, that is, Φ(Rs
1) < 0.

These three properties of Φ(Rs
1) imply that there exists a unique level of x, x̄ ∈ (x,D0),

such that Φ(Rs
1) = 0 at x̄. In addition, when x ∈ [x, x̄), Φ(Rs

1) > 0 and when x ∈ (x̄, D0),

Φ(Rs
1) < 0. Note that property (1) ensures the uniqueness of x̄, property (2) ensures the

existence of x̄ above x, and property (3) ensures the existence of x̄ below D0.

Now we prove that when x ∈ [x, x̄], Rs
2,c = Rs

1. To see this, note that when x ∈ [x, x̄],

Φ(Rs
1) ≥ 0, implying that Φ > 0 for all Rshock > Rs

1 because we proved in corollary 1 that

Φ is strictly increasing in Rshock. Thus R
s
2,c = Rs

1. It also implies that Rs
2,c is continuous

in x at x.

Finally, we prove that x ∈ [x̄, D0), R
s
2,c is strictly increasing in x. In addition, Rs

2,c is

continuous in x at x̄. We prove it as follows.

When x ∈ (x̄, D0), Φ(R
s
1) < 0. In this case, Rs

2,c is determined by the level of Rshock

at which Φ = 0, where Φ is given by Eq. (B10). Note that at Rs
2,c where Φ = 0, B1 must

have positive assets left for period 2 after experiencing a run. Thus Eq. (B10) can be

applied. To see this, note that at Φ = 0, PL1,α=0 = PL1,α=1 > 0. We can prove that in

this case, Rs
2,c is strictly increasing in x. To see this, note that according to the Implicit

Function Theorem,

∂R̂s
2,c

∂x
= −

∂Φ
∂x
∂Φ

∂R̂

, (B15)

where R̂s
2,c = R − Rs

2,c. We just proved that ∂Φ
∂x

< 0. Recall in corollary 1, we proved

∂Φ

∂R̂
< 0. Thus,

∂R̂s
2,c

∂x
< 0, or equivalently

∂Rs
2,c

∂x
> 0.

Note that Rs
2,c is continuous at x̄. This is because Eq. (B10) is continuous in both x

and R̂, implying that Rs
2,c must be continuous at x̄ as well.

In sum, we prove that there exist two threshold levels of x and x̄, where 0 < x < x̄ < D0

such that when x ∈ (0, x], B1 has no assets left for period 2 after experiencing a run for
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all Rshock > Rs
1. Thus Φ > 0 for all Rshock > Rs

1, and Rs
2,c = Rs

1. When x ∈ (x, x̄], B1 has

positive assets left for period 2 after experiencing a run. Again, Φ > 0 for all Rshock > Rs
1

in this case, and Rs
2,c = Rs

1. When x ∈ (x̄, D0), B1 has positive assets left for period 2

after experiencing a run, and Φ < 0 at Rs
1. In this case, Rs

2,c is strictly increasing in x. In

addition, Rs
2,c is continuous in x. Thus we prove corollary 2. �

B.5 Proof of corollary 3

Define x̂ as the value of x at which L(1 + R) − D0 − x = 0. Thus x̂ = L(1 + R) − D0.

We first prove that when x ≤ x̂, Rs
3 does not exist. To see this, note that when x ≤ x̂,

L(1 + R) − D0 − x ≥ 0. Recall that NVL1,t=2 = PL1 + L(1 + R) − D0 − x, where L1’s

interbank loan payoff, PL1 = max(PL1,α=1, PL1,α=0) is always positive. Thus when x ≤ x̂,

L1’s net asset value is always positive, and L1 will never experience a run. That is, Rs
3

does not exist.

Second, consider the case when x > x̂. In this case, L1 will become insolvent (NVL1,t=2 <

0) at a sufficiently high level of Rshock. Thus Rs
3 exists. Because L1 optimally chooses

the recall strategy to maximize its net asset value, Rs
3 = max {Rs

3(α = 1), Rs
3(α = 0)},

where Rs
3(α = 1) is the Rs

3 chosen when L1’s net asset value is determined by α = 1 and

Rs
3(α = 0) is the Rs

3 chosen when L1’s net asset value is determined by α = 0. That is,

the actual Rs
3 is always determined by the recall strategy that yields a higher net asset

value and, consequently, a higher level of Rs
3.

Next we will prove the properties of the Rs
3(α = 1) curve and the Rs

3(α = 0) curve.

We first examine the Rs
3(α = 1) curve.

When x ≤ x̂, NVL1,t=2,α=1 will never be negative and Rs
3(α = 1) does not exist. When

x > x̂, Rs
3(α = 1) will exist. Recall that NVL1,t=2,α=1 is given by Eq. (B13). Thus

∂NVL1,t=2,α=1

∂x
=

VB1,liq

D0

− 1 < 0, (B16)

because VB1,liq < D0. This is because provided that B1 experiences a run, we have

VB1,liq < L(1 + R̂) < D0. That is, B1’s long-term project return is below its total

liabilities, D0, implying that its liquidation value is also below its total liabilities.

When x > x̂, there are two situations. First, for all the values of x, NVL1,t=2,α=1 ≥ 0

at Rs
1. In this case, Rs

3(α = 1) is determined by NVL1,t=2,α=1 = 0. Since NVL1,t=2,α=1

10



is continuous, strictly decreasing in x and strictly decreasing in Rshock, according to the

Implicit Function Theorem, Rs
3(α = 1) is strictly decreasing in x for all the values of x.

This situation is illustrated by Fig. B3(a).

Second, there exists a threshold level of x, x̃, below which NVL1,t=2,α=1 > 0 at Rs
1 and

above which NVL1,t=2,α=1 < 0 at Rs
1. In this case, when x < x̃, Rs

3(α = 1) is determined by

NVL1,t=2,α=1 = 0 and is strictly decreasing in x. When x ≥ x̃, Rs
3(α = 1) = Rs

1, because

NVL1,t=2,α=1 is negative for all Rshock > Rs
1. Note that R

s
3(α = 1) is continuous at x̃: when

x approaches x̃ from below, NVL1,t=2,α=1 at R
s
1 approaches zero, implying that Rs

3(α = 1)

converges to Rs
1. This situation is illustrated by Fig. B3(b).

x̂ x

R
s

1

R
s

3(, = 1)

Rshock

1 +R

0

(a) Situation 1 for the Rs
3(α = 1)

curve

x̂ ~x x

R
s

1

R
s

3(, = 1)

Rshock

1 +R

0

(b) Situation 2 for the Rs
3(α = 1)

curve

Figure B3: How Rs
3(α = 1) changes in x.

In addition, note that in both situations, Rs
3(α = 1) converges to 1 + R when x

approaches x̂ from above. To see this, note that at x̂, L(1 + R) −D0 − x = 0, implying

that L1’s minimum asset value would be zero only if we allowed Rshock to be 1 + R such

that the negative shock led to a zero return for B1’s long-term project and PL1 = 0.

We next examine the Rs
3(α = 0) curve. Similarly, when x ≤ x̂, Rs

3(α = 0) does not

exist. When x > x̂, recall that NVL1,t=2,α=0 is given by Eq. (B12). In this case, PL1,α=0

and subsequently NVL1,t=2,α=0 depend crucially on x. When x ≤ x, B1 has no assets

left for period 2 at Rs
1 after experiencing a run, and PL1,α=0 = 0 at Rs

1. When x > x,

B1 has positive assets left for period 2 at Rs
1 after experiencing a run, and PL1,α=0 =

(L− lB1)(1 + R̂) at Rs
1.

Thus when x > x̂, there are two situation. In the first situation, x̂ ≥ x. This

situation is illustrated by Fig. B4(a). In this case, for all the values of x > x̂, B1

11



has positive assets left for period 2 at Rs
1 after experiencing a run, and NVL1,t=2,α=0 =

(L− lB1)(1 + R̂) + L(1 + R)−D0 − x at Rs
1. It implies that at Rs

3(α = 0), B1 must also

have positive assets left for period 2 after experiencing a run, and the same formula for

NVL1,t=2,α=0 at R
s
1 is applied. To see this, note that when x > x̂, L(1 +R)−D0 − x < 0.

On the other hand, at Rs
3(α = 0), NVL1,t=2,α=0 = 0, implying that (L− lB1)(1 + R̂) must

be positive. In this case,

∂NVL1,t=2,α=0

∂x
= −∂lB1

∂x
(1 + R̂)− 1, (B17)

where

∂lB1

∂x
= − 1

1 + R̂

1

λ− γ[lB1(1 + R̂)]
(B18)

according to Eq. (B6). Thus we have

∂NVL1,t=2,α=0

∂x
=

1

λ− γ[lB1(1 + R̂)]
− 1 > 0, (B19)

because 0 < λ − γ[lB1(1 + R̂)] < 1 by assumption. Thus we prove that NVL1,t=2,α=0 is

strictly increasing in x whenB1 has positive assets left for period 2. Recall that in corollary

1, we proved that NVL1,t=2,α=0 is strictly decreasing in Rshock when B1 has positive assets

left for period 2. Thus according to the Implicit Function Theorem, Rs
3(α = 0) is strictly

increasing in x. Note that at x = x̂, NVL1,t=2,α=0 = PL1,α=0 ≥ 0 at Rs
1, implying that the

Rs
3(α = 0) curve will converge to a level of Rshock ≥ Rs

1 when x approaches x̂ from above.

x̂x x

R
s

1

R
s

3(, = 0)

Rshock

0 <

(a) Situation 1 for the Rs
3(α = 0)

curve.

x̂ x 4x x

R
s

1

R
s

3(, = 0)

Rshock

0

(b) Situation 2 for the Rs
3(α = 0)

curve.

Figure B4: How Rs
3(α = 0) changes in x.

In the second situation, x̂ < x. This situation is illustrated by Fig. B4(b): When

x ∈ (x̂, x], B1 has no assets left for period 2 at Rs
1, implying that B1 has no assets left

12



for all Rshock > Rs
1. As a result, PL1,α=0 = 0 and NVL1,t=2,α=0 < 0 for all Rshock > Rs

1,

implying Rs
3(α = 0) = Rs

1. When x ∈ (x,D0), B1 has positive assets left for period 2 at Rs
1.

In this case, there exists a threshold level of x, x́, at which NVL1,t=2,α=0 = 0 at Rs
1. When

x ∈ (x, x́], NVL1,t=2,α=0 ≤ 0 at Rs
1, implying that NVL1,t=2,α=0 < 0 for all Rshock > Rs

1.

Thus Rs
3(α = 0) = Rs

1. Note that at x = x, NVL1,t=2,α=0 < 0 at Rs
1 because PL1,α=0 = 0

at Rs
1 and L(1+R)−D0−x < 0. When x ∈ (x́, D0), our analysis on the first situation is

applied, that is, Rs
3(α = 0) is strictly increasing in x. Note that Rs

3(α = 0) is continuous at

x́. This is because when x approaches x́ from above, NVL1,t=2,α=0 at Rs
1 approaches zero,

implying Rs
3(α = 0) will converge to Rs

1. In addition, note that NVL1,t=2,α=0 at Rs
1 will

become positive when x is sufficiently large such that x́ exists. To see this, consider the

extreme case where x approaches D0. In this case, when α = 0, L1’s interbank loan payoff

approaches D0 at Rs
1, and NVL1,t=2,α=0 approaches L(1 +R)− x = (e0 +D0)(1 +R)− x,

which must be positive because x < D0.

In sum, we prove that when x > x̄, the Rs
3(α = 1) curve starts from 1 + R, strictly

decreases in x if it is above Rs
1, and stays at Rs

1 once it reaches Rs
1.

6 On the other hand,

there are two possible cases for the Rs
3(α = 0) curve. First, there is a threshold level of

x, x́, below which it stays at Rs
1 and above which it is strictly increasing in x. Second, it

starts at some Rshock > Rs
1 and is strictly increasing in x.

In addition, note that when x is sufficiently large, Rs
3(α = 0) > Rs

3(α = 1). The proof

is similar to the one in corollary 1 that Φ(Rs
1) will become negative when x is sufficiently

large. As long as B1 has positive assets left for period 2 after experiencing a run, which

is the case when Rs
3(α = 0) is chosen, consider the extreme case when x approaches D0.

L1’s payoff at α = 0 will approach B1’s asset value at date 2 without liquidation, while

L1’s payoff at α = 1 will approach B1’s liquidation value at date 1. Obviously the former

is higher. As a result, Rs
3(α = 0) > Rs

3(α = 1) when x is sufficiently high.

Based on the above analysis, we conclude that there are two possible situations. In

the first situation, the Rs
3(α = 1) curve reaches Rs

1 after the Rs
3(α = 0) curve rises

from Rs
1. In this case, there exists a unique intersection between the Rs

3(α = 0) curve

and the Rs
3(α = 1) curve at which x = x∗. When x < x∗, Rs

3(α = 0) < Rs
3(α = 1).

While when x > x∗, Rs
3(α = 0) > Rs

3(α = 1). Since the actual Rs
3 is always given

by max(Rs
3(α = 0), Rs

3(α = 1)) when L1’s net asset value is maximized, we find that

6It is possible that Rs
3(α = 1) never reaches Rs

1 for all the values of x.
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when x < x∗, Rs
3 = Rs

3(α = 1) and is strictly decreasing in x; while when x > x∗,

Rs
3 = Rs

3(α = 0) and is strictly increasing in x. Note that at x∗, Rs
3(α = 1) = Rs

3(α = 0).

Thus L1’s net asset values at α = 1 and α = 0 are both zero at Rs
3, implying that Φ = 0,

that is, L1’s payoffs from interbank loan recall when α = 0 and α = 1 are the same. Thus

at x∗, Rs
2,c = Rs

3. This situation is illustrated by Fig. 4 in our paper.

In the second situation, the Rs
3(α = 1) curve reaches Rs

1 before the Rs
3(α = 0) curve

rises from Rs
1. In this case, there is a unique region of x below which Rs

3(α = 0) < Rs
3(α =

1) and above which Rs
3(α = 0) > Rs

3(α = 1). This case is similar to the first one except

that now the unique level of x is replaced by a unique region of x in which Rs
3 = Rs

1. This

situation is illustrated by Fig. B5.7

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

size of interbank loan x

R
shock

 

 

Rs
1

Rs
2c

Rs
3

Figure B5: The equilibrium results of the perfect information case when λ = 0.8.

Moreover, in both situations, when x is below x∗, at Rs
3 = Rs

3(α = 1), L1’s optimal

recall strategy is α = 1 without experiencing a run. Since L1 will optimally choose α = 1

without experiencing a run if and only if Rshock > Rs
2,c, it implies Rs

3 > Rs
2,c. Similarly,

when x is above x∗, at Rs
3 = Rs

3(α = 0), L1’s optimal recall strategy is α = 0 without

experiencing a run, implying Rs
3 < Rs

2,c. �
7It turns out that the first situation tends to happen when the liquidation cost is low, while the second

situation tends to happen when the liquidation cost is high. This is because a higher liquidation cost will

lower L1’s payoff from interbank loans, inducing the Rs
3(α = 1) curve to reach Rs

1 at a smaller x and the

Rs
3(α = 0) curve to rise from Rs

1 at a larger x.
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B.6 Optimal choices for banks L1 and L2 under imperfect infor-

mation at a given market rate

First, we define a variable Z as the total resources that the lending bank collects to repay

its depositors at date 1, which is given by

Z = λl(1 +R)− 1

2
γ[l(1 +R)]2 + F (αx), (B20)

where λl(1+R)− 1
2
γ[l(1+R)]2 are the proceeds that the bank receives from liquidating l

of the long-term project, and F (αx) is the proceeds that the bank receives from recalling

αx of its interbank loans. When the borrowing bank’s net asset value conditional on its

depositors not withdrawing at date 1, NV nr ≥ 0, or when NV nr < 0, but its liquidation

value, Vliq ≥ D0 − x + αx, F (αx) = αx. When for the borrowing bank, NV nr < 0 and

Vliq < αx+D0 − x, F (αx) = αx
D0−x+αx

Vliq.

If Z < D0 + x, the lending bank will roll over a positive amount of D0 + x−Z > 0 of

deposits, and its net asset value at date 2 is given by

NV = (L− l)(1 +R)− (D0 + x− Z)(1 + r̂) +H((1− α)x), (B21)

where (L−l)(1+R) is the proceeds the bank receives at date 2 from the unliquidated long-

term project, (D0 + x−Z)(1 + r̂) is the repayment to depositors, and H((1−α)x) is the

proceeds from the remaining interbank loans. When for the borrowing bank, NV nr ≥ 0,

H((1−α)x) = (1−α)x. When for the borrowing bank, NV nr < 0 but Vliq > D0−x+αx,

H((1 − α)x) equals the asset value of the borrowing bank at date 2. When for the

borrowing bank, NV nr < 0 and Vliq < αx+D0 − x, H((1− α)x) = 0.

If Z ≥ D0+x, the lending bank chooses not to roll over any deposits, and its net asset

value is given by

NV = (L− l)(1 +R) + Z − (D0 + x) +H((1− α)x). (B22)

It is difficult to give a general analytical solution to the above problem. We focus on

the more interesting case where Z < D0 + x (that is, the lending bank chooses to roll

over a positive amount of deposits) in equilibrium. In this case, given that in equilibrium

r̂ > 0, and Z < D0+x, we find that: (1) The lending banks will liquidate their long-term

projects if, and only if, 1 + r̂ > 1
λ
. (2) Provided that 0 ≤ α1 < α2 ≤ 1, the optimal
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Payoff of the lending bank
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borrowing bank
do not run

Depositors of the borrowing
bank run at date 1

Figure B6: An example of the lending bank’s payoff from recalling αx of interbank
loans under imperfect information

amount of recalled interbank loans, αx, can be chosen from three locally optimal points

in the three regions of [0, α1], [α1, α2], and [α2, 1], respectively. The bank will recall at

least α1x of its interbank loans.

We can prove the above results as follows. Let l denote the units of the long-term

project that a bank liquidates to repay deposits. A bank will choose an optimal l to

maximize the associated payoff

[λl(1 +R)− 1

2
γ(l(1 +R))2](1 + r̂) + (L− l)(1 +R). (B23)

The first term is debt reduction achieved by using the liquidated goods to repay deposits,

and the second term is the value of the unliquidated long-term project. Note that the

first-order derivative of the first term w.r.t l, (1+R)[(λ−γl(1+R))(1+ r̂)], is the marginal

benefit from liquidation. The first-order derivative of the second term w.r.t l, −(1+R) is

the marginal cost from liquidation. A bank will never liquidate its long-term project if its

marginal cost exceeds its marginal benefit. When 1+r̂ < 1
λ
, (1+R)[(λ−γl(1+R))(1+r̂)] <

(1 +R)(λ(1 + r̂)) < 1 +R because γ > 0 by assumption. Thus we prove result (1).

A lending bank’s decision of α can be analyzed in a similar way to the perfect infor-

mation case. Fig. B6 illustrates the intuition behind this decision. We can still separate

α into three regions of [0, α1], (α1, α2], and [α2, 1]. The reactions of the borrowing banks’

depositors given α are the same as in the perfect information case. The payoff for the

lending bank is different, however, because the market rate for deposits is now 1 + r̂,

instead of zero.

Let Πi be the total interbank loan payoff in terms of date 2 value. Note when the

market rate r̂ is positive, the bank will use the proceeds from the recall to repay its

deposits. Thus, in terms of date 2 value, the payoff from recalling αx of interbank loans

equals the proceeds from the recall multiplied by 1 + r̂.
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When α ∈ [α2, 1], Π
i = αx

αx+(D0−x)
(λL(1 + R̂)− 1

2
γ[L(1 + R̂)]2)(1 + r̂), which is strictly

increasing in α. So the locally optimal point is α = 1, the upper bound of this region.

When α ∈ [0, α1], Π
i = (1− α)x+ αx(1 + r̂), which is strictly increasing in α. So the

locally optimal point is α1, the upper bound of this region.

When α ∈ (α1, α2],

Πi = αx(1 + r̂) + (L− l)(1 + R̂), (B24)

αx+D0 − x = λl(1 + R̂)− 1

2
γ[l(1 + R̂)]2. (B25)

In this case, the borrowing bank experiences a run, and the lending bank owns the bor-

rowing bank’s remaining assets at date 2. It turns out that

∂Πi

∂α
= x(1 + r̂)− x

λ− γ(1 + R̂)l
. (B26)

Let l(α1) and l(α2) denote the liquidated long-term project at α1 and α2 respectively. Note

that l is strictly increasing in α in this region according to Eq.(A5). When l(α1) ≥
λ− 1

1+r̂

γ(1+R̂)
,

1 + r̂ < 1

λ−γ(1+R̂)l
for all the values of α in this region, and Πi is strictly decreasing in α

in this region. So the locally optimal point is α1, the lower bound of this region. When

l(α2) ≤
λ− 1

1+r̂

γ(1+R̂)
, 1 + r̂ ≥ 1

λ−γ(1+R̂)l
for all the values of α in this region, and Πi is strictly

increasing in α in this region. So the locally optimal point is α2, the upper bound of this

region. When l(α1) <
λ− 1

1+r̂

γ(1+R̂)
< l(α2), Π

i is concave when α ∈ (α1, α2], and there is an

optimal level of α ∈ (α1, α2) that maximizes Πi. Thus we prove result (2).

Similar to the perfect information model, other cases with different combinations of

α1 and α2 are simply special examples of our case above. We can find these payoffs in a

similar way. �

C Numerical examples: optimal choices for banks L1

and L2 and the determination of Γ(r̂)

Panels (a) and (b) of Fig. C1 illustrate the optimal choices of banks L1 and L2 on interbank

loan recall and long-term project liquidation at Rshock = 0.32 for different levels of r̂. At

this Rshock level, bank L1 always chooses to recall all the interbank loans from bank B1

for any r̂ ≥ 0. Bank L2 will always recall αL2
1 x = 0.8334x of interbank loans when r̂ > 0,
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Figure C1: Optimal choices of banks L1 and L2 at Rshock = 0.32
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where αL2
1 is determined by our previous analysis on α1. Both L1 and L2 start to liquidate

long-term projects when 1+ r̂ > 1
λ
≈ 1.087. Given the parameter values in our numerical

example, l =
λ− 1

1+r̂

γ(1+R)
(because 1

λ
< 1 + r̂ < 1

λ−γL(1+R)
) is strictly increasing in r̂.

Panels (c) and (d) of Fig. C1 illustrate how V and D of the lending banks change in

r̂. For both banks L1 and L2, a downward jump of V and D occurs when r̂ changes from

zero to positive. For bank L1, when r̂ = 0, the bank is indifferent between keeping the

proceeds from recalling the interbank loan and using the proceeds to repay its depositors.

We assume that the bank will keep the proceeds. When r̂ > 0, the bank will use the

proceeds to repay its depositors at date 1, causing a downward jump of both VL1 and

DL1 . Similarly, when r̂ becomes positive, bank L2 will recall αL2
1 x of the interbank loan

and use the proceeds to repay its depositors, causing a downward jump of VL2 and DL2 .

When 1+ r̂ > 1
λ
, V and D decrease in r̂. This is because, as r̂ becomes higher, the banks

will liquidate more long-term projects to repay its depositors at date 1.

Panel (e) of Fig. C1 illustrates how V
D

changes in r̂. When r̂ turns from zero to

positive, the repayment to depositors by bank L2 will cause
VL2

DL2
to jump upward, while

the repayment to depositors by bank L1 will cause
VL1

DL1
to jump downward. This is because

in this example, at r̂ = 0, we have
VL2

DL2
> 1 and

VL1

DL1
< 1. It is straightforward to show

that V−Z
D−Z

is strictly increasing in Z when V
D

> 1, and is strictly decreasing in Z when
V
D

< 1, where Z is the cash used to repay the depositors, with 0 < Z < min(V,D). So

here repaying the depositors increases the maximum rate available to bank L2 depositors,

but reduces the maximum rate available to bank L1 depositors. When 1 + r̂ < 1
λ
, both

VL2

DL2
and

VL1

DL1
remain constant. When 1 + r̂ > 1

λ
, both

VL2

DL2
and

VL1

DL1
are decreasing in r̂.

This is because the marginal cost of liquidating long-term projects is increasing, and a

decrease in one additional unit of V leads to a less and less decrease in D.

Panel (f) of Fig. C1 illustrates how π changes in r̂. There is a downward jump in

both πL1 and πL2 when r̂ turns positive, caused by the repayment to depositors explained

before. Except for the jump at r̂ = 0, both πL2 and πL1 remain constant when 1+ r̂ ≤ 1
λ
.

When 1+ r̂ > 1
λ
, both πL2 and πL1 are decreasing in r̂, because both banks liquidate more

long-term projects to repay their depositors.

Next we give a detailed explanation for the movement of Γ(r̂) in Fig. 5. The equilib-

19



rium condition of Γ(r̂) ((6)) can be written as

1 =
1

2
[πL2(1 + Γ(r̂)) + (1− πL2)] +

1

2

[
πL1

VL1

DL1

+ (1− πL1)

]
Γ(r̂) has a small upward jump when r̂ turns positive. As we explained before, when r̂

turns positive, there is a downward jump in both πL2 and πL1 . A lower probability that

deposits will be rolled over by the good bank, πL2 , will induce a higher Γ(r̂), while a lower

πL1 will induce a lower Γ(r̂). In addition, the maximum rate from the bad bank
VL1

DL1
is

lower, while the maximum rate from the good bank
VL2

DL2
is higher. The lower

VL1

DL1
will

induce a higher Γ(r̂), but the higher
VL2

DL2
has no effect on Γ(r̂). This is because, as long

as
VL2

DL2
> 1 + r̂, depositors receive only the promised interest rate of 1 + r̂ from the good

bank. The overall effect is a small upward jump in Γ(r̂). When 0 < r̂ < 1
λ
, Γ(r̂) remains

constant because there are no changes in the choices of the two banks. When r̂ > 1
λ
,

Γ(r̂) is increasing in r̂. This is because banks start to liquidate their long-term projects,

incurring liquidation costs. As a result,
VL1

DL1
decreases, causing depositors to require a

higher interest rate, Γ(r̂), from the good bank to compensate for the higher expected loss

to the bad bank.
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