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ONLINE APPENDIX A: COMPUTATION

Outline of algorithm

Heterogeneity is a challenge when computing our model: at any time t, productivities Ait and

prices Pit will differ across firms. The Calvo model is popular because, up to a first-order

approximation, only the average price matters for equilibrium. But this property does not hold

in most sticky-price models, in which equilibrium quantities depend on the whole time-varying

distribution of prices and productivity across firms.

To address this issue, we apply Reiter’s (2009) solution method for dynamic general equi-

librium models with heterogeneous agents and aggregate shocks. As a first step, the algorithm

calculates the steady-state general equilibrium in the absence of aggregate shocks. Idiosyncratic

shocks are still active, but are assumed to have converged to their ergodic distribution, so the

real aggregate state of the economy is a constant, Ξ. The algorithm solves a discretized approx-

imation of the underlying model; here we restrict real log prices pit and log productivities ait

to a fixed grid Γ ≡ Γp × Γa, where Γp ≡ {p1, p2, ...p#p} and Γa ≡ {a1, a2, ...a#a} are both

uniformly spaced (in logs). We can then view the steady state value function as a matrix V of

size #p×#a, comprising the values vjk ≡ v(pj, ak,Ξ) associated with prices and productivities(
pj, ak

)
∈ Γ.1 Likewise, the price distribution can be viewed as a #p ×#a matrix Ψ in which

the row j, column k element Ψjk represents the fraction of firms in state (pj, ak) at the end of

any given period. To calculate steady state general equilibrium, we can guess the wage w, then

1In this appendix, bold face indicates matrices, and superscripts represent indices of matrices or grids.
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solve the firm’s problem by backwards induction on the grid Γ, then update the conjectured

wage, and iterate to convergence.

The second step constructs a linear approximation to the dynamics of the discretized model,

by perturbing it around the steady state general equilibrium on a point-by-point basis. The

value function is represented by a #p × #a matrix Vt with row j, column k element vjkt ≡

v(pj, ak,Ξt), summarizing the time t values at all grid points (pj, ak) ∈ Γ. Then, instead of

treating the Bellman equation as a functional equation that defines v(p, a,Ξ) for all possible

idiosyncratic and aggregate states p, a, and Ξ, we view it as a difference equation linking the

matrices Vt and Vt+1. This amounts to a (large!) system of #p#a first-order expectational

difference equations governing the #p#a variables vjkt . We linearize these equations numeri-

cally (together with the #p#a equations that govern the distribution Ψt, and a few other scalar

equations). We solve the linearized model using the QZ decomposition, following Klein (2000).

This method combines linearity and nonlinearity in a way appropriate for models of price

setting, where idiosyncratic shocks tend to be more relevant for firms’ decisions than aggregate

shocks are. By linearizing the aggregate dynamics, we recognize that changes in the aggregate

shock zt or in the distribution Ψt are unlikely to have a highly nonlinear impact on the value

function. This smoothness does not require any “approximate aggregation” property, in contrast

with the Krusell and Smith (1998) method; nor do we need to impose any particular functional

form on the distribution Ψ. However, to allow for the strong impact of firm-specific shocks, the

method treats variation along idiosyncratic dimensions in a fully nonlinear way: the value at

each grid point is determined by a distinct equation.

The discretized model

In the discretized model, the value Vt is a #p × #a matrix with elements vjkt ≡ v(pj, ak,Ξt)

for
(
pj, ak

)
∈ Γ. A uniform default distribution θ allocates probability 1/#p to each price in

Γp. Solving a single Bellman step analytically, the expected value of setting a new price is a
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row vector ṽt of length #a, with kth element

ṽkt ≡ κπwt ln

(
1

#p

#p∑
j=1

exp

(
vjkt
κπwt

))
. (40)

The value function Ot is also a #p ×#a matrix, as is the hazard policy Λt and the logit price

probabilities policy Πt; their (j, k) elements are given by2

ojkt ≡ κλwt

(
λ̄ exp

(
ṽkt
κλwt

)
+ (1− λ̄) exp

(
vjkt
κλwt

))
, (41)

λjkt ≡ λ̄
(
λ̄+ (1− λ̄) exp((vjkt − ṽkt )/(κwt))

)−1

, (42)

πjkt ≡
exp

(
vjkt /(κwt)

)
∑#p

n=1 exp
(
vnkt /(κwt)

) . (43)

The latter represents the probability of choosing real log price pj conditional on log productivity

ak if the firm decides to adjust its price at time t.

In this discrete representation, the productivity process (34) can be written as a #a × #a

matrix S, where the (m, k) element represents the following transition probability:

Smk = prob(ait = am|ai,t−1 = ak).

Likewise, we can write the impact of inflation on real prices in Markovian notation. Let Rt be

a #p×#p matrix in which element (m, l) represents the probability that firm i’s beginning-of-t

2Equation (42) is a simplified description of λjkt . While (42) implies that λjkt represents the function λt(pj , ak)

evaluated at the log price grid point pj and log productivity grid point ak, in our computations λjkt in fact repre-
sents the average of λt(p̃, ak) over all log prices in the interval

(
pj−1+pj

2 , p
j+pj+1

2

)
, given log productivity ak.

Calculating this average requires interpolating the function vt(p̃, ak) between price grid points. Defining λjkt this
way ensures differentiability with respect to changes in the aggregate state Ωt.
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log real price p̃it equals pm ∈ Γp, if its log real price at the end of t− 1 was pl ∈ Γp:

Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl).

Generically, the deflated log price pi,t−1 − it−1,t will fall between two grid points; then the

matrix Rt must round up or down stochastically.3 Also, if pi,t−1 − it−1,t lies below the smallest

or above the largest element of the grid, then Rt must round up or down to keep prices on the

grid.4 Unbiased rounding results if Rt is constructed as:

Rml
t = prob(p̃it = pm|pi,t−1 = pl, it) =



1 if pl − it ≤ p1 = pm

pl−it−pm−1

pm−pm−1 if p1 < pm = min{p ∈ Γp : p ≥ pl − it}
pm+1−pl+it
pm+1−pm if p1 ≤ pm = max{p ∈ Γp : p < pl − it}

1 if pl − it > p#p
= pm

0 otherwise.
(44)

The distributional dynamics can now be written in compact matrix form; eq. (23) becomes:

Ψ̃t = Rt ∗Ψt−1 ∗ S′, (45)

where ∗ represents ordinary matrix multiplication. Productivity shocks are represented by right

multiplication, while transitions in the real price level are represented by left multiplication.

Next, to calculate the effects of price adjustment on the distribution, let Epp and Epa be matrices

of ones of size #p ×#p and #p ×#a, respectively. Eq. (24) is then:

Ψt = (Epa−Λ) . ∗ Ψ̃t + Πt . ∗ (Epp ∗ (Λ . ∗ Ψ̃t)), (46)

3If instead the firm’s control variable were its real price, then Rt would simply be an identity matrix.
4In other words, any nominal price leading to a real log price below p1 after inflation is automatically rounded

up to the real log price p1 (and to compute examples with deflation we must shift down any real log price exceeding
p#p

). This assumption is made for numerical purposes only, and has a negligible impact on the equilibrium as long
as Γp is sufficiently wide.
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where (as in MATLAB) the operator .∗ represents element-by-element multiplication.

The same transition matrices R and S appear in the matrix form of the Bellman equation.

Let Ut be the #p ×#a matrix of current payoffs, with elements

ujkt ≡
(

exp(pj)− wt
exp(ak)

)
Ct

exp(εpj)
(47)

for
(
pj, ak

)
∈ Γ. Then Bellman equation (14) becomes:

Vt = Ut + βEt

{
C−γt+1

C−γt

[
R′t+1 ∗Ot+1 ∗ S

]}
. (48)

The expectation Et in (48) refers only to the effects of the time t + 1 aggregate shock zt+1,

because the expectation over idiosyncratic states (pj, ak) ∈ Γ is represented by multiplying by

R′t+1 and S. Note that since (48) iterates backwards in time, its transitions are governed by R′

and S, whereas (45) iterates forward in time, involving R and S′.

We now discuss how we apply Reiter’s (2009) two-step method to this discrete model.

Step 1: steady state

In the aggregate steady state, aggregate shocks are zero, and the distribution is in a steady state

Ψ, so the state of the economy is constant: Ξt ≡ (zt,Ψt−1) = (0,Ψ) ≡ Ξ. We indicate steady

states of all equilibrium objects by dropping time subscripts and the function argument Ξ, so

the steady state value function V has elements vjk ≡ v(pj, ak,Ξ).

Long run monetary neutrality implies that nominal money growth rate equals the inflation

rate in steady state: µ = exp(i). Thus, the steady-state transition matrix R is known, since it

depends only on inflation i, and the Euler equation reduces to exp(i) = βR.

We can then calculate general equilibrium as a one-dimensional root-finding problem in w.
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Given w, we calculate C = (w/χ)1/γ , and then construct matrix U, with elements

ujk ≡
(

exp(pj)− w

exp(ak)

)
C

exp(εpj)
. (49)

We can then find the fixed point of the value V (simultaneously with ṽ and O):

V = U + βR′ ∗O ∗ S. (50)

This allows us to calculate the logit matrix Π, with elements

πjk ≡
exp

(
vjk/(κw)

)∑#p
n=1 exp (vnk/(κw))

. (51)

Likewise, we calculate the hazard matrix Λ. We can then find the steady state distribution by

iterating on the two-step distributional dynamics:

Ψ = (Epa−Λ) . ∗ Ψ̃ + Π . ∗ (Epp ∗ (Λ . ∗ Ψ̃)) (52)

Ψ̃ = R ∗Ψ ∗ S′ (53)

Finally, we check whether

1 =

#p∑
j=1

#a∑
k=1

Ψjk exp
(
(1− ε)pj

)
≡ p(w) (54)

If p(w) = 1, then an equilibrium value of w has been found.

Step 2: linearized dynamics

Given the steady state, the general equilibrium dynamics can be calculated by linearization.

First, we eliminate as many variables from the equation system as we can, summarizing the
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dynamics in terms of the exogenous shock process zt, the lagged distribution of idiosyncratic

states Ψt−1, and the endogenous “jump” variables including Vt, Πt, Ct, mt−1, and it. The

equation system reduces to

zt = φzzt−1 + εzt (55)

µ exp(zt)

exp it
=

mt

mt−1

(56)

Ψt = (Epa −Λt) . ∗ Ψ̃t + Πt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)) (57)

Vt = Ut + βEt

{
C−γt+1

C−γt

[
R′t+1 ∗Ot+1 ∗ S

]}
(58)

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t exp((1− ε)pj) (59)

If we now collapse all the endogenous variables into a single vector

−→
X t ≡

(
vec (Ψt−1)′ , vec (Vt)

′ , Ct, mt−1, it
)′

then the whole set of expectational difference equations (55)-(59) governing the dynamic equi-

librium becomes a first-order system of the following form:

EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0 (60)

where Et is an expectation conditional on zt and all previous shocks.

To see that the vector
−→
X t in fact contains all the variables we need, note that given it

and it+1 we can construct Rt and Rt+1. Given Rt, we can construct Ψ̃t = Rt ∗ Ψt−1 ∗ S′

from Ψt−1. Given wt = χCγ
t , we can construct Ut, with (j, k) element equal to ujkt ≡(

exp(pj)− wt
exp(ak)

)
Ct

exp(εpj)
. Finally, given Vt, and Vt+1 we can construct Πt and ṽt, and

thus Λt and Ot+1. Therefore the variables in
−→
X t and zt are indeed sufficient to evaluate the

system (55)-(59).
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Finally, if we linearize system F numerically with respect to all its arguments to construct

the Jacobian matricesA ≡ D−→
X t+1
F , B ≡ D−→

X t
F , C ≡ Dzt+1F , and D ≡ DztF , then we obtain

a linear first-order expectational difference equation system:

EtA∆
−→
X t+1 + B∆

−→
X t + EtCzt+1 +Dzt = 0 (61)

where ∆ represents a deviation from steady state. This system has the form considered by Klein

(2000), so we solve our model using his QZ decomposition method.
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ONLINE APPENDIX B: SEQUENTIAL STATEMENT OF THE

OPTIMIZATION PROBLEM

In this appendix, we discuss a sequential representation of the firm’s partial-equilibrium de-

cision problem. In this representation, we think of the firm as choosing a plan contingent on

any possible history up to a given time T . In particular, it must consider histories (p̃T , aT ,ΞT )

incorporating its own prices and productivity, and aggregate states, where superscripts indicate

time series: p̃T ≡ (p̃0, p̃1, . . . , p̃T ), and likewise for aT and ΞT .

By repeated substitution in the recursive problems (13)-(14), we can derive the following

sequential optimization problem:

o0(p̃0, a0) = max
π†t∈∆(Γp(p̃t))

E0

∞∑
t=0

q0,t

[∫
ut(pt, at)dπ

†
t(pt)− κwtD

(
π†t ||θ†(·|p̃t)

)]
(62)

s.t. p̃t = pt−1 − it−1,t, and
∫
dπ†t(p) = 1 for all t. (63)

Here E0 refers to an expectation calculated under the dynamics of the firm’s productivity shock

at and the dynamics of the aggregate state Ξt. The discount factor is q0,t ≡ Πt−1
s=0qs,s+1, where

qt,t+1 ≡ β
PtC

−γ
t+1

Pt+1C
−γ
t

; we assume discount factors satisfy
∑∞

t=0 q0,t <∞.

The choice problem here is to be understood as choosing a function π†t(p̃t, at,Ξt) conditional

on each history (p̃t, at,Ξt) of length t. Here p̃t = pt−1 − it−1,t represents the log real price at

the beginning of t, prior to the choice of π†t , and ∆(Γp(p̃t)) is the set of increasing functions

f satisfying f(min Γp(p̃t)) ≥ 0; constraint (63) ensures that f is a c.d.f. Notice that if two

functions π1
t and π2

t both lie in the set ∆(Γp(p̃t)) and both integrate to one over Γp(p̃t), then so

does any convex combination of those functions. The same argument can be made for history-

contingent plans. Therefore we conclude that the choice set in problem (62)-(63) is convex.

Moreover, the objective function contains two terms (for each t): expected profits, which

are a linear function of π†t , minus decision costs, which are a convex function of π†t . Therefore
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the objective function of (62)-(63) is concave.

We should also be careful to check that the constraint set of problem (62)-(63) is non-empty,

and that the objective function is finite-valued. Note that the strategy π†t = θ†(·|p̃t) is feasible,

and has zero decision cost, attaining the value

o0(p̃0, a0) ≡ E0

∞∑
t=0

∫
q0,tut(pt, at)dθ

†(pt|p̃t) > −∞.

This lower bound is finite because sets Γa and Γp are assumed bounded, and the profit function

in (8) is continuous. On the other hand, the value of (62)-(63) is bounded above by

o0(a0) ≡ E0

∞∑
t=0

q0,t max
p
ut(p, at) < ∞.

Therefore the value of (62) is bounded: o0(p̃0, a0) < o0(p̃0, a0) < o0(a0).

Thus (62)-(63) maximizes a concave function over a non-empty, convex set, attaining a

finite value. Hence there can be at most one solution to the first-order conditions, and if such

a solution is found, it represents a solution to the optimization problem (62)-(63). Indeed, the

first-order conditions yield the same solution that we found for the recursive problem (13)-(14).5

5Deriving the first-order conditions of (62)-(63) is tedious, so we omit them here, but they closely re-
semble those of (13)-(14). Where the value vt(pt, at) appears in (15), we instead find a term of the form
Et
∑∞
s=0 qt,t+sprob(pt+s = pt − it,t+s)ut+s(pt − it,t+s, at+s), where it,t+s ≡ ln(Pt+s/Pt). This term repre-

sents the discounted sum of profits at all future times t+ s conditional on the nominal price set at time t remaining
unadjusted at time t+ s.
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ONLINE APPENDIX C: ROBUSTNESS OF THE RESULTS

C.1 Changing the decision cost function

In our model, the precision of price choices is measured by comparing the firm’s chosen price

distribution to an exogenously fixed “default” distribution. We have run extensive simulations

to explore whether our results are robust to changes in the assumed default distribution. In

summarizing our conclusions, it is useful to distinguish two properties of the default distribution

– its functional form, and its standard deviation. We find that our results are qualitatively and

quantitatively robust to changes in both of these properties. There is a simple reason for this:

we estimate that decision costs are low. Since deviating from the default distribution is not very

costly, the precise form of that default has little impact on our results.

If we generalize the uniform default probabilities assumed in our benchmark parameteriza-

tion, then the weighted logit (21) no longer reduces to the unweighted logit (43). To see how

the results differ, compare the blue and black lines in the price change histogram (left panel)

and impulse responses (middle and right panels) shown in Figure C.1. The black lines represent

the benchmark uniform specification; the blue lines instead assume a truncated normal default

distribution, with the same standard deviation. The results are almost identical. We have com-

puted several other examples which show that the form of the default distribution has very little

effect. In other words, firms’ optimization, represented by exp(v/(κw)) in the logit formula

(21), is powerful enough that reweighting by a different distributional form θ hardly matters.

The fact that we define the default distribution on a discrete grid is likewise irrelevant for

the results. Computation on a discrete grid is a matter of numerical necessity. However, making

this grid much finer has entirely negligible effects, both on the steady state and on the dynamic

implications of the model.

Another change that might seem especially relevant would be to allow the default distribu-

tion to vary over time by recentering it on the previous nominal price. We simulated a speci-
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Figure C.1: Uniform versus normal default distributions.

Notes:
Comparing benchmark uniform default distribution (as in paper) with truncated normal default distribution.
Left panel: Histogram of nonzero log price adjustments (Dominick’s data shown as blue bars).
Middle and right panels: impulse responses to money growth shock with monthly autocorrelation 0.8.

fication of this type, assuming a truncated normal default θ(p|p̃) centered around p̃, the price

prior to adjustment. Figure C.2 compares this specification to the unchanging uniform distribu-

tion used in our benchmark calculations.6 The recentered normal specification (blue) implies a

somewhat more symmetric histogram, a small increase in the adjustment hazard, and a resulting

small decrease in the real effects of a money shock. But overall the differences are minor.

The effects of increasing the standard deviation of the default distribution are shown in

Figure C.3. The benchmark results are shown in black; the effects of making the grid 100%

wider (while fixing the grid step size) are shown in green.7 Doubling the grid width makes

the histogram more strongly bimodal (improving fit in the center while making it worse in the

tails); the frequency of adjustment decreases from 10.2% to 6.6% monthly (because choosing

from a wider range of prices amounts to a more difficult decision problem) and therefore the

real effects of the money shock increase slightly.

Thus, changing the standard deviation of the default distribution has a small but nontrivial

6Figure C.2, like Figure C.1, changes the form of the default distribution without altering its standard deviation.
7We have also studied the effects of increasing the standard deviation of the default distribution when the default

is a truncated normal. The (small) effects are similar to those shown in Figure C.3 for the uniform case.
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Figure C.2: Uniform versus recentered normal default distributions.

Notes:
Comparing benchmark uniform default distribution (as in paper) with truncated normal default distribution θ(p|p̃)
centred around pre-adjustment price p̃.
Left panel: Histogram of nonzero log price adjustments (Dominick’s data shown as blue bars).
Middle and right panels: impulse responses to money growth shock with monthly autocorrelation 0.8.

impact on the results. But would it make any difference if we treated the standard deviation

of the default as another free parameter to be estimated? This question is also addressed in

Figure C.3, where the red line shows the results of jointly estimating κ, λ̄, and the width of

the price grid Γp to maximize our estimation criterion (33). The estimation favors a harder

decision problem than we assumed in our benchmark calibration (the preferred grid is slightly

more than twice as wide as the benchmark grid) but this is compensated by a slightly less error-

prone and substantially quicker decision process (κ = 0.17 and λ̄ = 0.35, in contrast to the

previous values κ = 0.18 and λ̄ = 0.22). The implied adjustment frequency is again 10.2%

monthly, with the result that the impulse responses are almost indistinguishable from those in

the benchmark specification (the black benchmark IRF is almost invisible under the red IRF

resulting from estimating the width of the grid; likewise the black and red price adjustment

histograms are almost identical). So while widening the grid, ceteris paribus, slightly increases

monetary nonneutrality, estimating the grid width jointly with our other parameters gives results

nearly identical to our benchmark parameterization.

Why are the impulse responses unchanged when we reestimate the model? All of the robust-
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Figure C.3: Widening the support of the uniform default distribution.

Notes:
Black: uniform default distribution (benchmark from paper). Green: uniform default with 100% wider support.
Red: reestimating model with width of support of default as a free parameter. (Grid step size fixed.)
Left panel: Histogram of nonzero log price adjustments (Dominick’s data shown as blue bars).
Middle and right panels: impulse responses to money growth shock with monthly autocorrelation 0.8.

ness exercises that we have run suggest that as long as our model matches the 10.2% adjustment

hazard of our estimation criterion, the degree of monetary nonneutrality is virtually unchanged.

Obviously this does not mean that all models with a 10.2% adjustment hazard are equivalent;

the Calvo model implies much larger real effects, as our paper shows. But our error-prone model

is very robust to changes in the specification of the default distribution, as long we parameterize

the model to fit the estimation criterion.

To summarize, changing the shape of the default distribution is not quantitatively relevant

for our results. Neither is treating its standard deviation as a free parameter to be estimated.

What matters is that price decisions are somewhat noisy (helping fit the microdata) and tim-

ing decisions are also somewhat noisy (diminishing the selection effect and generating higher

nonneutrality). The precise form of the noise is not at all essential for these conclusions.
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C.2 Extending the model

Throughout the paper we have studied a stripped-down general equilibrium structure in order to

focus primarily on the role of price stickiness. However, our framework can readily be extended

to incorporate a more complete macroeconomic environment. Building a full medium-scale

DSGE model is beyond the scope of this paper, but in this section we consider two especially

relevant extensions. Our main conclusions about state-dependent nominal rigidity are unaltered.

On one hand, there is no need to restrict monetary policy to a money growth rule. Here we

instead consider a Taylor-style interest rate rule of the form

it = φiit−1 + (1− φi)φπ [πt − ln(µ)] + εit,

where it is the net nominal interest rate, πt is the net inflation rate; µ is the steady-state target

inflation rate, φi is an interest rate smoothing parameter; φπ controls the strength of monetary

policy reaction to inflation; and εit is an interest rate shock. This rule replaces the money supply

equation (26).

Second, while nominal rigidity is central to generating real responses to purely nominal

disturbances, it is likely that multiple forms of real rigidity also play a role in propagating

shocks. In particular, Blanco (2017) imposes a production function with intermediate inputs, as

a realistic and tractable source of real rigidities that can reinforce the effects of nominal rigidity.

Here we modify the production function as follows:

Yit = AitN
1−η
it Mη

it ,

where Mit denotes the intermediate inputs used in the production of the differentiated final
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Figure C.4: Impulse responses to a Taylor rule shock, with intermediate inputs in production.
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goods Yit. The goods market clearing condition becomes

Yt = Ct +

∫
Mitdi ;

Ct is now replaced by Yt in equation (31).

We set φi = 0.9, φπ = 2, and η = 1/3. The impulse responses to a monetary policy

shock are shown in Figure C.4, which compares our nested benchmark specification (marked

LPD), with FMC and Calvo models that likewise allow for a Taylor rule and real rigidities.

The main purpose of this exercise is simply to show that the central results of our paper go

through in this extended version. Namely, the nested specification produces real effects that

fall between those of FMC and Calvo, and the relative degree of nonneutrality across these

frameworks is quantitatively similar to what we found previously. When calibrating a model

for applied purposes, real rigidities and a more realistic description of monetary policy are

relevant elements to include in the analysis. But the difference in nonneutrality implied by our

framework, relative to alternative models nominal rigidity, appears robust to these extensions.
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