
Toolkit Documentation of

“Loose Commitment in Medium-Scale

Macroeconomic Models: Theory and an

Application”

Davide Debortoli
UC San Diego

Junior Maih
Norges Bank

Ricardo Nunes
Federal Reserve Board

This version: November 2010

This note documents the toolkit to solve loose commitment settings eas-
ily in medium- and large-scale linear-quadratic models. If you use or mod-
ify these codes, please cite the paper “Loose Commitment in Medium-Scale
Macroeconomic Models: Theory and an Application”.

The first section describes the installation and a simple example. The
second section describes the example used in the paper. The paper replication
codes allow the user to explore the possibilities and options in the toolkit
quite extensively. The third section discusses the specific files in the toolkit.

The toolkit codes can be downloaded at dss.ucsd.edu/˜ddebortoli/ or
ricardonunes.net. These codes are written in Matlab and have been tested
in version 7.7. The toolkit integrates with Dynare and has been tested with
version 4.1.1. Do not add the directory to the Matlab path.

The files needed for the toolkit are contained in the main folder, while
the two subfolders contains the files for the two specific examples described
below.

1 Getting started

The first step consists in writing your .dyn file, where the model of interest
is specified. At the beginning of your file, specify the location of the toolkit

1



files, adding the line:

addpath(’[destination folder ]’,’-begin’);

Here we provide two examples.

1.1 Example: a standard New-Keynesian model

The folder NK example.m contains the files related to a simple New-Keynesian
model, whose only structural equation is a standard New-Keynesian Phillips
curve, and dynamics are driven by an AR(1) cost-push shock.

The model is declared as follows:

varexo E_Y;

var PAI OUT;

parameters ProbabilityOfCommitment;

model(linear);

PAI = 0.99*PAI(+1)+0.1*OUT+E_Y;

end;

shocks;

var E_Y ; stderr .01;

end;

and the policymaker’s objective function is declared with the command lines:

planner_objective -.5*(1*PAI^2+0.048*OUT^2);

options_.planner_discount = 0.99;

Models with more lags and leads can be specified in their original formulation,
since the code automatically transforms them into the compact formulation
used in the paper.

The following commands initiate the loose commitment toolkit:

Compare=0;

if Compare;

ramsey_policy(nograph,nomoments); //,nograph

else

options_.loosecommit= 1;

ProbabilityOfCommitment=.5;

stoch_simul(nograph,nomoments,noprint);

end

2



Setting options .loosecommitment = 1 tells the program to use the toolkit.1

The command stoch simul permits to solve the model. The solution of
the model, as well other information, is stored in the structured variable oo .
In particular, the law of motion is summarized by the matrices oo .dr.ghx

and oo .dr.ghu.
Once the solution has been obtained, the user can produce simulations

and statistics according to her needs. For convenience, the toolkit already
provides additional files to generate impulse responses, second moments, and
welfare calculations. In particular:

1. Impulse response functions are executed with the commands:

Periods2=20; Sim_nbr=1; InitShocks=[]; InitVals=[];

CommitmentHistory=ones(Periods2,1);

IRF=LooseCommitmentIrf(Periods2,Sim_nbr,InitShocks,InitVals,...

CommitmentHistory);

figure(’name’,’Never reoptimization’);

plot(IRF’)

legend(M_.endo_names)

The sample codes contains several additional examples for IRFs – where
the history of commitment shocks, initial values, and scope of the IRFs
are changed.

2. Moment calculations are executed with the commands:

Periods2=500; Sim_nbr=1500; Burn=100; InitVals = [];

CommitmentHistory=[];

MOM=LooseCommitmentMoments(Periods2,Sim_nbr,Burn,InitVals,...

CommitmentHistory);

disp ’Simulated Moments’

disp(M_.endo_names)

disp(MOM)

3. Welfare calculations are executed with the commands:

1The line referring to the ramsey policy even if it is not read is necessary to execute

several intermediate steps.

3



[UncondWelf10,CondWelf10]=LooseCommitmentWelfare;

v=0; Y_Mu_0=rand(M_.endo_nbr,1);

[UncondWelf11,CondWelf11]=LooseCommitmentWelfare(Y_Mu_0,v);

The first line considers the initial conditions and steady-state to be
at zero. The second command computes welfare for different initial
conditions.

2 The Smets and Wouters (2007) model

The folder SW example.m contains the files used to generate the main
results in the paper. The main file is SW main.dyn, which starts by calling
the following files:

• SW model.dyn, defining the model equations and calibration;

• SW objective planner benchmark.dyn and SW objective planner alternative.dyn,
setting the two specifications of the central bank loss function analyzed
in the paper.

These two files are the only files that need to be adapted when solving a
different model.

The user is then required to specify some options. In particular, the user
can choose to solve the model for multiple degrees of commitment (includ-
ing full-commitment and discretion). Accordingly, the core of the program
iterates on the possible degrees of commitment, as follows

if Compare;

ramsey_policy(nograph,nomoments) pinf y yf r; //,nograph

disp(’Problem solved using Ramsey Policy’)

else

for j = [iter:-1:1];

ProbabilityOfCommitment=probCOM_grid(j);

stoch_simul(nograph,nomoments,noprint);

[...]

end

end

4



For all the degrees of commitment – contained in the vector probCOM grid

– the model is solved using the file stoch simul.m and, if desired, wel-
fare, impulse response functions and second moments are computed by call-
ing the functions LooseCommitmentWelfare.m, LooseCommitmentIrf.m and
LooseCommitmentMoments.m, respectively. Finally, the output is reorganized
and displayed on the screen using the file SW showresults.m, which makes
use of the toolkit files plot IRFs.m and show tables.m.2

The policy frontiers and the Monte-Carlo simulations reported in the pa-
per are produced using two similar files – SW frontier.m and SW regression.m,
respectively.

3 File documentation of the main toolkit files

• stoch simul.m: When the option options .loosecommit=1 in the
.dyn file, the toolkit will be used. stoch simul.m is an intermedi-
ate file that integrates the toolkit with Dynare. This file temporarily
substitutes the original stoch simul.m dynare file, and later versions
will incorporate this toolkit directly.

• LooseCommitment.m: This file transforms the equations of the model
according to the formulation in the paper, and then solve the problem
(using SolveLooseCommitment.m). Options to be set:

– qz criteriumLC: determines the cutoff point to characterize an
eigenvalue to be explosive (default is 1.000001);

– MaxIterLC: determines the maximum number of iterations for
convergence (default is 3000);

– critLC: determines the the convergence criteria (default is 1e-7);

– noprint: determines whether the code prints an output in the
command window (default is 0 for printing).

Variables of interest: The variable Hold is conveniently used to store the
latest solution. This is useful when solving the model for different de-
grees of commitment, so that an homothopy method can be exploited.

2The policy frontiers and the Monte-Carlo simulations reported in the paper are pro-

duced using two additional files, and are available upon request.

5



M .endo names and M .exo names are character vectors with the names
of the endogenous and exogenous variables, respectively.

• SolveLooseCommitment.m: This file is the main engine for the solution
procedure. It executes the iteration loop described in the paper, and
exits successfuly if

max(H − Hold) < critLC,

and produces an error if the maximum number of iterations is reached,
the model is unstable, or if an unspecified error occurs.

• GetDynareLooseCommitmentResults.m: This file conveniently reorga-
nizes the output of Dynare (stored in oo ). After the solution is com-
puted, this file recovers all the necessary information and passes them
to other subcodes to compute moments, IRFs, etc. This file shows
where each variable is kept in memory.

• LooseCommitmentIrf.m: This file computes the impulse response func-
tions. If the inputs to the file are not passed, the file resets those but
the order of inputs skipped needs to be in the correct order (see code
for the specific details). Inputs to the file are:

– Periods: number of periods in the simulation (default is 40).

– Sim nbr: number of simulations (default is 1000).

– InitShocks: vector of initial conditions for the shocks. If this in-
put is empty, then it is drawn stochastically. The initial condition
for the specific IRF shock is always reset to one positive standard
deviation.

– InitVals: vector of initial conditions for the variables. If this
input is empty, then it is set to a vector of zeros (assumed to be
the steady-state).

– CommitmentHistory: vector of re-optimization shocks at each pe-
riod (0 for reoptimization, 1 otherwise). The code uses the com-
mitment history for each simulation. If this option is empty, the
commitment history is re-sampled stochastically (default is re-
sampling stochastically).

6



The code takes the difference between the series where the initial IRF
shock is standardized to one positive standard deviation, and the series
where it is set to zero. The seed of the random number generator is
not set inside this function and needs to be set in the .dyn file (see
example files). The file produces the IRF for all shocks and all series.
To identify specific series by name we provide the file find var.m. To
plot the series, we provide the file plot IRFs.m.

• LooseCommitmentMoments.m: This file computes the variance of the
series and its structure is similar to the impulse response functions file.3

However, the series computed are not in deviations to a benchmark.
Inputs to the file are:

– Periods, InitVals, Sim nbr, and CommitmentHistory: options
equal to file LooseCommitmentIrf.m.

– Burn: number of periods to discard in the simulation (default is
100). Total number of periods in the simulation is given by input
Periods (not Periods minus Burn).

– shocks sel: allows to turn off some shocks in case the correspond-
ing element is set to zero (default is vector of ones). This option
is useful to compute conditional moments and variance decompo-
sitions.

Option InitShocks is not used, and shocks are always stochastic.

• LooseCommitmentWelfare.m: This file computes conditional and un-
conditional (on the initial shocks) welfare. The corrections discussed
in the paper when λt−1 6= 0 are incorporated. Inputs to the file are:

– Y Mu 0: vector of initial conditions for the variables. If this input
is empty, then it is set to a vector of zeros.

– v: vector of initial conditions for the shocks. If this input is empty,
then it is set to a vector of zeros.

3This file can be easily adapted to produce averages or other moments.

7


