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1 Model

The FAVAR model is defined as

Xit = BiFt +

K∑
k=1

ρk,i lnhit−k + vit (1)

Ft = c+

P∑
j=1

βjFt−j +

J∑
j=1

γj lnλt−j + Ω
1/2
t et (2)

Rt = diag(h1t, ..hNt) (3)

Ωt = A−1HtA
−1′ (4)

Ht = diag(Skλt), k = 1, 2, ..N (5)

lnλt = α+ β lnλt−1 +Q1/2ηt (6)

lnhit = ai + bi lnhit−1 + q
1/2
i nit (7)

εit, et, ηt, nit˜N(0, 1) (8)

2 Estimation

2.1 Priors

2.1.1 Factor loadings

The prior on B̃i = [Bi; ρi] is normal and is assumed to be N (Bi,0, VB) where Bi,0 is set equal to the loadings
obtained using a principal component estimate of Ft. The variance VB is assumed to be equal to 1. The initial
estimate of the factors FPCt provides the initial value of the factors F0\0 with the initial variance set equal to the
identity matrix.

2.1.2 VAR Coeffi cients

Following Banbura et al. (2010) we introduce a natural conjugate prior for the VAR parameters b̃ = {c, b, γ} via
dummy observations. In our application, the prior means are chosen as the OLS estimates of the coeffi cients of an
AR(1) regression estimated for each endogenous variable using a training sample. As is standard for US data, we
set the overall prior tightness τ = 0.1.
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2.1.3 Elements of S,A and the parameters of the common volatility transition equation

The elements of S have an inverse Gamma prior: P (si)˜IG(S0,i, V0). The degrees of freedom V0 are set equal to
1. The prior scale parameters are set by estimating the following regression: λ̄it = S0,iλ̄t + εt where λ̄t is the first
principal component of the stochastic volatilities λ̄it obtained using a univariate stochastic volatility model for the
residuals of each equation of the VAR in equation 2 estimated via OLS using the principal components FPCt .

The prior for the off-diagonal elements A is A0 ∼ N
(
âols, V

(
âols

))
where âols are the off-diagonal elements

of the inverse of the Cholesky decomposition of v̂ols, with each row scaled by the corresponding element on the
diagonal. These OLS estimates are obtained using the initial VAR model described above. V

(
âols

)
is assumed to

be diagonal with the elements set equal to 10 times the absolute value of the corresponding element of âols.
We set a normal prior for the unconditional mean µ = α

1−β . This prior is N(µ0, Z0) where µ0 = 0 and
Z0 = 10.The prior for Q is IG (Q0, VQ0) where Q0 is the average of the variances of the transition equations of
the initial univariate stochastic volatility estimates and VQ0 = 5. The prior for β is N (F0, L0) where F0 = 0.8 and
L0 = 1.

2.1.4 Parameters of the idiosyncratic shock volatility transition equation

We set a normal prior for the unconditional mean µ̃ = a
1−b . This prior is N(µ0, Z0) where µ0 = 0 and Z0 = 10.The

prior for qi is IG (q0, Vq0) where q0 = 0.01 and Vq0 = 5. The prior for b is N (F0, L0) where F0 = 0.8 and L0 = 1.

2.2 Gibbs algorithm

The Gibbs algorithm cycles through the following steps:

1. G (Ft\Ξ): Given a draw for all other parameters (denoted by Ξ ), the algorithm of Carter and Kohn (2004)
is used to sample from the conditional posterior distribution of Ft. The conditional posterior is: Ft\Xit,Ξ ∼
N
(
FT\T , PT\T

)
and Ft\Ft+1,Xit,Ξ ∼ N

(
Ft\t+1,Ft+1 , Pt\t+1,Bt+1

)
where t = T − 1, ..1. As shown by Carter

and Kohn (2004) the simulation proceeds as follows: First, we use the Kalman filter to draw FT\T and PT\T
and then proceed backwards in time using Ft|t+1 = Ft|t +Pt|tf

′P−1
t+1|t

(
Ft+1 − fFt\t − µt

)
and Pt|t+1 = Pt|t−

Pt|tf
′P−1
t+1|tfPt|t. Here f denotes the autoregressive coeffi cients of the transition equation 2 b in companion

form, while µt denotes the pre-determined regressors in that equation in companion form.

2. G
(
B̃i\Ξ

)
: Given a draw for the factors and the variance of the idiosyncratic component, a seperate het-

eroscedastic linear regression model applies to each Xit and the standard formulae for linear regressions
apply. In particular, the model for each i is

Xit = B̃iF̃t + h
1/2
it εit

where F̃t = [Ft, lnhit−1, lnhit−2, ...]. The model can be transformed to remove heteroscedasticity by creating
X∗it = Xit√

hit
, F̃ ∗t = F̃t√

hit
The conditional posterior is N (B∗i ,ΛB) where

B∗i =
(
V −1
B + F̃ ∗′t F̃

∗
t

)−1 (
V −1
B Bi,0 + F̃ ∗′t X

∗
it

)
ΛB =

(
V −1
B + F̃ ∗′t F̃

∗
t

)−1

3. G (hit\Ξ): Given a draw for the factors, the parameters of the transition equation 7 and the factor loadings
B̃i, a univariate stochastic volatility in mean model applies for each i:

Xit = BiFt +

K∑
k=1

ρi,l lnhit−l + h
1/2
it εit

lnhit = ai + bi lnhit−1 + q
1/2
i nit

The algorithm of Jacquier et al. (1994) (described below) is used to draw hit.
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4. G(b̃\Ξ).Given a draw of λt, the left and the right hand side variables of the VAR: yt = Ft and xt =
[c, Ft−1,Ft−2, ..Ft−j , λt, λt−1, ..λt−j ] can be transformed to remove the heteroscedasticity in the following man-
ner

ỹt =
yt

λ
1/2
t

, x̃t =
xt

λ
1/2
t

Then the conditional posterior distribution for the VAR coeffi cients is standard and given by

N(b̃∗, Ω̄⊗ (X∗′X∗)
−1

)

where b̃∗ = (X∗′X∗)
−1

(X∗′Y ∗), Ω̄ = A−1diag(S)A−1′ and Y ∗ and X∗ denote the transformed data appended
with the dummy observations.

5. G(A\Ξ). Given a draw for the VAR parameters the model can be written as A′ (vt) = ẽt where vt = Ft −(
c+

∑P
j=1 βjFt−j +

∑J
j=1 γj lnλt−j

)
and V AR (ẽt) = Ht. This is a system of linear equations with a known

form of heteroscedasticity. The conditional distributions for a linear regression apply to each equation of this
system after a simple GLS transformation to make the errors homoscedastic. The jth equation of this system
is given as vjt = −αv−jt + ẽjt where the subscript j denotes the jth column while −j denotes columns 1
to j − 1. Note that the variance of ẽjt is time-varying and given by λtSj . A GLS transformation involves
dividing both sides of the equation by

√
λtSj to produce v∗jt = −αv∗−jt + ẽ∗jt where * denotes the transformed

variables and var
(
ẽ∗jt
)

= 1. The conditional posterior for α is normal with mean and variance given by M∗

and V ∗ :

M∗ =
(
V
(
âols

)−1
+ v∗′−jtv

∗
−jt

)−1 (
V
(
âols

)−1
âols + v∗′−jtv

∗
jt

)
V ∗ =

(
V
(
âols

)−1
+ v∗′−jtv

∗
−jt

)−1

6. G(S\Ξ). Given a draw for the VAR parameters A′ (vt) = ẽt. The jth equation of this system is given by
vjt = −αv−jt + ẽjt where the variance of ejt is time-varying and given by λtSj . Given a draw for λt this
equation can be re-written as v̄jt = −αv̄−jt + ējt where v̄jt =

vjt

λ
1/2
t

and the variance of ējt is Sj . The

conditional posterior is for this variance is inverse Gamma with scale parameter ē′jtējt + S0,j and degrees of
freedom V0 + T.

7. Elements of λt. Conditional on the VAR coeffi cients, and the parameters of the volatility transition equation,
the model has a multivariate non-linear state-space representation. Carlin et al. (1992) show that the condi-
tional distribution of the state variables in a general state-space model can be written as the product of three
terms:

h̃t\Zt,Ξ ∝ f
(
h̃t\h̃t−1

)
× f

(
h̃t+1\h̃t

)
× f

(
Zt\h̃t,Ξ

)
(9)

where Ξ denotes all other parameters, Zt denotes the endogenous variables in equation 2 and h̃t = lnλt. In
the context of stochastic volatility models, Jacquier et al. (1994) show that this density is a product of log
normal densities for λt and λt+1 and a normal density for Zt.Carlin et al. (1992) derive the general form of the

mean and variance of the underlying normal density for f
(
h̃t\h̃t−1, h̃t+1,Ξ

)
∝ f

(
h̃t\h̃t−1

)
× f

(
h̃t+1\h̃t

)
and show that this is given as

f
(
h̃t\h̃t−1, h̃t+1,Ξ

)
∼ N (B2tb2t, B2t) (10)

where B−1
2t = Q−1 + F ′Q−1F and b2t = h̃t−1F

′Q−1 + h̃t+1Q
−1F. Note that due to the non-linearity of the

observation equation of the model an analytical expression for the complete conditional h̃t\Zt,Ξ is unavailable
and a metropolis step is required. Following Jacquier et al. (1994) we draw from 9 using a date-by-date
independence metropolis step using the density in 10 as the candidate generating density. This choice implies

that the acceptance probability is given by the ratio of the conditional likelihood f
(
Zt\h̃t,Ξ

)
at the old and

the new draw. To implement the algorithm we begin with an initial estimate of h̃ = ln λ̄t We set the matrix
h̃old equal to the initial volatility estimate. Then at each date the following two steps are implemented:

(a) Draw a candidate for the volatility h̃newt using the density 9 where b2t = h̃newt−1 F
′Q−1 + h̃oldt+1Q

−1F and
B−1

2t = Q−1 + F ′Q−1F
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(b) Update h̃oldt = h̃newt with acceptance probability
f(Zt\h̃newt ,Ξ)
f(Zt\h̃oldt ,Ξ)

where f
(
Zt\h̃t,Ξ

)
is the likelihood of the

VAR for observation t and defined as |Ωt|−0.5 − 0.5 exp
(
ẽtΩ
−1
t ẽ′t

)
where

ẽt = Ft −
(
c+

∑P
j=1 βjFt−j +

∑J
j=1 γj lnλt−j + Ω

1/2
t et

)
and Ωt = A−1

(
exp(h̃t)S

)
A−1′

Repeating these steps for the entire time series delivers a draw of the stochastic volatilties.1

7. G(α, β,Q\Ξ).We re-write the transition equation in deviations from the mean

h̃t − µ = β
(
h̃t−1 − µ

)
+ ηt (11)

where the elements of the mean vector µ are defined as α
1−β . Conditional on a draw for h̃t and µ the transition

equation 11 is a simply a linear regression and the standard normal and inverse Gamma conditional posteriors
apply. Consider h̃∗t = βh̃∗t−1 + ηt, V AR (ηt) = Q and h̃∗t = h̃t − µ, h̃∗t−1 = h̃t−1 − µ. The conditional posterior
of β is N (θ∗, L∗) where

θ∗ =

(
L−1

0 +
1

Q
h̃∗′t−1h̃

∗
t−1

)−1(
L−1

0 F0 +
1

Q
h̃∗′t−1h̃

∗
t

)
L∗ =

(
L−1

0 +
1

Q
h̃∗′t−1h̃

∗
t−1

)−1

The conditional posterior of Q is inverse Gamma with scale parameter η′tηt +Q0 and degrees of freedom T + VQ0.
Given a draw for β, equation 11 can be expressed as ∆̄h̃t = Cµ + ηt where ∆̄h̃t = h̃t − βh̃t−1 and C = 1 − β.

The conditional posterior of µ is N (µ∗, Z∗) where

µ∗ =

(
Z−1

0 +
1

Q
C ′C

)−1(
Z−1

0 µ0 +
1

Q
C ′∆̄h̃t

)
Z∗ =

(
Z−1

0 +
1

Q
C ′C

)−1

Note that α can be recovered as µ (1− β)

8. G(ai, bi, qi\Ξ). Given a draw for hit, the conditional posterior distributions for the parameters of the transition
equations 7 are as described in step 7.

2.3 A Monte-Carlo experiment

In order to examine the performance of this algorithm, we consider a small Monte-Carlo experiment

2.3.1 Data Generating Process

We generate data from the following FAVAR model with 2 factors:

Xit = BiFt +R1/2εit

where R = 0.1, the factor loadings Bi are drawn from N(0, 0.1) and i = 1, 2, ...100.
The dynamics of the factors are defined as(

F1t

F2t

)
=

(
0.7 0.1
−0.1 0.5

)(
F1t−1

F2t−1

)
+

(
−0.5
0.5

)
lnλt +

(
v1t

v2t

)
, var

(
v1t

v2t

)
= Ωt

1 In order to take endpoints into account, the algorithm is modified slightly for the initial condition and the last observation. Details
of these changes can be found in Jacquier et al. (1994).
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The variance process is defined as

Ωt = A−1 (Sλt)A
−1′

A =

(
1 0
−1 1

)
S =

(
1 0
0 2

)
lnλt = −0.1 + 0.75 lnλt−1 + (0.5)

1
2 vt

We generate 500 observations for Xit and drop the first 100 observations to reduce the influenceof initial conditions.
The experiment is repeated 500 times. At each iteration, the FAVAR model is estimated using the MCMC algorithm
described above using 5000 iterations with a burn-in of 4000 observations. The retained draws are used to calculate
the impulse response of Xit to a 1 standard deviation shock to lnλt for a horizon of 20 periods. In the figures below
we report the difference between the cumulated response at various horizons estimated via the MCMC algorithm
and the response using the true parameter values for each of the N Xit. The figure below shows that, on average,
the difference in the estimated responses and the true responses is zero across the panel and across the different
horizons considered. This provides evidence that the MCMC algorithm performs well.

Figure 1: Monte-Carlo experiment

3 Sensitivity Analysis

3.1 Number of factors

We re-estimate the model and set the number of factors to 5. Figure 2 shows the correlation between the long
run cumulated response of state-level income obtained from the five-factor model and the benchmark model.2 The
scatter plot in the figure shows that the pattern of state-level responses in this model is very similar to the benchmark
case—in fact the cross-sectional correlation between the two sets of responses at this horizon is 0.8.

2The long run response is proxied by the cumulated response at the 40 quarter horizon
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Figure 2: using five factors

3.2 Using Employment

We re-estimate the benchmark model replacing state-level real income with the growth of non-farm employment in
each state. Figure 3 plots the long run cumulated responses of state-level real income from the benchmark model
against the long run cumulated response of state-level employment. The figure shows that there is a high correlation
(of about 70%) between the benchmark estimates and the employment responses.
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Figure 3: using Employment

3.3 Using a simple FAVAR model

We consider an alternative (and simpler) FAVAR model:

Xit = BiF̃t + vit (12)

Zt = c+

P∑
j=1

βjZt−j + et

var (et) = Ω = A0A
′
0

where F̃t represents a set of common factors (Xit is the panel of data) and Zt = [ F̃t, ln$t] with $t the uncertainty
measure taken from Jurado et al. (2015). This is a standard FAVAR where ln$t is considered an observed factor.
One can then calculate the response of state-level income included in Xit to shocks to the equation for ln$t in the
VAR model Zt = c+

∑P
j=1 βjZt−j + et. We assume that A0 is the Cholesky decomposition of Ω with the ordering

[ F̃t, ln$t] that is consistent with our benchmark model. We use three factors as in the benchmark model, setting
the lag length to 4.
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Figure 4: using a simple FAVAR

In Figure 4 we compare the cumulated response of the state-level income to a one standard deviation uncertainty
shock (at the 2 year horizon) obtained from this FAVAR (using the Jurado et al. (2015) measure of uncertainty)
with the same response obtained from the benchmark model in the paper. The x-axis shows the 51 state-level
responses from the FAVAR model (using the Jurado et al. (2015) measure of uncertainty) while y-axis shows the
51 state-level responses from the benchmark model. It is clear from the scatter plot that the FAVAR delivers a
pattern of responses very similar to the Benchmark model with a correlation coeffi cient of 0.86 between the two
cross-sections. This is re-assuring as it provides further support for the results in the paper. Notice, however,
that while the cross-state pattern delivered by the models is similar, there is a large difference in the scale of the
responses. The simple FAVAR delivers responses with a larger magnitude for all states.3Recall that a key difference
between this FAVAR and our proposed model is the fact that the observation equation of this model Xit = BiF̃t+vit
does not account for the impact of idiosyncratic/State-specific uncertainty shocks which are proxied by the term∑K
k=1 ρk,i lnhit−k in the observation equation of the proposed model. This omission may explain why the simpler

model indicates that aggregate uncertainty shocks have quite large effects on state-level income, a result that may
simply reflect a statistical bias.

3.4 Robustness of the cross section results

Table (1) documents further evidence on the industry mix effects on the state response to uncertainty shocks,
after controling for our baseline effects. Column 1 is the baseline specification. Column 2 shows that oil and mining
have very similar effects. Columns 3 through 5 show that agriculture, financial services and housing sectors are not
important once we have controlled for our baseline mix. Column 6 shows that construction is only significant once
we control for the effects of budget deficts and intergovernment transfers.
Table (2) explores the roles of regressors used in the literature on explaining state-level heterogeneity. Column 1

is again the baseline specification. We next investigate where the prevalence of small banks plays an important role.
Columns 2 and 3 include as regressors the fraction of loans extended by small banks where small is defined as at

3This result does not depend on the scale of the shock. That is, if the shock is scaled to be exactly the same in the two models, the
same results are obtained.
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(1) (2) (3) (4) (5) (6)

Manufacturing -0.379∗∗∗ -0.381∗∗∗ -0.404∗∗∗ -0.382∗∗∗ -0.386∗∗∗ -0.260∗∗∗

(0.080) (0.075) (0.083) (0.095) (0.091) (0.080)

Mining 0.475∗∗∗ 0.441∗∗∗ 0.470∗∗∗ 0.461∗∗∗ 0.426∗∗∗

(0.099) (0.113) (0.117) (0.120) (0.126)

Oil 0.493∗∗∗

(0.099)

Home vacancy rate -2.742∗∗∗ -2.834∗∗∗ -2.928∗∗∗ -2.750∗∗∗ -2.769∗∗∗ -3.833∗∗∗

(0.866) (0.820) (0.918) (0.882) (0.902) (0.881)

Right to work -0.028∗∗∗ -0.025∗∗ -0.024∗ -0.029∗∗ -0.030∗∗ -0.027∗∗∗

(0.009) (0.010) (0.013) (0.012) (0.012) (0.009)

Small firms (< 250) -0.443∗∗∗ -0.374∗∗ -0.395∗∗ -0.448∗∗∗ -0.444∗∗∗ -0.254∗

(0.136) (0.139) (0.179) (0.161) (0.141) (0.142)

Budget deficit -0.132∗∗ -0.090∗∗ -0.127∗ -0.131∗∗ -0.131∗∗

(0.063) (0.044) (0.063) (0.064) (0.063)

Intergov’t transfers 0.193∗∗ 0.198∗∗ 0.193∗∗ 0.193∗∗ 0.190∗∗

(0.073) (0.076) (0.074) (0.072) (0.071)

Construction -2.421∗∗∗ -2.193∗∗∗ -2.459∗∗∗ -2.438∗∗∗ -2.394∗∗∗ -1.178
(0.701) (0.657) (0.710) (0.743) (0.710) (0.730)

Agriculture -0.147
(0.215)

Financial services -0.015
(0.199)

Real estate -0.063
(0.268)

Observations 50 50 50 50 50 51
Adjusted R2 0.719 0.675 0.716 0.712 0.712 0.630
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 1: Industry Mix
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or below the 90th and 70th, respectively, percentile of the national asset distribution of financial institutions. Both
have negative, but not significant effects. Column 4 includes as a regressor the share of employment accounted for
by small establishments, where small is defined as establishments with less than 10 employees rather than 250 as in
the baseline. The effect is significant but less so that for the baseline measure. Finally column 6 is the specification
used in Carlino, which does not include our baseline controls, but only the manufacturing share, small banks and
small firms measures. Neither the bank nor the firm measure are significant.
Table (3) further investigates the role of various aspects of state government finances in driving the uncertainty

shock responses. Comparing to the baseline specification in column 1, columns 2 and 3 show that the size of the
public sector in state GDP matters conditionally on budget deficits and intergovernmental transfers. It ameliorates
the state response to an uncertainty shock. Column 3 through 6 show that expenditures on unemployment insurance,
welfare programs and government debt have no significant effects on state-level uncertainty shock responses.
Table (4) shows in column 2 that an alternative measure of labor market flexibility, union membership, mirrors

the effect of right to work legislation but is not significant. Column 3 and 4 show that business creation as measured
by the net entry rate of establishments is not significant once controlling for the share of construction in GDP - the
two measures are highly correlated across states.
Table (5) shows that alternative measures of housing market conditions have comparable effects as our baseline

measure of home vacancy rate. Specifically, home ownership rates, rental vacancy rates or their volatility are
significant and negative - they exacerbate the state IRF to uncertainty shocks - with the only exception being the
home ownership rate which turns out to be insignificant.
Table (6) shows that our results are robust to considering the uncertainty shock response at different horizons

from 1 quarter to 4 years. At very short horizons of 1 quarter, the confidence intervals around the responses are
wider and some effects insignificant although qualitatively comparable to the longer horizons. For all but the very
shortest horizon, the results are both qualitatively and quantitatively robust.
Table (7) compares the benchmark regression estimates (first column) with those obtained when the two year

cumulated IRFs from the simple FAVAR are used (second column). It is clear that the sign of the coeffi cients is
the same across specifications. The magnitude of the coeffi cients differs as the magnitude of the responses obtained
from the simple FAVAR is larger.

4 Data

4.1 Data for FAVAR

The FAVAR model includes 91 Macroeconomic and Financial time-series and real personal income for 51 states.
The data for total personal income for each state is obtained from FRED. These series are divided by CPI and then
transformed by taking the log difference and multiplying by 100. The table below lists the 91 Macroeconomic and
Financial time-series. In terms of the data sources GFD refers to Global Financial Database, FRED is the Federal
Reserve Bank of St Louis database. D denotes the log difference transformation (times 100), while N denotes no
transformation.
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(1) (2) (3) (4) (5)

Manufacturing -0.379∗∗∗ -0.379∗∗∗ -0.385∗∗∗ -0.379∗∗∗ -0.477∗∗∗

(0.080) (0.082) (0.082) (0.091) (0.106)

Mining 0.475∗∗∗ 0.488∗∗∗ 0.490∗∗∗ 0.447∗∗∗

(0.099) (0.099) (0.099) (0.104)

Home vacancy rate -2.742∗∗∗ -2.734∗∗∗ -2.709∗∗∗ -2.483∗∗

(0.866) (0.874) (0.878) (0.920)

Right to work -0.028∗∗∗ -0.027∗∗∗ -0.027∗∗∗ -0.025∗∗

(0.009) (0.010) (0.009) (0.010)

Small firms (< 250) -0.443∗∗∗ -0.410∗∗ -0.416∗∗∗ 0.249
(0.136) (0.160) (0.152) (0.227)

Budget deficit -0.132∗∗ -0.138∗∗ -0.137∗∗ -0.118∗

(0.063) (0.061) (0.061) (0.062)

Intergov’t transfers 0.193∗∗ 0.184∗∗ 0.183∗∗ 0.200∗∗∗

(0.073) (0.077) (0.077) (0.068)

Construction -2.421∗∗∗ -2.367∗∗∗ -2.472∗∗∗ -1.768∗∗

(0.701) (0.733) (0.699) (0.857)

Small banks (≤ 90th pctile) -0.011 -0.018
(0.022) (0.022)

Small banks (≤ 70th pctile) -0.021
(0.037)

Small firms (< 10) -0.404∗

(0.208)

Observations 50 50 50 50 51
Adjusted R2 0.719 0.714 0.714 0.682 0.312
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 2: Financial Frictions

11



(1) (2) (3) (4) (5) (6)

Manufacturing -0.379∗∗∗ -0.313∗∗∗ -0.201∗ -0.388∗∗∗ -0.387∗∗∗ -0.379∗∗∗

(0.080) (0.078) (0.100) (0.084) (0.092) (0.079)

Mining 0.475∗∗∗ 0.520∗∗∗ 0.434∗∗∗ 0.468∗∗∗ 0.480∗∗∗ 0.468∗∗∗

(0.099) (0.088) (0.119) (0.100) (0.098) (0.104)

Home vacancy rate -2.742∗∗∗ -2.608∗∗∗ -3.883∗∗∗ -2.571∗∗∗ -2.731∗∗∗ -2.975∗∗∗

(0.866) (0.866) (0.874) (0.894) (0.899) (0.959)

Right to work -0.028∗∗∗ -0.031∗∗∗ -0.027∗∗∗ -0.030∗∗∗ -0.029∗∗∗ -0.031∗∗∗

(0.009) (0.008) (0.009) (0.010) (0.009) (0.011)

Small firms (< 250) -0.443∗∗∗ -0.504∗∗∗ -0.233∗ -0.463∗∗∗ -0.445∗∗∗ -0.452∗∗∗

(0.136) (0.108) (0.136) (0.134) (0.135) (0.137)

Budget deficit -0.132∗∗ -0.101∗ -0.135∗∗ -0.130∗ -0.129∗

(0.063) (0.054) (0.066) (0.067) (0.066)

Intergov’t transfers 0.193∗∗ 0.134∗ 0.187∗∗ 0.192∗∗ 0.201∗∗

(0.073) (0.077) (0.073) (0.076) (0.081)

Construction -2.421∗∗∗ -2.685∗∗∗ -0.859 -2.517∗∗∗ -2.510∗∗∗ -2.339∗∗∗

(0.701) (0.630) (0.863) (0.669) (0.771) (0.717)

Public sector 0.405∗∗∗ 0.123
(0.134) (0.148)

Unemployment insurance -1.150
(1.087)

Assistance/subsidies 0.358
(1.141)

Gov’t debt -0.016
(0.027)

Observations 50 50 51 50 50 50
Adjusted R2 0.719 0.744 0.628 0.716 0.713 0.714
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 3: Government Finance
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(1) (2) (3) (4)

Manufacturing -0.379∗∗∗ -0.417∗∗∗ -0.379∗∗∗ -0.317∗∗∗

(0.080) (0.100) (0.083) (0.085)

Mining 0.475∗∗∗ 0.433∗∗∗ 0.454∗∗∗ 0.391∗∗∗

(0.099) (0.104) (0.087) (0.086)

Home vacancy rate -2.742∗∗∗ -2.641∗∗∗ -2.619∗∗∗ -2.769∗∗∗

(0.866) (0.967) (0.876) (0.890)

Right to work -0.028∗∗∗ -0.029∗∗∗ -0.029∗∗∗

(0.009) (0.009) (0.009)

Small firms (< 250) -0.443∗∗∗ -0.298∗ -0.452∗∗∗ -0.424∗∗∗

(0.136) (0.164) (0.139) (0.145)

Budget deficit -0.132∗∗ -0.173∗∗ -0.119∗ -0.090
(0.063) (0.076) (0.064) (0.072)

Intergov’t transfers 0.193∗∗ 0.206∗∗∗ 0.180∗∗ 0.156∗∗

(0.073) (0.073) (0.081) (0.077)

Construction -2.421∗∗∗ -1.955∗∗ -1.943∗

(0.701) (0.784) (0.979)

Union membership 0.001
(0.001)

Net estab. entry rate -0.800 -2.286∗∗

(1.309) (1.014)

Observations 50 50 50 50
Adjusted R2 0.719 0.684 0.715 0.701
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 4: Labour Market
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(1) (2) (3) (4) (5) (6)

Manufacturing -0.379∗∗∗ -0.430∗∗∗ -0.457∗∗∗ -0.453∗∗∗ -0.396∗∗∗ -0.416∗∗∗

(0.080) (0.080) (0.107) (0.080) (0.075) (0.078)

Mining 0.475∗∗∗ 0.365∗∗∗ 0.511∗∗∗ 0.507∗∗∗ 0.523∗∗∗ 0.552∗∗∗

(0.099) (0.104) (0.104) (0.099) (0.098) (0.103)

Home vacancy rate -2.742∗∗∗

(0.866)

Right to work -0.028∗∗∗ -0.030∗∗∗ -0.034∗∗∗ -0.027∗∗∗ -0.019∗∗ -0.021∗

(0.009) (0.008) (0.011) (0.010) (0.009) (0.011)

Small firms (< 250) -0.443∗∗∗ -0.318∗∗ -0.362∗∗ -0.356∗∗∗ -0.458∗∗∗ -0.421∗∗∗

(0.136) (0.132) (0.162) (0.123) (0.146) (0.151)

Budget deficit -0.132∗∗ -0.125∗∗ -0.127∗ -0.156∗∗ -0.167∗∗ -0.176∗∗

(0.063) (0.055) (0.066) (0.063) (0.067) (0.071)

Intergov’t transfers 0.193∗∗ 0.130∗ 0.226∗∗∗ 0.201∗∗ 0.237∗∗∗ 0.265∗∗∗

(0.073) (0.065) (0.077) (0.080) (0.068) (0.074)

Construction -2.421∗∗∗ -1.842∗∗ -3.137∗∗∗ -2.404∗∗∗ -2.653∗∗∗ -2.861∗∗∗

(0.701) (0.870) (0.926) (0.722) (0.672) (0.659)

Home vacancy rate (sd) -0.121∗∗∗

(0.030)

Home ownership rate 0.044
(0.135)

Home ownership rate (sd) -0.021∗∗

(0.010)

Rental vacancy rate -1.123∗∗∗

(0.351)

Rental vacancy rate (sd) -0.012∗∗

(0.005)

Observations 50 50 50 50 50 50
Adjusted R2 0.719 0.749 0.674 0.704 0.727 0.705
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 5: Housing Market
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(1) (2) (3)
IRF 1qt IRF 3yr IRF 4yr

Manufacturing -0.035∗∗∗ -0.574∗∗∗ -0.667∗∗∗

(0.010) (0.117) (0.136)

Mining 0.038∗∗∗ 0.703∗∗∗ 0.818∗∗∗

(0.011) (0.154) (0.191)

Home vacancy rate -0.064 -4.373∗∗∗ -5.568∗∗∗

(0.105) (1.333) (1.626)

Right to work -0.003∗∗ -0.036∗∗ -0.038∗∗

(0.001) (0.013) (0.016)

Small firms (< 250) -0.035∗∗∗ -0.641∗∗∗ -0.727∗∗∗

(0.013) (0.208) (0.261)

Budget deficit -0.016∗∗ -0.191∗∗ -0.209∗

(0.008) (0.093) (0.111)

Intergov’t transfers 0.011 0.301∗∗∗ 0.371∗∗∗

(0.007) (0.108) (0.126)

Construction -0.149∗ -3.835∗∗∗ -4.826∗∗∗

(0.077) (1.138) (1.458)

Observations 50 50 50
Adjusted R2 0.545 0.715 0.704
All models include regional dummies
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 6: Using IRFs at different horizons
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(1) (2)
IRF 2yr IRF 2yr sensitivity

Manufacturing -0.379∗∗∗ -1.481
(0.080) (0.913)

Mining 0.475∗∗∗ 4.993∗∗∗

(0.099) (1.245)

Home vacancy rate -2.742∗∗∗ -14.171
(0.866) (9.135)

Right to work -0.028∗∗∗ -0.251∗∗

(0.009) (0.105)

Small firms (< 250) -0.443∗∗∗ -4.091∗∗

(0.136) (1.729)

Budget deficit -0.132∗∗ -1.468∗

(0.063) (0.765)

Intergov’t transfers 0.193∗∗ 0.797
(0.073) (0.618)

Construction -2.421∗∗∗ -3.073
(0.701) (7.004)

Observations 50 50
Adjusted R2 0.719 0.660
All models include regional dummies
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 7: Comparison using IRFs from the simple FAVAR
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Table 8: Data for the factor model.

Variable Description Source Transformation
1 Industrial Production FRED D
2 Industrial Production: Business Equipment FRED D
3 Industrial Production: Consumer Goods FRED D
4 Industrial Production: Durable Consumer

Goods
FRED D

5 Industrial Production: Durable Materials FRED D
6 Industrial Production: Final Products

(Market Group)
FRED D

7 Industrial Production: Final Products and
Nonindustrial Supplies

FRED D

8 Industrial Production: Manufacturing FRED D
9 Industrial Production: Materials FRED D
10 Industrial Production: Nondurable Con-

sumer Goods
FRED D

11 Dow Jones Industrial Index GFD D
12 GDP Deflator FRED N
13 ISM Manufacturing: New Orders Index FRED N
14 ISM Manufacturing: Inventories Index FRED N
15 ISM Manufacturing: Supplier Deliveries In-

dex
FRED N

16 ISM Manufacturing: PMI Composite Index FRED N
17 ISM Manufacturing: Employment Index FRED N
18 ISM Manufacturing: Production Index FRED N
19 ISM Manufacturing: Prices Index FRED N
20 Employment FRED D
21 All Employees: Construction FRED D
22 All Employees: Financial Activities FRED D
23 All Employees: Goods-Producing Indus-

tries
FRED D

24 All Employees: Government FRED D
25 All Employees: Trade, Transportation and

Utilities
FRED D

26 All Employees: Retail Trade FRED D
27 All Employees: Wholesale Trade FRED D
28 All Employees: Durable goods FRED D
29 All Employees: Manufacturing FRED D
30 All Employees: Nondurable goods FRED D
31 All Employees: Service-Providing Indus-

tries
FRED D
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Table 8: Data for the factor model.

32 All Employees: Total Nonfarm Payrolls FRED D
33 Real personal income excluding current

transfer receipts
FRED D

34 Business Conditions Index GFD N
35 Imports Fred D
36 Exports Fred D
37 Real Government Spending Fred D
38 Real Tax revenues Fred D
39 Business Investment Fred D
40 Real Consumption Expenditure Fred D
41 Real GDP Fred D
42 Unemployment Rate Fred N
43 Number of Civilians Unemployed for 15

Weeks and Over
Fred D

44 Number of Civilians Unemployed for 15 to
26 Weeks

Fred D

45 Number of Civilians Unemployed for 27
Weeks and Over

Fred D

46 Number of Civilians Unemployed for 5 to 14
Weeks

Fred D

47 Number of Civilians Unemployed for Less
Than 5 Weeks

Fred D

48 Average (Mean) Duration of Unemploy-
ment

Fred D

49 Average Weekly Hours Fred D
50 Average Weekly Hours of Production

and Nonsupervisory Employees: Goods-
Producing

Fred D

51 Average Hourly Earnings of Production
and Nonsupervisory Employees: Goods-
Producing

Fred D

52 Average Hourly Earnings of Production and
Nonsupervisory Employees: Construction

Fred D

53 Average Hourly Earnings of Production and
Nonsupervisory Employees: Manufacturing

Fred D

54 Average Weekly Hours of Production and
Nonsupervisory Employees: Manufacturing

Fred D

55 Civilian Labour Force Fred D
56 Civilian Participation Rate Fred D
57 Unit Labour Cost Fred D
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Table 8: Data for the factor model.

58 Nonfarm Business Sector: Real Compensa-
tion Per Hour

Fred D

59 M2 Money Fred D
60 Total Consumer Credit Owned and Securi-

tized, Outstanding
Fred D

61 Commercial and Industrial Loans, All Com-
mercial Banks

Fred D

62 Real Estate Loans, All Commercial Banks Fred D
63 Producer Price Index for All Commodities Fred D
64 Producer Price Index by Commodity Met-

als and metal products: Primary nonferrous
metals

Fred D

65 Producer Price Index by Commodity for
Crude Materials for Further Processing

Fred D

66 Producer Price Index by Commodity for
Finished Consumer Goods

Fred D

67 Producer Price Index by Commodity for
Finished Goods

Fred D

68 Producer Price Index by Commodity Inter-
mediate Materials: Supplies and Compo-
nents

Fred D

69 Consumer Price Index Fred D
70 Consumer Price Index for All Urban Con-

sumers: Apparel
Fred D

71 Consumer Price Index for All Urban Con-
sumers: Medical Care

Fred D

72 Consumer Price Index for All Urban Con-
sumers: All items less shelter

Fred D

73 Personal Consumption Expenditures:
Chain-type Price Index

Fred D

74 3 Month Treasury Bill Rate Fred N
75 10 year Govt Bond Yield minus 3mth T-bill

rate
GFD N

76 6mth T-Bill rate minus 3mth T-bill rate GFD N
77 1 year Govt Bond Yield minus 3mth T-bill

rate
GFD N

78 5 year Govt Bond Yield minus 3mth T-bill
rate

GFD N

79 Commodity Price Index GFD D
80 West Texas Intermediate Oil Price GFD D
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Table 8: Data for the factor model.

81 BAA Corporate Spread GFD N
82 AAA Corporate Bond Spread GFD N
83 S&P500 Total Return Index GFD D
84 NYSE Stock Market Capitalization GFD D
85 S&P500 P/E Ratio GFD N
86 Pound dollar Exchange Rate GFD D
87 US and Canadian Dollar exchange rate GFD D
88 US dollar and German Mark exchange rate GFD D
89 Us Dollar and Japanese Yen Exchange Rate GFD D
90 Nasdaq Composite GFD D
91 NYSE Composite GFD D
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4.2 Data for Cross-section Analysis

• Small establishment employment share: Employment at the 6-digit NAICS industry level, by state and estab-
lishment size, annual 1986 to 2013. Source: Census Bureau, County Business Patterns. Small establishments
are defined as those with less than 250 employees. We aggregate to the state level, and average over time.

• Industry shares of GDP (oil, agriculture, finance, manufacturing): State-level GDP by industry, annual 1963
to 2013, average over time. Source: BEA. Industry classification is NAICS since 1997, SIC prior to that.

• Share of loans extended by small banks: Bank balance sheet data on all FDIC-insured financial institutions
excluding bank holding companies, quarterly 2001Q1 to 2015Q3. Source: Call Reports from the FFIEC.
Small banks are defined as at or below the 90th percentile of the national distribution of bank size by assets.
The small bank loans share is the time-average of the fraction of total loans on small bank balance sheets in
each state. The panel contains 449,777 observations, the cross-section contains on average 150 institutions
per state.

• State government debt, deficit and intergovernmental transfers: State government sources of revenues and
expenditures, annual 1992 to 2013, average over time. Source: Census Bureau. Intergovernment transfers are
the sum of transfers to/from federal and local governments.

• Homeownership rate: Home ownership rates, quarterly 2005Q1-2015Q4, standard deviation over time. Source:
Census Bureau.

• Union membership as a share of nonagricultural employment by state, average of 1984 and 2000. Source:
Barry T. Hirsch (2001)

• Business creation: Net entry rate of establishments, 1977-2014 average. Source: Census Bureau.

• Right to work: Dummy for whether a state has right to work legislation as of 2016. Source: http://www.nrtw.org/right-
to-work-states/.

5 Recursive means of retained draws
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Figure 1: Recursive means calculated every 20 draws
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