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Appendix A First order conditions

A.1 Patient households

The first-order conditions patient households are:
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Equation (1) is the typical Euler equation over lending and equation (2) is the Euler equation spec-

ifying demand for housing. Savers aim to smoothen consumption by matching the return on saving to

the cost of foregone consumption. Given that housing is a durable good, it not only increases utility in

the current period but it also increases the amount of resources available in the next period, through

its resale value. Equation (3) defines labour supply by equating marginal utilities over consumption and

leisure.

A.2 Impatient households

First-order conditions for impatient households are:
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where µt > 0 is the Lagrange multiplier on the borrowing constraint. Equations (4)-(6) are the

Euler equations over borrowing and housing demand respectively and the intratemporal labour supply

equation. It can be seen that the borrowing constraint introduces a wedge between the marginal benefit

and marginal cost of decisions. Borrowers are constrained by their borrowing limit and are therefore

not able to fully smoothen consumption, making them unable to adjust fully in the wake of shocks.

This implies that they have a higher marginal propensity to consume out of current income than savers.

Note that shocks to housing preferences jt generate an immediate response in housing demand and house

prices, for both household types.1

A.3 Intermediate goods firms

The first order conditions characterising optimal labour demand are:
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Using these optimality conditions, we can define marginal costs as
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As marginal costs of production do not depend on characteristics of any firm j, and since technology is

symmetric across all firms, I drop the subscript j in (7) and (8) to ease notation.

1Solving for Hs in (2), we get:
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where Ĉs,t =

Cs,t−%Cs,t−1

1−% . Housing demand Hs,t increases as the preference term jt rises. The same holds for borrowers,

although their housing demand function also includes the shadow price of the borrowing constraint. In that case an increase
in the LTV ratio mt or an increase in inflation πt also increases housing demand by borrowers, as both of these variables
relax the borrowing constraint. The former directly, by increasing outright the borrowing limit, and the latter by reducing
the real burden of debt.
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A.4 Aggregate output

Following Yun (1996) and Christiano, Trabandt, and Walentin (2011), let Y ∗t be the unweighed sum of

output from intermediate goods firms. Since all firms use labour in the same proportions, this can be

written as
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Alternatively, summing over the demand across all intermediate firms and equating Y ∗t :
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where st =
∫ 1

0

(
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)−σ
dj > 1 is the measure of output cost of price dispersion, which reduces

aggregate output compared with an economy with flexible prices (Yun 1996).2 This measure can be

written recursively as:
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Appendix B Derivation of price setting behaviour

The maximisation problem faced by price setting firms is:
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Maximising with respect to pj,t, and multiplying out all constants with respect to the sum:
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Using the definition for the stochastic discount factor, and noting that C̃s,t is constant with respect to

the problem, we get:
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2Note that this variable drops out from any linear approximations of the model around a point, as the variance of prices
has only second-order effects on output.
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The price p∗t which solves this can be written as:
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where the subscript j is dropped since all firms have the same technology and face the same demand

curve, and hence will optimise in the same way. Multiplying both sides by P−1t we get relative prices.3
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Following Christiano, Trabandt, and Walentin (2011) and ascari2014macroeconomics, it is useful

to represent the New Keyesian Phillips curve as:
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where Θt,t+i represents cumulative gross inflation between two periods:
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
1 if j = 0

Pt+1

Pt
× · · · × Pt+i

Pt+i−1
if j ≥ 1

(15)

The numerator Υt and denomator Φt can be written in recursive form:
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Since the probability of adjusting prices is independent of a firm’s history, from the law of large numbers

the aggregate price4 is a weighted average of optimised prices and previous period prices:
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which can be used to solve for relative prices as a function of inflation:
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4The aggregate price is a CES aggregate of prices over the continuum of firms:
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Figure 1: The mapping of symmetric LTV rule parameters and the loss function
Notes: The figure shows the macroprudential policymaker’s loss as a function of the two arguments in the

minimisation problem, the policy response parameter δm and the persistence parameter ρm, as surface (left)

and countour (right) plots. The dots denote the minimum.

This can be used to elimate p∗, and the optimal pricing equation can therefore be written as:

Υt =

(
σ − 1

σ

)(
1− ω
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) 1
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Φt (20)

Equations (16), (17) and (20) jointly determine price dynamics.

Appendix C The optimal symmetric LTV rule

I calibrate the symmetric macroprudential policy rule by finding the parameters that minimise the

policymaker’s loss, which in turn is a function of the volatility of the credit to output ratio and the LTV

ratio. I find the optimal values {δ∗m, ρ∗m} by repeatedly solving the model using the solution method of

Guerrieri and Iacoviello (2015) and conducting stochastic simulations over a fine grid for both of these

parameters. The grid is constrained for positive values of both δm and ρm, with domain G(δm, ρm) :

R2 = [0.0, 2.0] × [0.0, 0.9]. The results of this minimization problem, shown in Figure 1, are δ∗m = 0.75

and ρ∗m = 0, which is a global minimum in G(δm, ρm). The plot is over a sub-domain of ρm to make it

more readable. Figure 2 shows the evolution of the sub-components of the loss function (variances of

credit-to-output and LTV ratios) as slices around the global minimum.
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Figure 2: The components of the loss function at the minimum
Notes: The plots show the variance of the arguments in the loss function as slices at the minimum. The dots

denote the minimum showed in Figure 1.
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