
Determinacy and Classification of Markov-Switching
Rational Expectations Models: A Technical Guide

Seonghoon Cho*

October 14, 2023

Abstract

This is a technical guide for the MOD (minimum of modulus) method proposed
by Cho (2021) in the class of general linear rational expectations (LRE) models and
Markov-switching rational expectations (MSRE) models. This document provides a
compact summary of the paper and illustrates how to implement the methodology.
Current versions of the codes accompanying this technical guide and the numerical ex-
amples including the ones in the paper can be found at https://sites.google.com/site/sc719en/research.
This technical guide and the matlab codes will be updated in the future.

*School of Economics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea. E-mail:
sc719@yonsei.ac.kr. Tel:+82-2-2123-2470; Fax:+82-2-393-1158

1 Introduction

This document explains how to implement the MOD(minimum of modulus) method of

Cho (2021) using matlab for LRE and MSRE models The proposed method uses only

the most mean-square stable MOD solution for a complete classification of models into

three mutually disjoint and exhaustive subsets: determinacy, indeterminacy and the case of

no stable solution. A solution methodology for the MOD solution is also provided. The

previous technical guide for Cho (2016) is modified and nested in this note.

Table of Contents

1. Introduction

2. MOD Method for LRE Models

2.1 LRE Models and RE solutions

2.2 The MOD Method

2.3 Standard Methods Using Eigensystem

2.4 Implementing MOD Method

3 MOD Method for MSRE Models :

3.1 MSRE Models and RE solutions

3.2 The MOD Method

3.3 Implementing MOD Method (Windows and Mac)

Appendix

A. Set of matlab Codes for LRE, MSRE Models

B. Examples

C. Modified Forward Method

1

2 MOD Method for LRE Models

2.1 LRE Models and RE solutions

xt = AEt[xt+1] +Bxt−1 + Czt, (1a)

zt = Rzt−1 + ϵt, ϵt ∼ (0, D), Et−1ϵt = 0m×1 (1b)

xt n× 1 vector of endogenous variables,

zt m× 1 vector of mean-square stable exogenous variables,

ϵt m× 1 vector of white noises,

A n× n coefficient matrix of the forward-looking endogenous variables,

B n× n coefficient matrix of the backward-looking endogenous variables,

C n×m coefficient matrix of the exogenous variables,

R m×m coefficient matrix of the lagged exogenous variables.

Writing a model into the form (1a): Any linear rational expectations model can be

written as B1xt = A1Et[xt+1] +B2xt−1 +C1zt where B1, A1, B2 and C1 by collecting the pa-

rameters of current, forward-looking, backward-looking endogenous variables and exogenous

variables. Therefore, one can set A = B−1
1 A1, B = B−1

1 B2 and C = B−1
1 C1.

Solution Forms, Restrictions and Full Set of MSV solutions

xt = [Ωxt−1 + Γzt] + wt : General RE solution, (2)

xt = Ωxt−1 + Γzt : (wt = 0n×1) : MSV solution, (3)

wt = FEtwt+1 : (wt ̸= 0n×1) : Sunspot component. (4)

Ω = (In − AΩ)−1B, (5)

Γ = (In − AΩ)−1C + FΓR, (6)

F = (In − AΩ)−1A. (7)

S =
{
Ωh ∈ Cn×n|Ωh solves (5), ρ(Ω1) ≤ ... ≤ ρ(Ωh) ≤ ... ≤ ρ(ΩN)

}
(8)

where ρ(M) = max1≤i≤n(|ξi|), ξ1, ..., ξn are the eigenvalues of an n × n matrix M , and

N ≤
(
2n
n

)
.

Definition 1 xt = Ω1xt−1 is an MOD solution if ρ(Ω1) = min ρ(Ω) for all Ω ∈ S.

2

2.2 The MOD Method

2.2.1 Classification of LRE Models by the MOD Method

The main classification result of the MOD method for LRE models is a special case of

Proposition 3 of the paper.

Result 3 Consider a LRE model (1) and the set of solutions S in (8). Then, necessary and

sufficient conditions for determinacy, indeterminacy and the case of no stable solution are

given in Table (1). Moreover, if there exists a solution such that ρ(Ω)ρ(F) < 1, it is the

unique real-valued MOD solution and the model is determinacy-admissible.

Table 1: Classification of LRE Models by the MOD Method

Determinacy-Admissible(DA):
ρ(Ω1)ρ(F1) < 1

Determinacy-Inadmissible(DIA):
ρ(Ω1)ρ(F1) ≥ 1

Determinacy ρ(Ω1) < 1, ρ(F1) ≤ 1 Impossible
Indeterminacy ρ(F1) > 1 ρ(Ω1) < 1

No Stable Solution ρ(Ω1) ≥ 1 ρ(Ω1) ≥ 1

2.2.2 Identification of the MOD Solution

The MOD methodology is completed by finding the MOD solution. In LRE models, iden-

tification of the MOD can be done by use of the eigensystem implied by the generalized

Schur decomposition theorem. Such an identification is not possible for MSRE models be-

cause of the lack of an eigensystem. In principle, identification of the MOD can be done

by solving all Ω, which is very difficult even for small-scale LRE models, let alone MSRE

models. Partitioning the LRE models by Determinacy-Admissibility(DA) provide a crucial

identification condition for the MOD solution. Implementation will be shown below.

3

2.3 Standard Methods Using Eigensystem

This section shows the equivalence between the MOD approach and the standard methods

based on an eigensystem. This also helps understand our results in terms of well-known

generalized eigenvalues. Let yt = [x′
t x

′
t−1]

′. Model (1a) can be reformulated as

B̃yt = ÃEtyt+1 + C̃zt (9)

B̃ =

[
In −B

In 0n×n

]
, Ã =

[
A 0n×n

0n×n In

]
, C̃ =

[
C

0n×m

]
(10)

Let ξA,B be the set of generalized eigenvalues implied by the model. Formally,

ξA,B = {ξi ∈ C|0 = |Ã− ξiB̃|, |ξ1| ≤ |ξi| ≤ |ξ2n| } (11)

Any solution Ω ∈ S is associated with n out of 2n eigenvalues. The corresponding F is

associated with the inverses of the remaining n eigenvalues.

Using these properties, LRE models can also be classified as Table 2, which is ex-

actly the same as Table 1, including the conditions for Determinacy-Admissibility(DA) and

Determinacy-Inadmissibility(DIA). Detailed arguments for equivalence of the classification

of LRE models using this standard eigensystem approach and the MOD method can be

found in the paper.

Table 2: Classification of LRE Models

Determinacy-Admissible(DA):
Ω(ξ1, ..., ξn) ∈ S and

|ξn| < |ξn+1|

Determinacy-Inadmissible(DIA):
Ω(ξ1, ..., ξn) /∈ S or

|ξn| = |ξn+1|
Determinacy |ξn| < 1 ≤ |ξn+1| Impossible
Indeterminacy |ξn+1| < 1 ρ(Ω1) = |ξn+i| < 1, i ≥ 0

No Stable Solution |ξn| ≥ 1 ρ(Ω1) = |ξn+i| ≥ 1, i ≥ 0

Remark 1. Table 2 shows that a usual root-counting to identify determinacy can fail but

only when Ω(ξ1, ..., ξn) /∈ S. Therefore, the existence of the MOD solution must be checked

along with root-counting, which is precisely what the MOD method does in line with the

gensys algorithm of Sims (2002).

4

2.4 Implementing MOD Method for LRE Models

MOD method is to classify a given model into DET/INDET/NSS by identifying and com-

puting the MOD solution. There are two main matlab codes for LRE models to be explain

in the following section.

� fmlre.m: Implement the MOD method using the modified forward method.

� qzmlre.m Implement the MOD method using eigensystem.

There are two ways of implementing the method. First, QZ method does it all. This

computes the MOD solution and checks whether Ω(ξ1, ..., ξn) ∈ S using the eigensystem.

Therefore, one can directly classify a given model using ρ(Ω1)ρ(F1) following Table 1. Second,

a sequential way of first using the forward method and QZ method if necessary. The forward

method computes the forward solution Ω∗. If this turns out to be the MOD solution, then

classification is done. If it does not exist or if ρ(Ω∗)ρ(F ∗) ≥ 1 and ρ(Ω∗) ≥ 1, the forward

method cannot tell classification. Thus one needs to use an alternative technique to identify

the MOD solution and complete classification. Here QZ method is suggested because the

eigensystem directly yields the MOD solution. Note that in the MSRE models, QZ method

is not available. Thus one must use a sequential approach of applying the forward method

first and use the Gröbner basis approach if necessary. The sequential approach is not needed

for LRE models, but it shows how it would work for MSRE models.

1. Implementing the MOD method using the QZ method.

(a) Write your model in the form of (1a), e.g., “Ex.m”. Construct A. Construct B, C,

or R if any.

(b) Type and run DETCMOD=qzmlre(A,B). Ω1 is the MOD solution where

DETCMOD=[ρ(Ω1) ρ(F1) ρ(Ω1)ρ(F1)].

i. If ρ(Ω1)ρ(F1) < 1, then the model is DA. ρ(Ω1) and ρ(F1) tells whether the

model is DET/INDET/NSS.

ii. If ρ(Ω1)ρ(F1) ≥ 1 and ρ(Ω1) < 1, the model is indeterminate. (The model is

DIA)

iii. If ρ(Ω1)ρ(F1) ≥ 1 and ρ(Ω1) ≥ 1, the model has no stable solution. (The

model is DIA)

5

2. Implementing the MOD method using the forward method

(a) Same as above: 1.(a).

(b) Type and run DETC=fmlre(A,B). Ω∗ is the forward solution where

DETC=[ρ(Ω∗) ρ(F ∗) ρ(Ω∗)ρ(F ∗)].

i. If ρ(Ω∗)ρ(F ∗) < 1, then Ω∗ = Ω1, and the model is DA. ρ(Ω1) and ρ(F1) tells

whether the model is DET/INDET/NSS. Done.

ii. If ρ(Ω∗)ρ(F ∗) ≥ 1 and ρ(Ω∗) < 1, the model is indeterminate. No need to

check whether Ω∗ = Ω1. Done.

iii. If Ω∗ = NaN (forward solution does not exist) or if ρ(Ω∗)ρ(F ∗) ≥ 1 and

ρ(Ω∗) ≥ 1, the forward method cannot tell the classification. Apply the

alternative to find the MOD solution and complete classification.

Remark 1. Only the case i would arise in practice because cases ii and iii would arise

for DIA models. Therefore, forward method would also be sufficient for classification of

economic models.

Remark 2. In fact, forward method is even faster than standard methods in many cases.

6

3 MOD Method for MSRE Models

3.1 MSRE Models and RE solutions

The class of MSRE models:

xt = Et[A(st, st+1)xt+1] +B(st)xt−1 + C(st)zt, (12)

zt = R(st)zt−1 +G(st)ϵt, ϵt ∼ (0, D) (13)

ϵt is covariance-stationary, independent of st−k for all k ≥ 0.

xt n× 1 vector of endogenous variables,

zt m× 1 vector of mean-square stable exogenous variables,

ϵt l × 1 vector of covariance-stationary processes independent of st,

st S-regime ergodic Markov chain,

P S × S transition matrix with pij ≡ Pr(st = j|st−1 = i), i, j ∈ {1, 2, ..., S},
A(·), B(·) n× n coefficient matrices,

C(·) n×m coefficient matrix,

R(·) m×m coefficient matrix.

G(·) m× l coefficient matrix.

Writing a model into the form (12): The original model would be written as B1(st)xt =

Et[A1(st, st+1)xt+1]+B2(st)xt−1+C1(st)zt. Therefore, one can setA(st, st+1) = B−1
1 (st)A1(st, st+1),

B(st) = B−1
1 (st)B2(st) and C(st) = B−1

1 (st)C1(st). G(·) can capture the regime-dependent

conditional variance. But it is not needed for model classification. Both Cho (2016) and

Foerster et al. (2016) emphasize that A may well depend on future regime st+1 in DSGE

models with microfoundation subject to regime-switching. Using the perturbation method,

Foerster et al. (2016) derive a general form of linearized Markov-switching DSGE models,

which can also be written as (12).

Solution Forms and Restrictions

xt = [Ω(st)xt−1 + Γ(st)zt] + wt : General RE solution, (14)

xt = Ω(st)xt−1 + Γ(st)zt : (wt = 0n×1) : MSV solution, (15)

wt = Et[F (st, st+1)wt+1] : (wt ̸= 0n×1) : Sunspot component (16)

7

Ω(st) = {In − Et[A(st, st+1)Ω(st+1)]}−1B(st), (17)

Γ(st) = {In − Et[A(st, st+1)Ω(st+1)]}−1C(st) + Et[F (st, st+1)Γ(st+1)R(st+1)],(18)

F (st, st+1) = {In − Et[A(st, st+1)Ω(st+1)]}−1A(st, st+1). (19)

Complete Set of MSV solutions and Mean-square Stability: The following matrices

will be needed to define mean-square stability and exposition.

Ψ̄G⊗H =
[
pji(G(j, i)′)T ⊗H(j, i)

]
,

ΨG⊗H =
[
pij(G(i, j)′)T ⊗H(i, j)

]
,

where G = G(st, st+1) and H = H(st, st+1) are n× n matrices and the arguments of Ψ̄G⊗H

and ΨG⊗H are ij-th n2 × n2 block. ′ and T denote a conjugate and non-conjugate transpose

operator, respectively.

Since F (·) and Γ(·) are uniquely associated with a given Ω(·), the full set of MSV solutions

can be defined by Ω(·) as:

S =

{
Ωh(st) ∈ Cn×n|Ωh(·) solves (17), h = 1, ..., N, and

ρ(Ψ̄Ω1⊗Ω1) ≤ ... ≤ ρ(Ψ̄Ωh⊗Ωh
) ≤ ... ≤ ρ(Ψ̄ΩN⊗ΩN

)

}
, (20)

where Ψ̄Ω⊗Ω, and ΨF⊗F are defined as:

Ψ̄Ω⊗Ω =

 p11(Ω(1)
′)T ⊗ Ω(1) ... pS1(Ω(1)

′)T ⊗ Ω(1)

...

p1S(Ω(S)
′)T ⊗ Ω(S) ... pSS(Ω(S)

′)T ⊗ Ω(S)

 ,

ΨF⊗F =

 p11(F (1, 1)′)T ⊗ F (1, 1) ... p1S(F (1, S)′)T ⊗ F (1, S)

...

pS1(F (S, 1)′)T ⊗ F (S, 1) ... pSS(F (S, S)′)T ⊗ F (S, S)


Only these two matrices will be used for our classification result.

Definition 2 A MSV solution (15) is mean-square stable (MSS) if and only if ρ(Ψ̄Ω⊗Ω) < 1.

xt = Ω1(st)xt−1 +Γ1(st)zt is an MOD solution, the most stable solution in the mean-square

stability sense if ρ(Ψ̄Ω1⊗Ω1) = min ρ(Ψ̄Ω⊗Ω) for all Ω(st) ∈ S in (20).

8

3.2 The MOD Method

Propositions 1 and 2 are new to the literature, leading to Proposition 3, the main classifica-

tion result of the MOD method for MSRE models.

3.2.1 Classification of MSRE Models by the MOD Method

Proposition 1 There is no mean-square stable sunspots wt satisfying (16) if and only if

ρ(ΨF⊗F) ≤ 1.

Proposition 2 For all Ωh(st) ∈ S,

1. ρ(Ψ̄Ωh⊗Ωh
)ρ(ΨF1⊗F1) ≥ 1, ρ(Ψ̄Ω1⊗Ω1)ρ(ΨFh⊗Fh

) ≥ 1.

2. Ω1(st) is the unique real-valued MOD solution if ρ(Ψ̄Ω1⊗Ω1)ρ(ΨF1⊗F1) < 1.

Proposition 3 Consider a MSRE model (12) and the set of solutions S in (20). Then,

necessary and sufficient conditions for determinacy, indeterminacy and the case of no stable

solution in the mean-square stability sense are given in Table (3). Moreover, if there exists

a solution such that ρ(Ψ̄Ω⊗Ω)ρ(ΨF⊗F) < 1, it is the unique real-valued MOD solution and

the model is determinacy-admissible.

Table 3: Classification of MSRE Models

Determinacy-Admissible(DA)
ρ(Ψ̄Ω1⊗Ω1)ρ(ΨF1⊗F1) < 1

Determinacy-Inadmissible(DIA)
ρ(Ψ̄Ω1⊗Ω1)ρ(ΨF1⊗F1) ≥ 1

Determinacy ρ(Ψ̄Ω1⊗Ω1) < 1, ρ(ΨF1⊗F1) ≤ 1 Impossible
Indeterminacy ρ(ΨF1⊗F1) > 1 ρ(Ψ̄Ω1⊗Ω1) < 1

No Stable Solution ρ(Ψ̄Ω1⊗Ω1) ≥ 1 ρ(Ψ̄Ω1⊗Ω1) ≥ 1

Corollary 2 The uniqueness of a mean-square stable MSV solution does not always imply

determinacy in MSRE models with lagged variables. That is, a model can be determinacy

even when ρ(Ψ̄Ω1⊗Ω1) < 1 ≤ ρ(Ψ̄Ω2⊗Ω2) because this can be compatible with ρ(ΨF1⊗F1) > 1.

Remark. Corollary 2 is an important and new finding in the literature. LRE models with

lagged variables, the uniqueness of a MSV solution implies determinacy. In stark contrast,

it is not the case for MSRE models.

9

3.3 Implementing MOD Method for MSRE Models

The methodology is completed by finding the MOD solution, Partitioning the entire class

of MSRE models by determinacy-admissibility(DA) and determinacy-inadmissibility(DIA)

provide an important identification condition for the MOD solution. This is crucial in

practical application. There are two main matlab codes for MSRE models.

� fmmsre.m : Implements the MOD method using the modified forward method.

� gbmsre.m (for Windows users) or gbmsre mac.m (for Mac users) : Implements the

MOD method using the Gröbner basis (GB).

3.3.1 Implementing the Forward Method

1. Write your model in the form of (12), e.g., “Ex.m”. Construct P and A(·). Construct

B(·), C(·) or R(·) if any.

2. Type and run [DETC, FCC, OmegaK]=fmmsre(P,A,B,..). Other input and output ar-

guments will be explained later.

DETC=[ρ(Ψ̄Ω∗⊗Ω∗) ρ(ΨF ∗⊗F ∗) ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗)].

(a) If DETC(3) < 1, then Ω∗(st) = Ω1(st), and the model is DA. DETC(1) and

DETC(2) tells whether the model is DET/INDET/NSS from Proposition 3. Done.

(b) If DETC(3) ≥ 1 and ρ(Ω∗) < 1, the model is indeterminate. Done. No need to

check whether Ω∗(·) is the MOD solution.

(c) If DETC(3)= NaN (forward solution does not exists), or if DETC(3) ≥ 1 and

ρ(Ψ̄Ω∗⊗Ω∗) ≥ 1, the forward method cannot tell the classification.

3. If (c) occurs, use the GB approach. Refer to the implementation procedure below.

As we keep emphasizing, the forward method would be self-sufficient if one considers eco-

nomic models, which would almost surely be determinacy-admissible. That is, one would en-

counter only Case a because the remaining cases would imply that the model is determinacy-

inadmissible. Therefore, the GB approach would not be required in practice.

10

3.3.2 Implementing the Gröbner Basis.

gbmsre.m or gbmsre mac.m does not directly apply the Gröbner basis in matlab. Actual

computation is done in the language called Singular.

For Windows Users

1. Preparation

(a) Install Singular following a default option from https://www.singular.uni-kl.de/index.

php/singular-download.html. (It will be installed at c:\cygwin64\ home \ Com-

putername where Computername is your computer name, which is automatically

identified.).

(b) Open Cygwin64 Terminal and type ‘singular’ in that command window.

2. Implementing the GB technique

(a) Write your model in the form of (12), e.g., “Ex.m”. Construct P , A and B.

(b) Type and run DETCMOD=gbmsre(P,A,B) : This will produces a file GB singular.ascii

at the directory above, which transforms the restriction (17) as a set of polyno-

mials in Singular language. And it will display the following message in matlab

command window.

execute(read(”GB singular.ascii”)); timer; ns;

The code will temporarily hold. Copy and Paste the expression above in Singular

command line, and press the Enter key. Then, Singular will read GB singular.ascii,

computes the Gröbner basis and stores all the solutions at the directory above

as Sol partC.txt and Sol partC.txt. If a command prompt “>” shows up in Sin-

gular, computation is done. The first number shown is the computation time in

milliseconds. The second is the number of solutions.

(c) Come back to matlab window and press any key. Then “Ex.m” will load the

Singular output files, transform them into the solution format in matlab, report

the total number of solutions, the MOD and all other MSV solution, and the

information in Table 3.

3. Interpretation of the Results and Completing Classification

11

(a) Your code “Ex.m” will produce a table with an N × 4 matrix DETC.

DETC=[ρ(Ψ̄Ωh⊗Ωh
) ρ(ΨFh⊗Fh

) ρ(Ψ̄Ωh⊗Ωh
)ρ(ΨFh⊗Fh

) ρ(ΨΩ′
h⊗Fh

)], h = 1, ..., N .

(b) The first row is the result for the MOD solution. Follow Table 3 for classification.

For Mac Users

1. Preparation

(a) Installation: Follow the instruction below carefully. ”Applications” is the work

directory.

i. Go to System Preferences and open Security & Privacy in your mac computer.

Allow apps downloaded from ”Open anyway”.

ii. Go to https://www.singular.uni-kl.de/index.php/singular-download.html. Choose

OS X and Choose the option “Installation from a dmg File”, and follow the

instruction there.

(b) Open Singular command window: Same as Windows

2. Implementing the GB technique: Same as Windows except the following.

(b) Type and run DETCMOD=gbmsre mac(P,A,B). The message is as follows.

execute(read(”/Applications/GB singular.ascii”)); timer; ns;

3. Same as Windows

12

Appendix

A Set of Matlab Codes for LRE and MSRE Models

The package named as “MODmethodyyyymmdd” contains several folders.

1. MODMethod: This folder has two subfolders LRE and MSRE containing the following

set of main codes and supplementary ones.

LRE MSRE

Code Code

Forwar Method fmlre.m fmmsre.m

Alternatives qzmlre.m gbmsre.m, gbmsre mac.m

Supplementary

modlre sample.m

qzmlre2gensys.m

methods comparison LRE.m

modlre FM QZ.m

modmsre sample.m

computation time comparison.m

GBmsre Testing computation time.m

GBmsre Testing computation time mac.m

Example for Corollary2.m

lambda min.m

lambda min Example.m

modmsre FM QZ.m

2. Examples. This folder contains three subfolders with some examples replicating the

results of the three papers. Cho (2016), the present paper Cho (2021) and a companion

paper Cho and Moreno (forthcoming).

Codes

2016RED x1.m, x2.m, x2Q.m, x2figure.m, x3.m

2020MOD ReplicatingFigure1.m, Example Corollary2 Fisher FTPL.m

2019FTPLZLB To be updated

In what follows, main codes are explained in detail. Supplementary codes for the

MOD methodology are briefly explained as it is self-explanatory. Finally, examples are

explained.

13

A.1 MOD Method - LRE Models

A.1.1 Main Codes

qzmlre.m

This is the main code implementing the MOD method using the eigensystem, the QZ de-

composition. qzmlre stands for the QZ method for LRE models. The code adopts some

routines such as reorder.m and qzswitch.m in the package of Sims (2002), but applies to our

representation of LRE models.

[DETCMOD, OmegaMOD,GammaMOD,FMOD,Geig,gvAll,OmegaAll,GammaAll,FAll]=qzmlre(A,B,C,R)

� Input Arguments:

Input format Concepts Default

A n× n matrix A Required

B n× n matrix B Optional B = 0n×n

C n×m matrix C Optional C = In×n

R m×m matrix R Optional R = 0n×n

� Output Arguments:

Output Format Concepts

DETCMOD 1× 3 vector DETCMOD = [ρ(Ω1) ρ(F1) ρ(Ω1)ρ(F1)]

OmegaMOD n× n matrix OmegaMOD =Ω1 (MOD solution)

GammaMOD n× n matrix GammaMOD =Γ1 (MOD solution)

FMOD n× n matrix FMOD =F1 (MOD solution)

Geig 2n× 1 vector Vector of the generalized eigenvalues

gvAll N × n matrix
N = # of MSV solutions. Each row is the

choice n out of 2n generalized eigenvalues.

OmegaAll N × 1 cell arrary i-th solution is associated with i-th gvAll. 1 ≤ i ≤ N

GammaAll N × 1 cell arrary Same as above

FAll N × 1 cell arrary Same as above

Note. If ρ(Ω1)ρ(F1) > 1, then Ω(ξ1, ..., ξn) /∈ S.

14

� Interpreting the Results: Refer to Table 1 or 2.

fmlre.m:

This is the main code implementing the MOD method using the modified forward method.

fmlre stands for the forward method for LRE models.

[DETC, FCC, OmegaK,GammaK,FK,OtherOutput,IRS]=fmlre(A,B,C,R,Opt);

� Input Arguments: Same as those of qzmlre.m. In addition, there is an optional

input, Opt. See the code for detail.

� Output Arguments:

Output Format Concepts

DETC 1× 3 vector DETC = [ρ(Ω∗) ρ(F ∗) ρ(Ω∗)ρ(F ∗)]

FCC 1× 2 vector FCC = [K ρ(R′ ⊗ F ∗)], K is # of forward iteration

OmegaK n× n matrix OmegaK = Ω∗

GammaK n× n matrix
GammaK = Γ∗ if FCC2 < 1

= Γ if FCC2 > 1

FK n× n matrix FK = F ∗

OtherOutput Other output arguments: See the code for details

IRS T × nm matrix Impulse-response function with horizon T .

� Interpretation of DETC. Refer to Table 1

1. If DETC(3)=ρ(Ω∗)ρ(F ∗) < 1, then the model is determinacy-admissible and Ω∗ =

Ω1. DETC(1) and DETC(2) tells whether the model is DET/INDET/NSS. Done.

2. If DETC(3)≥ 1 and ρ(Ω∗) < 1, the model is indeterminate.

3. If DETC(3)≥ 1 and ρ(Ω∗) ≥ 1, or DETC(3)=NaN (Ω∗ does not exist), then use

qzmlre.m to find the MOD solution.

Remark 1. If FCC(2)< 1 , GammaK = Γ∗ and therefore, OmegaK and GammaK constitute

the forward solution. If FCC(2) ≥ 1, the FCC condition is violated. Thus even if Ω∗ exists,

a correct interpretation is that there is no forward solution because Γ∗ does not exist. The

15

code still produces Γ using the formula (6), which is rejected as an RE equilibrium on the

ground of the NBC criterion. Refer to Cho and McCallum (2015) for detail.1

A.1.2 Supplementary Codes: Auxiliary Functions

qzmlre2gensys.m

This code makes gensys algorithm of Sims (2002) comparable to qzmlre.m and fmlre.m.

Specifically, for given matrices A,B and C in (1a), define

kt = Etxt+1, xt = kt−1 + ηt (21)

Then the model can be written as

Γ0ŷt = Γ1ŷt−1 +Πzt +Ψηt (22)

where ŷt = [k′
t x′

t]
′ and Γ0, Γ1, Π and Ψ are the input matrices of gensys algorithm as

functions of A,B and C such that:

Γ0 = Ã, Γ1 = B̃, Π =

[
0n×m

C

]
, Ψ =

[
In

0n×n

]

where Ã and B̃ are defined in (10) It is conventional to define kt manually to include only

non-zero expectational variables in vector ŷt so that the dimension of these matrices are less

than 2n if A has a rank less than n. Although (22) has a larger dimension in general, it makes

the transformation model-independent, thus one does not need to write a given model in the

form of gensys input manually. The gensys algorithm computes the generalized eigenvalues

ξ with respect to the matrix pencil [Γ0 − ξΓ1] via the Schur decomposition theorem, which

is exactly the same as [Ã− ξB̃]. The algorithm examines the existence of the unique stable

solution by what is known as spanning conditions. The code has the following form:

[G1,C,impact,fmat,fwt,ywt,gev,eu,loose]=qzmlre2gensys(A,B,C,c,div)

� Input Arguments: A,B,C are the same as those of fmlre.m and qzmlre.m. c and div

are optional input arguments of gensys.m.

1What it means by FCC(2)> 1 can be understood as follows. The situation is like FCC(2)=|r| > 1 where

Γk =
∑k

i=1 r
k−1, which explodes thus does not exist. The formula (6) is like 1/(1 − r) < 0 when r > 1,

which is clearly wrong.

16

� Output Arguments: Outputs are the same as those of gensys.m.

� Interpreting the Results: Follow the code gensys.m. A key result is the vector eu,

which shows the existence and uniqueness. The conditions for the classification by

the gensys and the corresponding conditions by the MOD solution can be stated as

follows.

Classification eu MOD

Determinacy [1 1] ρ(Ω1) < 1, ρ(F1) ≤ 1

Indeterminacy [1 0] ρ(Ω1) < 1, ρ(F1) > 1

No Stable Solution eu(1) < 1 ρ(Ω1) ≥ 1

The MOD conditions are those by pulling the DA and DIA partitions in Table (1).

A.1.3 Supplementary Codes: Examples

modlre sample.m

This code applies the three solution techniques to 7 atheoretical models belong to DA-

DET, DA-INDET, DA-NSS, DIA-INDET(real- and complex-valued MOD solution) and

DIA-NSS(real- and complex-valued MOD solution). This shows that qzmlre.m is a stand-

alone procedure. The code also shows that fmlre.m is equivalent to qzmlre.m except for DIA

model with complex-valued solutions. DIA models are not economic ones and taken from

Sims (2007).

1. Instruction : Choose one of the seven models (See the instruction of the code.) and

run it. This code automatically implements the forward method followed by the QZ

approach using an auxiliary code modlre FM QZ.m. One can manually choose fmlre.m

or qzmlre.m.

methods comparison LRE.m

This code shows the equivalence between QZ method (qzmlre.m), the sequential technique

(fmlre.m and qzmlre.m if necessary) and gensys algorithm (qzmlre2gensys.m) for all 7 examples

above. Simply run the code.

17

A.2 MSRE Models

A.2.1 Main Codes

fmmsre.m

This is the main matlab code implementing the MOD method using the modified forward

method (explained below). It takes P, A(st, st+1) and optional B(st), C(st) or R(st) as input

arguments and produces the following output: conditions for determinacy, indeterminacy or

the case of no stable solution, forward convergence condition (FCC), the forward solution

and others. The function format, input and main outputs are given in the following way.

[DETC, FCC, OmegaK,GammaK,FK,OtherOutput,IRS]=fmmsre(P,A,B,C,R,Opt);

where fmmsre stands for the forward method for MSRE models. (OmegaK=Ω∗(st), Gam-

maK=Γ∗(st), FK=F ∗(st, st+1))

� Input Arguments:

Input format Concepts Default

P S × S matrix P(i,j)=P (st+1 = j|st = i) Required

A
S × S cell array or

S × 1 cell array

A{i,j}=A(st = i, st+1 = j} or

A{i,1}=A(st = i} if A(·)=A(st)
Required

B S × 1 cell array B{i,1}=B(st = i} Optional B{i,1}= 0n×n

C S × 1 cell array C{i,1}=C(st = i} Optional C{i,1}= In×n

R
S × 1 cell array or

m×m matrix

R{i,1}=R(st = i} or

R=R
Optional R= 0n×n

Opt Other optional input arguments: See the code

Remark 1. To conduct impulse-response analysis, we recommend to specify C(st) =

B−1
1 (st)C1(st).

Remark 2. Specify optional inputs as [] if they are followed by other inputs. For instance,

set B=[]; C=[]; to specify R and/or Opt.

18

� Output Arguments:

Output Format Concepts

DETC 1× 4 vector [ρ(Ψ̄Ω∗⊗Ω∗) ρ(ΨF ∗⊗F ∗) ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) ρ(ΨΩ∗′⊗F ∗)]

FCC 1× 2 vector [K ρ(ΨR′⊗F ∗)], K is # of forward iteration

OmegaK S × 1 cell array OmegaK{i,1} = Ω∗(st)

GammaK S × 1 cell array
GammaK{i,1} = Γ∗(st) if FCC2 < 1

= Γ(st) if FCC2 > 1

FK S × S cell array FK{i,j}= F ∗(st, st+1)

OtherOutput, IRS Other output arguments: See the code for details

� Interpretation of DETC. Refer to Table 3

1. If DETC(3)=ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) < 1, then the model is determinacy-admissible

and Ω∗ = ΩMOD.

2. If DETC(3) ≥ 1 and ρ(Ψ̄Ω∗⊗Ω∗) < 1, the model is indeterminate.

3. If DETC(3) ≥ 1 and ρ(Ψ̄Ω∗⊗Ω∗) ≥ 1, or DET(3)=NaN (Ω∗(st) does not exist),

then use gbmsre.m to find the MOD solution.

Remark 3. There is an additional condition in DETC, ρ(ΨΩ∗′⊗F ∗) unlike the LRE mod-

els. Recall that DETC = [ρ(Ω∗) ρ(F ∗) ρ(Ω∗)ρ(F ∗)] in LRE models where ρ(Ω∗)ρ(F ∗) =

ρ(Ω∗′ ⊗ F ∗). In MSRE models, ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) < 1 implies that ρ(ΨΩ∗′⊗F ∗) < 1 but

the converse is not true. This is the major difference between the two types of models.

This is precisely the reason why the uniqueness of a stable MSV solution does not mean

determinacy in general. In fact, such a case can always be generated by the order-preserving

transformation of the model as long as the MOD solution is stable in DIA model such that

ρ(ΨΩ1⊗F1) < 1 but ρ(Ψ̄Ω1⊗Ω1)ρ(ΨF1⊗F1) > 1. Refer to Corollary 2.

Remark 4. If FCC(2) < 1, GammaK = Γ∗(st) and therefore, OmegaK and GammaK con-

stitute the forward solution. If FCC(2) ≥ 1, the FCC condition is violated. Thus there is

no well-defined forward solution even if Ω∗(st) exists. The code still produces Γ(st) using

the formula (6), which is rejected as an RE equilibrium on the ground of the NBC criterion.

Refer to Cho (2016) for detail.

19

gbmsre.m or gbmsre mac.m

gbmsre.m is the main matlab code implementing the MOD method using the Gröbner basis

approach in Windows. Mac users must use gbmsre mac.m. It plays the same role as qzmlre.m

for LRE models but identifies the MOD solution by computing all MSV solutions. It takes

the same input P, A(st, st+1) and B(st) as those of fmmsre.m where a non-zero B(st) for at

least one regime must be included. The code produces the following output: conditions for

determinacy, indeterminacy or the case of no stable solution. The function format, input

and main outputs are given in the following way.

[DETCMOD,OmegaMOD,FMOD,DETC All,AllOmegas]=gbmsre(P,A,B);

where gbmsre stands for the Gröbner basis method for MSRE models. (OmegaMOD=Ω1(st),

FMOD=F1(st, st+1)).

Unlike fmmsre.m, this code uses the language called “Singular”, which must be installed

in advance. Therefore, one must manually follow the step displayed in the matlab command

window.

� Input Arguments: same as those of fmmsre.m but P, A and B must be specified

because the purpose of this code is to find all MSV solutions when lagged variables are

present with B ̸= 0n×n.

� Output Arguments:

Output Format Concepts

DETCMOD 1× 5 vector [ρ(Ψ̄Ω1⊗Ω1) ρ(ΨF1⊗F1) ρ(Ψ̄Ω1⊗Ω1)ρ(ΨF1⊗F1) ρ(ΨΩ1⊗F1) rc]

and rc = 1 if the solution Ω1 is real-valued and 0 otherwise.

OmegaMOD S × 1 cell array OmegaMOD{i,1} = Ω1(st)

FMOD S × S cell array FMOD{i,j}= F1(st, st+1)

DETC All N × 5 cell array DETC All{i,:}=
[ρ(Ψ̄Ωh⊗Ωh

) ρ(ΨFh⊗Fh
) ρ(Ψ̄Ωh⊗Ωh

)ρ(ΨFh⊗Fh
) ρ(ΨΩh⊗Fh

) rc(h)]

for h = 1, ...N , where N is the total # of MSV solutions

and rc(h) = 1 if Ωh is real-valued and 0 otherwise.

AllOmegas N × S cell array AllOmegas{h,s}=Ωh(st = s).

20

A.2.2 Supplementary Codes: Auxiliary Funtions

lambda min.m

For a given F (st, st+1), this code computes Λm(st, st+1) such that ρ(ΨF⊗F)ρ(Ψ̄Λm⊗Λm) = 1

following the analytical form presented in Proposition 1 of Cho (2021). This is important

because it states that there exists no mean-square stable sunspot components associated with

a given F (st, st+1) if and only if ρ(ΨF⊗F) ≤ 1. This improves Lemma 2 of Cho (2016). This

code just confirms that Proposition 1 holds numerically. In fact, the ρ(ΨF⊗F)ρ(Ψ̄Λ⊗Λ) ≥ 1 for

all possible Λ(st, st+1) is the relation that Farmer et al. (2009) wants to verify this numerically

but not completely. Proposition 1 proves their conjecture by providing an analytical form

of Λmin(st, st+1). If one wants to compute Λmin(·) for history-dependent sunspots, define sq,t,
Pqand F (sq,t, sq,t+1) following Cho (2021) and use the latter two as input arguments.

The function format is given by

[Lmin,tau2,xi2,V,D,u,Q]=lambda min(P,F)

� Input Arguments: The code takes P and F as input arguments.

Input format Concepts Default

P S × S matrix P(i,j)=P (st+1 = j|st = i) Required

F
S × S cell array or

S × 1 cell array

F{i,j}=F (st = i, st+1 = j} or

F{i,1}=F (st = i} if F (·) = F (st)
Required

� Output Arguments:

Output Format Concepts

Lmin S × S cell array
Lmin{i,j} = Λmin(st, st+1) = argmin ρ(Ψ̄Λ⊗Λ) s.t.

wt = Et[F (st, st+1)wt+1] = Et[F (st, st+1)Λmin(st, st+1)wt]

tau2 scalar tau2 = τ2 = ρ(Ψ̄Λmin⊗Λmin
), xi2 = ξ2 = ρ(ΨF⊗F)

V

Phi

S × 1 cell array

S × S cell array

V = V (st+1)

Phi = Φ(st, st+1)
such that

Λmin(st, st+1) = V (st+1)Φ(st, st+1)V
′(st)

D,u,Q Refer to Proposition 1 of Cho (2021)

21

A.2.3 Supplementary Codes: Examples

Examples are for Windows users. Mac Users must use gbmsre mac.m. To do so, replace

gbmsre.m with gbmsre mac.m in the codes modmsre sample.m, modmsre FM GB.m, Exam-

ple for Corollary2.m and computation time comparison.m.

modmsre sample.m

This code applies the three solution techniques to 7 atheoretical models belong to DA-DET,

DA-INDET, DA-NSS, DIA-INDET(real- and complex-valued MOD solutions) and DIA-

NSS(real- and complex-valuedMOD solutions). The code also shows that fmmsre.m is equiv-

alent to modmsre FM GB.m except for DIA model with complex-valued solutions. Choose

one of the seven models (See the instruction of the code.) and run it. This code automati-

cally implement the forward method followed by the GB approach using an auxiliary code

modmsre FM GB.m. One can manually choose fmmsre.m or gbmsre.m.

lambda min Example.m

Sample code for using lambda min.m: Finding Λm is not required as it is proven in Proposition

1. This code just shows how the formula works numerically. Simply run it.

Example for Corollary2.m

This code shows an example in which the model has a unique stable MSV solution but is

indeterminate. The sample model is randomly generated, which implies that this is not a

rare event, but an intrinsic property of MSRE models. Just run it.

computation time comparison.m

This code compares the computation time for 4 solution methods: QZ method, gensys

and FM for LRE models, and FM for MSRE models. Random atheoretical determinacy-

admissible models of dimension N and S are generated and the code reports average com-

putation time over T trials. Set N , S, and T at the beginning and run it. Then it will show

the computation time for the four cases for n = 1, ..., N .

GBmsre Testing computation time.m or GBmsre Testing computation time mac.m

This code shows that the computation time to compute all MSV solutions using the Gröbner

basis approach increases exponentially as the dimension of the model, number of lagged

variables and the number of regimes increase.

Instruction: Set S = 1, n and m for LRE models and set S = 2 or 3, n and m for MSRE

models. Read the instruction of the code or the code explanation in the following section.

22

We first show that the technique can be applied to LRE models as if no eigensystem were

available. Then one can also infer how tough to apply this approach to MSRE models.

A. Gröbner basis approach for LRE models

For LRE models, the problem of computing all MSV solutions boils down to the system of

polynomial equations implied by

AΩ2 − Ω +B = 0n×n.

Vectorizing this implies that there are n2 quadratic equations in n2 unknown ωij, which is

the (i, j)-th element of Ω. When some of elements of B are zeros, the number of unknowns

can be reduced. For simplicity, let m be the rank of B and construct arbitrary B such

that the first n−m columns are n× (n−m) matrix of zeros. The code gbmsre.m can also

handle the LRE models by setting P = 1 and S = 1. Let Model(n,m) denotes a LRE

model with an n dimensional model and m being the rank of B. Then, the number of MSV

solutions is N = (n+m)!
m!n!

as it is the same as the number of combination of choosing n out of

2n− (n−m) = n +m. This can be derived from Generalized Schur Decomposition. Refer

to qzmlre.m for detail.

The code GBmsre Testing computation time.m computes the solution to a model specified

by P, n and m using gbmsre.m. For an LRE model, set P = 1. The code generates n × n

matrices A and B of random numbers such that the rank of B is m. Table 4 shows that

the number of seconds required to compute the all solutions to Model(n,m). The case of

m = 1 is instructive because the number of N = n + 1. The number of ideals implied by

the system of the polynomial equations is equal to the total number of solutions. Gröbner

basis approach is a way of finding these ideals, and therefore, we can infer how long it would

take as the number of unknowns increases by one. Table 4 indicates that the computation

time increases by a factor of around 2N . This is the source of the problem why finding all

solutions to a polynomial is difficult.

ForModel(n ≥ 2,m = 2), the number of solutions explodes and it takes about 10 minutes

for Model(6, 2) but computation fails to yield the solution as n ≥ 7. The most general model

that the Gröbner basis approach is successful is Model(4, 3). N.A in Table 4 is this case

where gbmsre.m stops computation because of lack of memory within a day. Of course,

when the structure of the model is simpler, the Gröbner basis technique may work for higher

dimensional models, for instance, the rank of A is less than n, but this simulation exercise

23

Table 4: Computation Time for Gröbner basis in LRE Models

n m N Seconds n m N Seconds
1 1 2 < 1 2 2 6 < 1
2 1 3 < 1 3 2 10 < 1
3 1 4 < 1 4 2 15 ≈ 1
9 1 10 ≈ 1.5 5 2 21 ≈ 7
10 1 11 ≈ 3 6 2 28 ≈ 548
11 1 12 ≈ 4 7 2 36 N.A
12 1 13 ≈ 12 3 3 20 ≈ 3
13 1 14 ≈ 35 4 3 35 ≈ 4500
14 1 15 ≈ 95 5 3 252 N.A
15 1 16 ≈ 208 4 4 70 N.A

shows that it is extremely difficult to use this approach for non-trivial economic models.

B. Gröbner basis approach for MSRE models

The problem is much more serious for MSRE models. Indeed, the model can be stated as

Model(n,m, S) where S is the number of regimes. There is no analytical form for N , the

number of MSV solutions butN ≥ ΠS
s=1

(n+ms)!
ms!n!

in general. This is because when P = IS, each

regime collapses to Model(n,ms) Thus the minimum number of solution is the product of

the number of solutions at each regime. For instance, Model(n, n) = 2, 6, 20, ... for n = m =

1, 2, 3... Therefore, N ≥ 4, 36, 400, .. for MSRE models Model(n, n, S). This implies that

the computation time will increase more than 24, 236−4, 2400−36. Indeed the method works

extremely fast for Model(1, 1, 2) with N = 4, and it takes several minutes for Model(2, 2, 2)

with N = 44 > 36. However, computation fails for Model(3, 3, 2). Table 5 shows the MSRE

models for which Gröbner basis works and does not work.

Table 5: Computation Time for Gröbner basis in MSRE Models

n m S N Seconds n m S N Seconds
1 1 2 4 < 1 2 2 2 44 ≈ 227
2 1 2 9 < 1 3 2 2 N.A N.A
3 1 2 16 < 1 1 1 3 8 < 1
4 1 2 25 ≈ 3 2 1 3 27 ≈ 2
5 1 2 36 ≈ 60 3 1 3 64 ≈ 592
6 1 2 49 ≈ 573 4 1 3 125 N.A
7 1 2 64 N.A 2 2 3 N.A N.A

24

B Examples

B.1 Codes for Replicating Cho (2016)

All of the models turn out to be determinacy-admissible and the forward solution is now

confirmed by the MOD method. Therefore, the results of Cho (2016) is necessary as well

as sufficient.

B.1.1 The Fisherian Model

X1.m: This is a univariate MSRE model without predetermined variables considered by

Davig and Leeper (2007) and Farmer et al. (2009):

α(st)πt = Etπt+1 + rt,

rt = ρrt−1 + ϵt,

where πt and rt are inflation and the real interest rate, respectively. When α(st) < (>)1,

monetary policy is passive (active). The model can be cast in the form of (12) as:

xt = A(st)Etxt+1 + C(st)zt, zt = ρzt−1 + ϵt,

where xt = πt, zt = rt, A(st) = C(st) = 1/α(st), B(st) = 0 and R = ρ. The forward solution

will be of the form xt = Γ∗(st)zt if it exists. Let ρ = 0.9, p11 = 0.8 and p22 = 0.9.

Case=1: This is an example of determinacy with α(1) = 0.95 and α(2) = 1.5. One may

write the code as:

S=2; p11=0.8; p22=0.9; p12=1-p11; p21=1-p22; P=[p11 p12;p21 p22];

rho=0.9; alpha{1}=0.95; alpha{2}=1.5;

for i=1:S, A{i,1}=1/alpha{i}; C{i,1}=1/alpha{i}; end, R=rho;

[DET, FCC, OmegaK,GammaK,FK]=fmmsre(P,A,[],C,R);

The first three lines specify the number of regimes, transition probability matrix and A,

C and R. The last line shows the function “fmmsre.m”. Since no lagged variables are

present, FCC(1) holds trivially because there is no forward iteration and so FCC1=1. DET(1)

= ρ(Ψ̄Ω∗⊗Ω∗) = 0 and DET(2) = ρ(ΨF ∗⊗F ∗) = 0.9059 < 1.

25

Since DET(1)×DET(2)= 0 < 1, the model is determinacy-admissible and the model is

determinate. Since FCC(2) = ρ(ΨR′⊗F ∗) = 0.8014 < 1, the forward solution exists, which is

given by xt = Γ∗(st)zt. GammaK{1,1} representing Γ∗(1) is 6.11 and GammaK{2,1} =2.25.

Case=2: This is an example of indeterminacy with α(1) = 0.9 and α(2) = 1.5. Set

alpha{1}=0.9 above and run the code. In this case, FCC(1)= 1. DET(1) = 0. DET(2)=

1.01 > 1. The model is determinacy-admissible, but indeterminate.

B.1.2 Regime-Switching Monetary Policy

X2.m: This is the model analyzed in Section 5 of Cho (2016). The model is given by:

πt = βEtπt+1 + κyt + zS,t, (23)

yt = Etyt+1 −
1

σ
(it − Etπt+1) + zD,t, (24)

it = (1− ρ)ϕπ(st)πt + ρit−1 + zMP,t. (25)

In matrix form, xt = [πt yt it]
′, zt = [zS,t zD,t zMP,t]

′, ϵt = [ϵSt ϵDt ϵMP
t]′, and,

B1(st)xt = A1(st)Et[xt+1] +B2xt−1 + zt, zt = Rzt−1 + ϵt,

B1(st) =

 1 −κ 0

0 1 1/σ

−(1− ρ)ϕπ(st) 0 1

 , A1(st) =

 β 0 0

1/σ 1 0

0 0 0

 , B2 =

 0 0 0

0 0 0

0 0 ρ

 .

The matrix R is now a matrix of zeros. Then the model is given by:

xt = A(st)Et[xt+1] +B(st)xt−1 + C(st)zt,

where A(st) = B1(st)
−1A1(st), B(st) = B1(st)

−1B2 and C(st) = B1(st)
−1. The parameter

values are chosen as follows.

Common Parameters
p11 = 0.85, p22 = 0.95, β = 0.99, κ = 0.132, σ = 1,

ρ = 0.7, ρD = ρS = 0.8, ρMP = 0.

Case=1: Determinate ϕπ(1) = 0.9, ϕπ(2) = 1.5.

Case=2: Indeterminate ϕπ(1) = 0.8, ϕπ(2) = 1.5.

26

The results are qualitatively similar to those of the Fisherian model. In the case of

determinacy, FCC(1)=22. DET(1) = ρ(Ψ̄Ω∗⊗Ω∗) = 0.2839 < 1 and DET(2) = ρ(ΨF ∗⊗F ∗) =

0.9539 < 1. So the model is determinate and it is of course determinacy-admissible as

DET(1)×DET(2)= 0.2708 < 1. Since FCC(2) = 0.7442 < 1, the forward solution exists,

which is given by xt = Ω∗(st) + Γ∗(st)zt. In the case of indeterminacy, FCC(1)=24. DET(1)

= 0.2895 < 1 and DET(2) = 1.0082 > 1. But the model is determinacy-admissible as

DET(1)DET(2)= 0.2919 < 1.

X2figure.m: This code computes the locus of ϕπ(1) and ϕπ(2) such that ρ(ΨF ∗⊗F ∗) = 1 by

“fsolve.m”, which partitions the parameter space into the determinacy and indeterminacy

regions.

B.1.3 Regime-Switching Elasticity of Intertemporal Substitution

The code X3.m considers a New-Keynesian model with regime-switching elasticity of in-

tertemporal substitution. The model is presented in Section 6.3 of the previous version of

Cho (2016) “Characterizing Markov-Switching Rational Expectations (MSRE) models”.

πt = βEtπt+1 + κyt + zS,t, (26)

yt = Et

[
σ(st+1)

σ(st)
yt+1

]
− 1

σ(st)
(it − Etπt+1) +

1

σ(st)
zD,t, (27)

it = (1− ρ)ϕππt + ρit−1 + zMP,t. (28)

This example differs from the Markov-switching monetary policy model in that A depends

both on st and st+1. This new feature can be handled by simply specifying A(i, j) for all

i, j = 1, 2, ..., S. For a numerical exercise we have β = 0.99, κ = 0.132, ϕπ = 1.5, ρD =

ρS = 0.95, ρMP = 0 and ρ = 0.95. For σ(st) we set σ(1) = 1 and σ(2). Since ϕπ > 1,

the model would be determinate and this can be easily verified by ρ(Ψ̄Ω∗⊗Ω∗) = 0.56 and

ρ(ΨF ∗⊗F ∗) = 0.95. Of course, the model is determinacy-admissible as the product of the two

metrics is less than 1.

Remark The impulse response function is an optional output argument of the code “fmmsre.m”.

All three codes X1.m, X2.m and X3.m will display the impulse response functions starting

at two different initial regimes.

27

B.2 Codes for Replicating Cho (2021)

1. ReplicatingFigure1.m produces Figure 1 of Cho (2021). It applies “fmlre.m” and “fmmsre.m”

for more than 120,000 times of parameter combinations in about a couple of minutes.

Just run this code.

2. Example Corollary2 Fisher FTPL.m is another example for Corollary 2 using the model

with regime-switching in monetary and fiscal policies in the paper. To verify Corollary

2, we need to compute all other MSV solutions. Thus, this code requires to run the

code gbmsre.m.

B.3 Sample Codes for Cho and Moreno (forthcoming)

Please refer to the link in the website, https://sites.google.com/site/sc719en/research.

28

C Modified Forward Method

The original forward method of Cho and Moreno (2011) for LRE models and the forward

method Cho (2016) for MSRE models yields the forward solution different from the MOD

solution only when the model has a special block-recursive structure. The modification of the

original forward method aims at recovering the equivalence of the forward solution and the

MOD solution for models with a block-recursive structure or a type of models that breaks

down the equivalence of the two solutions for unknowns reasons for MSRE models. Refer to

Cho (2021) for detail.

The information with which expectations are formed may not contain all of the state

variables for block-recursive models. Thus let the original forward method use partial in-

formation. The information can be extended to include all of the state variables regardless

of the model structure. This case uses full information. Modified forward method can be

summarized as follows. First, apply the original forward method. If the forward solution is

the MOD solution, that is, if the model is determinacy-admissible, then it is done. If not,

use the forward method under full information. It suffices to illustrate the forward method

for MSRE models because the forward method for LRE models is just a special case. The

following briefly explains the original forward method and the forward method under full

information.

C.1 Original Forward Method for MSRE models.

1. Forward Representation of the Model (Proposition 3 of Cho (2016)): There

is a unique set of sequences Ωk(st), Γk(st) and Fk(st, st+1) such that

xt = Et[Mk(st, st+1, ..., st+k)xt+k] + Ωk(st)xt−1 + Γk(st)zt, (29)

where Ω1(st) = B(st), Γ1(st) = C(st), F1(st, st+1) = A(st, st+1) for all st and st+1, and

for k = 2, 3, ...,

Ωk(st) = {In − Et[A(st, st+1)Ωk−1(st+1)]}−1B(st), (30)

Γk(st) = {In − Et[A(st, st+1)Ωk−1(st+1)]}−1C(st) (31)

+Et[Fk(st, st+1)Γk−1(st+1)R(st+1)],

Fk(st, st+1) = {In − Et[A(st, st+1)Ωk−1(st+1)]}−1A(st, st+1). (32)

29

� No-bubble Condition (NBC) holds if limk→∞ Et[Mk(st, st+1, ..., st+k)xt+k] = 0n×1

when expectations are formed with that solution.

� Forward Convergence Condition (FCC)

Table 6: Forward Convergence Conditions

Notations Concepts How to check
FCC1 Ω∗(st) = limk→∞ Ωk(st) every element of Ωk(st)− Ωk−1(st) → 0
FCC2 Γ∗(st) = limk→∞ Γk(st) r(ΨR′⊗F ∗) < 1

� The forward solution is:

xt = Ω∗(st)xt−1 + Γ∗(st)zt. (33)

– Remark 1. In practice, Ω∗(st) always exists except for the case in which the

model has no real-valued solutions – the case the FCC should not hold.

– Remark 2. F ∗(st, st+1) = lim
k→∞

Fk(st, st+1) exists whenever Ω
∗(st) exists.

– Remark 3. Existence of Γ∗(st) can be checked easily by computing ρ(ΨR′⊗F ∗).

One can understand why this is true from (31). That is, Γk(st) explodes if

ρ(ΨR′⊗FK
) > 1.

2. Property of the Forward Solution (Proposition 4 of Cho (2016)): The forward

solution is the unique RE solution that satisfies the NBC.

3. Classification of the solutions by the forward method (Proposition 5 and 6 of

Cho (2016)): Suppose that the forward solution Ω∗(st) exists and ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) <

1. Then Ω∗(st) = ΩMOD(st). Classify the model following Table 3 (See Cho (2021)).

Done.

C.2 Forward Method for MSRE models under Full Information.

If ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) ≥ 1, forward one period ahead and take expectations as:

Et[xt+1] = Et[kt+1] + Et[B(st+1)]xt, (34a)

30

which must be true under rational expectations where kt = Et[A(st, st+1)xt+1]. Et[B(st+1)]

at each regime st can be easily computed by
∑S

j P (i, j)B(st+1 = j) at each s(t) = i = 1, ..., S.

Then the model is transformed as follows.

xt = kt +B(st)xt−1 (35a)

kt = Et[A(st, st+1)xt+1] +H(Et[xt+1]− Et[kt+1]− Et[B(st+1)]xt), (35b)

where H is an n×n matrix in which every single element is arbitrary but non-zero. Applying

the expectational relation of the whole model is innocuous because it must hold regardless

of block-recursiveness of the model. By doing this, the model is no-longer block-recursive

and has no autonomous block. Now we write this into the original form of the model in the

following way. Let yt = [x′
t k

′
t]
′ be a 2n × 1 vector. Notice that Et[B(st+1)] is a function of

st. Collecting the coefficient matrices yields:

[
In −In

HEt[B(st+1)] In

]
yt = Et

[[
0n×n 0n×n

A(st, st+1) +H −H

]
yt+1

]
+

[
B(st) 0n×n

0n×n 0n×n

]
yt−1,

Finally, by multiplying the inverse of the coefficient matrix of yt, we have the following form

of the model:

yt = Et[A
y(st, st+1)yt+1] +By(st)yt−1. (36)

Forward method under full information is to apply the forward method to (36) and obtain

the solution for yt.

yt = (Ωy(st))
∗yt−1. (37)

The solution (Ωy(st))
∗ is 2n×2n and since xt is the first n×1 subvector of yt, the first n×n

component of (Ωy(st))
∗ is the forward solution of the original model under the modified

forward method.

C.3 Existence of the Forward Solution

Both the original model (12) and the adjusted model (36) has the same form. Therefore, we

can examine the existence condition for the forward solution using the same formula as (30)

and (32). Under the modified forward method, Ωk(st) can be interpreted as Ωy
k(st) in (37).

The condition for the existence of the forward solution can be understood by differentiating

31

and vectoring (30) such that: vec(dΩk(1))

...

vec(dΩk(S))

 =
[
ΨΩ′

k−1⊗Fk−1

] vec(dΩk−1(1))

...

vec(dΩk−1(S))

 . (38)

Proposition 4 of Cho (2021) formally states the convergence condition for Ωk. There are two

possibilities:

1. ρ(ΨΩ′
k−1⊗Fk−1

) < 1 for all k > K >> 1.

2. ρ(ΨΩ′
k−1⊗Fk−1

) ≥ 1 for some k > 1 and u′
kvec(dΩk−1) = 0n2S×1 for every eigenvector uk

associated with an unstable root of ΨΩ′
k−1⊗Fk−1

.

Under the original forward method, Proposition 4 states that the equivalence of the

forward solution and the MOD solution may break down only in the second case. In that

case, even if ΨΩ′
k−1⊗Fk−1

contains a root larger than unity, it does not affect Ωk, thus the

forward solution can still exist. The forward method under full information is to adjust the

model such that Case 2 of Proposition does not arise in the class of determinacy-admissible

models.2 Then Case 1 implies that in the MSRE framework, the forward solution exists for a

broader class of models including determinacy-inadmissible models because, ρ(ΨΩ∗′⊗F ∗) < 1

can be consistent with ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) ≥ 1. That is, if ρ(Ψ̄Ω∗⊗Ω∗)ρ(ΨF ∗⊗F ∗) < 1,

then ρ(ΨΩ∗′⊗F ∗) < 1, but the converse is not true in general. An extensive experiment so

far has never found a single case in which the forward solution is not the MOD solution

in atheoretical and economic examples. Nevertheless, the equivalence to a model with a

real-valued MOD solution is an open question to be explored in the future.

2When a model has completely decoupled equations, Case 2 still exists even under the forward method
under full information. The example in Section 4 when c = 0 is such a case. However, recall that in that
case, the solution with the smallest generalized eigenvalues does not exists, thus the model is determinacy-
inadmissible. Moreover, the forward solution coincides with the MOD solution.

32

References

Cho, Seonghoon, “Sufficient conditions for determinacy in a class of Markov-switching

rational expectations models,” Review of Economic Dynamics, 2016, 21, 182–200.

, “Determinacy and classification of Markov-switching rational expectations models,”

Journal of Economic Dynamics and Control, 2021, 127, 104115.

and Antonio Moreno, “The Forward Method as a Solution Refinement in Rational

Expectations Models,” Journal of Economic Dynamics and Control, 2011, 35 (3), 257–

272.

and , “Generalizing Determinacy under Monetary and Fiscal Policy Switches: The

Case of the Zero Lower Bound,” Journal of Money, Credit and Banking, forthcoming.

and Bennett T McCallum, “Refining linear rational expectations models and equilib-

ria,” Journal of Macroeconomics, 2015, 46, 160–169.

Davig, Troy and Eric M. Leeper, “Generalizing the Taylor Principle,” American Eco-

nomic Review, 2007, 97 (3), 607–635.

Farmer, Roger E.A., Daniel F. Waggoner, and Tao Zha, “Understanding Markov-

Switching Rational Expectations Models,” Journal of Economic Theory, 2009, 144 (5),

1849–1867.

Foerster, Andrew, Juan F Rubio-Ramı́rez, Daniel F Waggoner, and Tao Zha,

“Perturbation methods for Markov-switching dynamic stochastic general equilibrium mod-

els,” Quantitative Economics, 2016, 7 (2), 637–669.

Sims, Christopher A., “Solving Linear Rational Expectations Models,” Computational

Economics, 2002, 20 (1), 1–20.

Sims, Christopher A, “On the genericity of the winding number criterion for linear rational

expectations models,” Technical Report, Citeseer 2007.

33

	Introduction
	MOD Method for LRE Models
	LRE Models and RE solutions
	The MOD Method
	Classification of LRE Models by the MOD Method
	Identification of the MOD Solution

	Standard Methods Using Eigensystem
	Implementing MOD Method for LRE Models

	MOD Method for MSRE Models
	MSRE Models and RE solutions
	The MOD Method
	Classification of MSRE Models by the MOD Method

	Implementing MOD Method for MSRE Models
	Implementing the Forward Method
	Implementing the Gröbner Basis.

	Set of Matlab Codes for LRE and MSRE Models
	MOD Method - LRE Models
	Main Codes
	Supplementary Codes: Auxiliary Functions
	Supplementary Codes: Examples

	MSRE Models
	Main Codes
	Supplementary Codes: Auxiliary Funtions
	Supplementary Codes: Examples

	Examples
	Codes for Replicating Cho2016RED
	The Fisherian Model
	Regime-Switching Monetary Policy
	Regime-Switching Elasticity of Intertemporal Substitution

	Codes for Replicating Cho2021
	Sample Codes for ChoMoreno2023JMCB

	Modified Forward Method
	Original Forward Method for MSRE models.
	Forward Method for MSRE models under Full Information.
	Existence of the Forward Solution

