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Abstract

This is a technical guide for the MOD (minimum of modulus) method proposed
by |(Cho| (2021)) in the class of general linear rational expectations (LRE) models and
Markov-switching rational expectations (MSRE) models. This document provides a
compact summary of the paper and illustrates how to implement the methodology.
Current versions of the codes accompanying this technical guide and the numerical ex-
amples including the ones in the paper can be found at https://sites.google.com/site/sc719en /research.
This technical guide and the matlab codes will be updated in the future.
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1 Introduction

This document explains how to implement the MOD(minimum of modulus) method of
Chol (2021)) using matlab for LRE and MSRE models The proposed method uses only
the most mean-square stable M OD solution for a complete classification of models into
three mutually disjoint and exhaustive subsets: determinacy, indeterminacy and the case of
no stable solution. A solution methodology for the MOD solution is also provided. The
previous technical guide for Cho| (2016) is modified and nested in this note.
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2 MOD Method for LRE Models

2.1 LRE Models and RE solutions

Ty = AEt[.Tt_H] + Bl’t_l + CZt, (la)
2 = Rz +e, &~ (0,D), Ei16 = 0pxy (1b)

x; n x 1 vector of endogenous variables,

2z m X 1 vector of mean-square stable exogenous variables,

€; m X 1 vector of white noises,

A n x n coefficient matrix of the forward-looking endogenous variables,
B n x n coefficient matrix of the backward-looking endogenous variables,
C n x m coeflicient matrix of the exogenous variables,

R m x m coefficient matrix of the lagged exogenous variables.

Writing a model into the form (La)): Any linear rational expectations model can be
written as Bixy = A1 Ef[z1] + Baxy1 + Ch 2z where By, Ay, By and C by collecting the pa-
rameters of current, forward-looking, backward-looking endogenous variables and exogenous
variables. Therefore, one can set A = B{'A;, B = B;'B, and C = B{'C,.

Solution Forms, Restrictions and Full Set of MSV solutions

r; = [Quxi1 4 Tz + w; : General RE solution, (2)

r, = Qx4+ Tz (w = 04x1) - MSV solution, (3)

wy = FEawi : (wy # 0,41) @ Sunspot component. (4)

Q= (I, - AQ)™'B, (5)

I'=(I,— AQ)"'C + FT'R, (6)

F=(I,— AQ) A, (7)

S = {Q, € C"|Qy, solves (5)), p(1) < ... < p() < ... < p(Qn)} (8)

where p(M) = maxi<;<n(|&]), &1, ..., & are the eigenvalues of an n x n matrix M, and

N < ().
Definition 1 x; = Qyxy_1 is an MOD solution if p(£21) = min p(QQ) for all Q € S.
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2.2 The MOD Method
2.2.1 Classification of LRE Models by the MOD Method

The main classification result of the MOD method for LRE models is a special case of

Proposition 3 of the paper.

Result 3 Consider a LRE model and the set of solutions S in (@ Then, necessary and
sufficient conditions for determinacy, indeterminacy and the case of no stable solution are
given in Table (1). Moreover, if there exists a solution such that p(Q)p(F) < 1, it is the

unique real-valued MOD solution and the model is determinacy-admissible.

Table 1: Classification of LRE Models by the MOD Method

Determinacy-Admissible(DA): | Determinacy-Inadmissible(DIA):
P )p(F) < 1 p(OQ)p(F) > 1
Determinacy p() <1, p(Fy) <1 Impossible
Indeterminacy p(Fy) > 1 p(Q) <1
No Stable Solution | p(Q;) > 1 p(QY) >1

2.2.2 Identification of the M OD Solution

The MOD methodology is completed by finding the M OD solution. In LRE models, iden-
tification of the MOD can be done by use of the eigensystem implied by the generalized
Schur decomposition theorem. Such an identification is not possible for MSRE models be-
cause of the lack of an eigensystem. In principle, identification of the MOD can be done
by solving all €2, which is very difficult even for small-scale LRE models, let alone MSRE
models. Partitioning the LRE models by Determinacy-Admissibility(DA) provide a crucial

identification condition for the M OD solution. Implementation will be shown below.



2.3 Standard Methods Using Eigensystem

This section shows the equivalence between the M OD approach and the standard methods
based on an eigensystem. This also helps understand our results in terms of well-known

generalized eigenvalues. Let y, = [z} x}_,]". Model can be reformulated as

Byt = AEtyt—H + é'Zt (9)
~ I, —-B ~ A Opxn ~ C
B = , A= L O = (10)
I’I’L OHXTL OnXTL In OnXm

Let {4 p be the set of generalized eigenvalues implied by the model. Formally,

Cap=1{&€CO=|A-&B|, |&] <& < |&al } (11)

Any solution € S is associated with n out of 2n eigenvalues. The corresponding F' is

associated with the inverses of the remaining n eigenvalues.

Using these properties, LRE models can also be classified as Table [2, which is ex-
actly the same as Table [I} including the conditions for Determinacy-Admissibility(DA) and
Determinacy-Inadmissibility(DIA). Detailed arguments for equivalence of the classification
of LRE models using this standard eigensystem approach and the MOD method can be
found in the paper.

Table 2: Classification of LRE Models

Determinacy-Admissible(DA): | Determinacy-Inadmissible(DIA):
Q(fl) 7571) € S and 9(51, "'7571) §é S or
[&nl < 1&n+1] |&nl = 1€n+1]
Determinacy 1€ <1 < [&nsa] Impossible
Indeterminacy | |&,41] < 1 p(QY) =&l <1,i>0
No Stable Solution | |£,| > 1 p(Q) =&l >1,i>0

Remark 1. Table [2| shows that a usual root-counting to identify determinacy can fail but
only when Q(&1, ...,&,) ¢ S. Therefore, the existence of the MOD solution must be checked
along with root-counting, which is precisely what the M OD method does in line with the
gensys algorithm of [Sims) (2002)).



2.4 Implementing MOD Method for LRE Models

MOD method is to classify a given model into DET/INDET /NSS by identifying and com-
puting the M OD solution. There are two main matlab codes for LRE models to be explain

in the following section.
e fmlre.m: Implement the M OD method using the modified forward method.

e gzmlre.m Implement the M OD method using eigensystem.

There are two ways of implementing the method. First, QZ method does it all. This
computes the MOD solution and checks whether Q(&;,...,&,) € S using the eigensystem.
Therefore, one can directly classify a given model using p(€2)p(Fy) following Table[l] Second,
a sequential way of first using the forward method and QZ method if necessary. The forward
method computes the forward solution Q*. If this turns out to be the MOD solution, then
classification is done. If it does not exist or if p(Q*)p(F*) > 1 and p(2*) > 1, the forward
method cannot tell classification. Thus one needs to use an alternative technique to identify
the MOD solution and complete classification. Here QZ method is suggested because the
eigensystem directly yields the MOD solution. Note that in the MSRE models, QZ method
is not available. Thus one must use a sequential approach of applying the forward method
first and use the Grobner basis approach if necessary. The sequential approach is not needed
for LRE models, but it shows how it would work for MSRE models.

1. Implementing the M OD method using the QZ method.

(a) Write your model in the form of , e.g., “Ex.m”. Construct A. Construct B, C,
or R if any.
(b) Type and run DETCMOD=qzmlre(A,B). € is the MOD solution where
DETCMOD=[p(21) p(F1) p(€21)p(F1)].
i. If p(Q)p(F1) < 1, then the model is DA. p(€) and p(F}y) tells whether the
model is DET/INDET/NSS.
ii. If p(21)p(F1) > 1 and p(§21) < 1, the model is indeterminate. (The model is
DIA)
iii. If p(21)p(F1) > 1 and p(€y) > 1, the model has no stable solution. (The
model is DIA)



2. Implementing the M OD method using the forward method

(a) Same as above: 1.(a).

(b) Type and run DETC=fmlre(A,B). Q* is the forward solution where
DETC=[p(2") p(F™) p(2")p(F™)].

i If p(2%)p(F*) < 1, then Q* = €, and the model is DA. p(£2;) and p(F}) tells
whether the model is DET/INDET/NSS. Done.
. If p(Q%)p(F*) > 1 and p(2*) < 1, the model is indeterminate. No need to
check whether Q* = €. Done.
iii. If Q* = NaN (forward solution does not exist) or if p(Q*)p(F*) > 1 and
p(Q2*) > 1, the forward method cannot tell the classification. Apply the

alternative to find the M OD solution and complete classification.

Remark 1. Only the case i would arise in practice because cases ii and iii would arise
for DIA models. Therefore, forward method would also be sufficient for classification of
economic models.

Remark 2. In fact, forward method is even faster than standard methods in many cases.



3 MOD Method for MSRE Models

3.1 MSRE Models and RE solutions

The class of MSRE models:

v = EfA(st, Si41)Teq1] + B(se)wi—1 + C(se) 2, (12)
2z = R(si)z—1+ G(sy)e, e~ (0,D) (13)

€; i1s covariance-stationary, independent of s;_j for all £ > 0.

Ty n X 1 vector of endogenous variables,

2 m X 1 vector of mean-square stable exogenous variables,

€4 [ x 1 vector of covariance-stationary processes independent of s;,

S¢ S-regime ergodic Markov chain,

P S x S transition matrix with p;; = Pr(s; = jls;—1 = 1), 4,5 € {1,2,..., 5},
A(+), B(-) n x n coefficient matrices,

c(-) n x m coefficient matrix,

R(+) m X m coefficient matrix.

G(-) m x [ coefficient matrix.

Writing a model into the form ([12)): The original model would be written as By (s;)x; =

Ey[A (54, 8041)T0s1]+Ba(s:)w,_14+C1(5:) 2. Therefore, one can set A(s;, s¢41) = By (s)A1(s¢, 5041),
B(s:) = By (s¢)Ba(s;) and C(s;) = By *(s:)Ci(s¢). G(-) can capture the regime-dependent
conditional variance. But it is not needed for model classification. Both (Cho (2016 and
Foerster et al. (2016) emphasize that A may well depend on future regime s;;; in DSGE
models with microfoundation subject to regime-switching. Using the perturbation method,
Foerster et al.| (2016) derive a general form of linearized Markov-switching DSGE models,
which can also be written as (12)).

Solution Forms and Restrictions

xy = [Qsp)zi—1 + [(s¢)2z] + wy - General RE solution, (14)
xy = Qsp)ri1+T(se)ze : (wy = 0,%1) : MSV solution, (15)
wy = EF(sy, Si01)wes] : (wy # 0px1) @ Sunspot component (16)



Use) = {In = Be[A(st, 5041)s41)]} 7 B(se), (17)
U(s;) = {In— EA(se, 5001)Qs041)]} " C(se) + Ey[F (st 8041)T (se41) R(5141)],(18)
F(sysi01) = {ln = EA(se, 5001)Qs041)]} T Alse, 5041)- (19)

Complete Set of MSV solutions and Mean-square Stability: The following matrices

will be needed to define mean-square stability and exposition.
Veon = [p;i(G(5,1))" @ H(j,9)],
Veon = [pi(G(i,5))" ® H(i,j)],

where G = G(s4,5:41) and H = H(s;,5:41) are n x n matrices and the arguments of Vggp
and Wgep are ij-th n? x n? block.  and 7 denote a conjugate and non-conjugate transpose

operator, respectively.

Since F'(-) and I'(+) are uniquely associated with a given Q(-), the full set of MSV solutions
can be defined by €Q(-) as:

10<\I191®QI) <. < p(\i[Qh®Qh) <. < p<\IIQN®QN)

5 { Qn(s:) € C™"|Qy(+) solves ([17), h=1,...,N, and } (20)

where \IJQ®Q, and Vpgp are defined as:

[ o (1))@ Q1) .. psi(R(1))T ® Q1)
Voga = ,

L p1s(Q29))T @ Q(S) ... pss(QS))T @ Q(S)

[ pn(F(LD))T @ F(L1) ... pis(F(1,8))T ® F(L,S)
\IIF(X)F —

L psi(F(S, 1)) @ F(S,1) ... pss(F(S,S))" @ F(S,S)

Only these two matrices will be used for our classification result.

Definition 2 A MSV solution is mean-square stable (MSS) if and only if p(Vqeq) < 1.

= Qi (se)xi—1 +T1(s¢) 2 is an MOD solution, the most stable solution in the mean-square
stability sense if p(Va,e0,) = min p(Voeq) for all Q(s;) € S in (20).



3.2 The MOD Method

Propositions 1 and 2 are new to the literature, leading to Proposition 3, the main classifica-
tion result of the M OD method for MSRE models.

3.2.1 Classification of MSRE Models by the MOD Method

Proposition 1 There is no mean-square stable sunspots w,; satisfying ([6]/ iof and only if
p(Vrer) < 1.

Proposition 2 For all Q(s;) € S,
L. p<¢lﬂh®ﬂh)p(qul®Fl) > 1, p(qul(@Ql)p(\Iij@Fh) > 1
2. Q(s4) is the unique real-valued MOD solution if p(Va,00,)p(Vrer) < 1.

Proposition 3 Consider a MSRE model (@ and the set of solutions S in (@ Then,
necessary and sufficient conditions for determinacy, indeterminacy and the case of no stable
solution in the mean-square stability sense are given in Table (@ Moreover, if there exists
a solution such that p(Vaea)p(Vrer) < 1, it is the unique real-valued MOD solution and

the model is determinacy-admissible.

Table 3: Classification of MSRE Models

Determinacy-Admissible(DA) Determinacy-Inadmissible(DIA)
p(\pﬂ1®91>p(\yF1®F1) <1 p(\yﬂ1®ﬂl)p(\1jF1®F1) > 1
Determinacy pP(Va,00,) <1, p(¥per) <1 | Impossible
Indeterminacy | p(Vrer) > 1 p(Ta,e0,) <1
No Stable Solution | p(¥g,gq,) > 1 p(To,e0,) > 1

Corollary 2 The uniqueness of a mean-square stable MSV solution does not always imply
determinacy in MSRE models with lagged variables. That is, a model can be determinacy

even when p(Wo,e0,) < 1 < p(Wa,eq,) because this can be compatible with p(Vper ) > 1.

Remark. Corollary 2 is an important and new finding in the literature. LRE models with
lagged variables, the uniqueness of a MSV solution implies determinacy. In stark contrast,
it is not the case for MSRE models.



3.3 Implementing MOD Method for MSRE Models

The methodology is completed by finding the M OD solution, Partitioning the entire class
of MSRE models by determinacy-admissibility(DA) and determinacy-inadmissibility(DIA)
provide an important identification condition for the M OD solution. This is crucial in

practical application. There are two main matlab codes for MSRE models.

e fmmsre.m : Implements the M OD method using the modified forward method.

e gbmsre.m (for Windows users) or gbmsre_mac.m (for Mac users) : Implements the
MOD method using the Grobner basis (GB).

3.3.1 Implementing the Forward Method

1. Write your model in the form of (12), e.g., “Ex.m”. Construct P and A(-). Construct
B(-), C(-) or R(:) if any.

2. Type and run [DETC, FCC, OmegaK|=fmmsre(P,A,B,..). Other input and output ar-

guments will be explained later.
DETC=[p(Vacar) p(Vrar) p(Yarpa)p(Vr-gr-)].
(a) If DETC(3) < 1, then Q*(s;) = Q(s;), and the model is DA. DETC(1) and
DETC(2) tells whether the model is DET /INDET/NSS from Proposition 3. Done.

(b) If DETC(3) > 1 and p(2*) < 1, the model is indeterminate. Done. No need to
check whether 2*(+) is the M OD solution.

(c) If DETC(3)= NaN (forward solution does not exists), or if DETC(3) > 1 and
p(Wareo+) > 1, the forward method cannot tell the classification.

3. If (c) occurs, use the GB approach. Refer to the implementation procedure below.
As we keep emphasizing, the forward method would be self-sufficient if one considers eco-
nomic models, which would almost surely be determinacy-admissible. That is, one would en-

counter only Case a because the remaining cases would imply that the model is determinacy-

inadmissible. Therefore, the GB approach would not be required in practice.
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3.3.2 Implementing the Grobner Basis.

gbmsre.m or gbmsre_mac.m does not directly apply the Grobner basis in matlab. Actual

computation is done in the language called Singular.
For Windows Users
1. Preparation

(a) Install Singular following a default option from https: //www.singular.uni-kl.de/index.
php/singular-download.html. (It will be installed at c:\cygwin64\ home \ Com-
putername where Computername is your computer name, which is automatically
identified.).

(b) Open Cygwin64 Terminal and type ‘singular’ in that command window.
2. Implementing the GB technique

(a) Write your model in the form of (12)), e.g., “Ex.m”. Construct P, A and B.

(b) Type and run DETCMOD=gbmsre(P,A,B) : This will produces a file GB_singular.ascii
at the directory above, which transforms the restriction as a set of polyno-
mials in Singular language. And it will display the following message in matlab

command window.
execute(read(” GB_singular.ascii")); timer; ns;

The code will temporarily hold. Copy and Paste the expression above in Singular
command line, and press the Enter key. Then, Singular will read GB_singular.ascii,
computes the Grobner basis and stores all the solutions at the directory above
as Sol_partC.txt and Sol_partC.txt. If a command prompt “>” shows up in Sin-
gular, computation is done. The first number shown is the computation time in

milliseconds. The second is the number of solutions.

(c) Come back to matlab window and press any key. Then “Ex.m” will load the
Singular output files, transform them into the solution format in matlab, report
the total number of solutions, the MOD and all other MSV solution, and the

information in Table [3l

3. Interpretation of the Results and Completing Classification

11



(a) Your code “Ex.m” will produce a table with an N x 4 matrix DETC.
DETCZ[p(lIJQh@JQh) p(\Iij(X)Fh,) p(\IJQh,@Qh)p(\IIFh@Fh) p(\IjQ’h®Fh)]7 h=1,.,N.
(b) The first row is the result for the MO D solution. Follow Table 3| for classification.

For Mac Users
1. Preparation
(a) Installation: Follow the instruction below carefully. ”Applications” is the work

directory.

i. Go to System Preferences and open Security & Privacy in your mac computer.

Allow apps downloaded from ”Open anyway”.

ii. Go to https://www.singular.uni-kl.de/index.php/singular-download.html. Choose
OS X and Choose the option “Installation from a dmg File”, and follow the

instruction there.

(b) Open Singular command window: Same as Windows
2. Implementing the GB technique: Same as Windows except the following.

(b) Type and run DETCMOD=gbmsre_mac(P,A,B). The message is as follows.

execute(read(" /Applications/GB_singular.ascii")); timer; ns;

3. Same as Windows
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Appendix

A Set of Matlab Codes for LRE and MSRE Models

The package named as “MODmethodyyyymmdd” contains several folders.

1. MODMethod: This folder has two subfolders LRE and MSRE containing the following

set of main codes and supplementary ones.

LRE MSRE
Code Code

Forwar Method | fmlre.m fmmsre.m
Alternatives | qzmlre.m gbmsre.m, gbmsre_mac.m

modmsre_sample.m

computation_time_comparison.m

modlre_sample.m GBmsre_Testing_computation_time.m

gzmlre2gensys.m GBmsre_Testing_computation_time_mac.m
Supplementary )

methods_comparison_LRE.m Example_for_Corollary2.m

modlre_.FM_QZ.m lambda_min.m

lambda_min_Example.m
modmsre_FM_QZ.m

2. Examples. This folder contains three subfolders with some examples replicating the
results of the three papers. (Cho (2016)), the present paper |Cho|(2021]) and a companion
paper (Cho and Moreno| (forthcoming)).

Codes

2016RED x1.m, x2.m, x2Q.m, x2figure.m, x3.m

2020MOD ReplicatingFigurel.m, Example_Corollary2_Fisher FTPL.m
2019FTPLZLB | To be updated

In what follows, main codes are explained in detail. Supplementary codes for the
MOD methodology are briefly explained as it is self-explanatory. Finally, examples are

explained.
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A.1 MOD Method - LRE Models

A.1.1 Main Codes

gzmire.m

This is the main code implementing the M OD method using the eigensystem, the QZ de-
composition. qgzmlre stands for the QZ method for LRE models. The code adopts some
routines such as reorder.m and qzswitch.m in the package of |Sims| (2002)), but applies to our

representation of LRE models.
[DETCMOD, OmegaMOD,GammaMOD,FMOD, Geig,gvAll,OmegaAll, GammaAll,FAll|=gzmlre(A,B,C,R)

e Input Arguments:

Input format Concepts Default
A n X n matrix | A Required
B n X n matrix | B Optional B = 0,xn
C n X m matrix | C Optional C = 1,4,
R m X m matrix | R Optional R = 0,,xn
e Output Arguments:

Output Format Concepts
DETCMOD 1 x 3 vector DETCMOD = [p(21) p(Fy) p(1)p(Fy)]
OmegaMOD n X n matrix | OmegaMOD =, (M OD solution)
GammaMOD | n x n matrix | GammaMOD =I'! (MOD solution)

FMOD n x n matrix | FMOD =F; (MOD solution)
Geig 2n x 1 vector Vector of the generalized eigenvalues
) N = # of MSV solutions. Each row is the
gvAll N X n matrix
choice n out of 2n generalized eigenvalues.
OmegaAll N x 1 cell arrary | i-th solution is associated with i-th gvAll. 1 < < N
GammaAll | N x 1 cell arrary | Same as above
FAIl N x 1 cell arrary | Same as above

Note. If p(Q)p(F1) > 1, then Q(&, ...

&) ¢S

14



e Interpreting the Results: Refer to Table[I] or [

fmlre.m:
This is the main code implementing the M OD method using the modified forward method.
fmlre stands for the forward method for LRE models.

[DETC, FCC, OmegaK,GammaK, FK,OtherOutput,IRS]=fmlre(A,B,C,R,Opt);

e Input Arguments: Same as those of gzmlre.m. In addition, there is an optional

input, Opt. See the code for detail.

e Output Arguments:

Output Format Concepts
DETC 1 x 3 vector DETC = [p(¥*) p(F*) p(Q*)p(F*)]

FCC 1 x 2 vector FCC = [K p(R' ® F*)|, K is # of forward iteration

OmegaK n X n matrix OmegaK = Q*

GammaK | n X n matrix GammaK =171t FCC2 <1

=TI if FCC2 >1
FK n X n matrix FK = F~
OtherOutput Other output arguments: See the code for details

IRS T X nm matrix Impulse-response function with horizon T'.

e Interpretation of DETC. Refer to Table

1. If DETC(3) p(2%)p(F*) < 1, then the model is determinacy-admissible and Q* =
1. DETC(1) and DETC(2) tells whether the model is DET/INDET/NSS. Done.
2. If DETC(3)> 1 and p(2*) < 1, the model is indeterminate.
3. If DETC(3)> 1 and p(Q2*) > 1, or DETC(3)=NaN (22* does not exist), then use
gzmlre.m to find the M OD solution.

Remark 1. If FCC(2)< 1, GammaK = I'* and therefore, OmegaK and GammaK constitute
the forward solution. If FCC(2) > 1, the FCC condition is violated. Thus even if Q* exists,

a correct interpretation is that there is no forward solution because I'* does not exist. The
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code still produces I' using the formula @, which is rejected as an RE equilibrium on the

ground of the NBC criterion. Refer to|Cho and McCallum| (2015)) for detail[l]

A.1.2 Supplementary Codes: Auxiliary Functions

gzmlre2gensys.m

This code makes gensys algorithm of |Sims (2002) comparable to gzmlre.m and fmlre.m.
Specifically, for given matrices A,B and C' in , define

ki = Byvygr, v = kg + 1 (21)
Then the model can be written as
Loyr = ' + Iz + U, (22)

where 3y, = [k} z}) and [y, 'y, II and ¥ are the input matrices of gensys algorithm as

functions of A,B and C such that:
L,
O’I"LX’fl

where A and B are defined in It is conventional to define k; manually to include only
non-zero expectational variables in vector g, so that the dimension of these matrices are less
than 2n if A has a rank less than n. Although has a larger dimension in general, it makes

the transformation model-independent, thus one does not need to write a given model in the

FOIA, Flz_é,l_[:

form of gensys input manually. The gensys algorithm computes the generalized eigenvalues
¢ with respect to the matrix pencil [I'g — £T'] via the Schur decomposition theorem, which
is exactly the same as [fl —& B] The algorithm examines the existence of the unique stable

solution by what is known as spanning conditions. The code has the following form:

[G1,C,impact,fmat,fwt,ywt,gev,eu,loose|]=gzmlre2gensys(A,B,C,c,div)

e Input Arguments: A ,B,C are the same as those of fmlre.m and qzmlre.m. c and div

are optional input arguments of gensys.m.

"'What it means by FCC(2)> 1 can be understood as follows. The situation is like FCC(2)=|r| > 1 where
Ty = Ele r#~1, which explodes thus does not exist. The formula @ is like 1/(1 —7) < 0 when r > 1,
which is clearly wrong.
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e Output Arguments: Outputs are the same as those of gensys.m.

e Interpreting the Results: Follow the code gensys.m. A key result is the vector eu,
which shows the existence and uniqueness. The conditions for the classification by

the gensys and the corresponding conditions by the M OD solution can be stated as

follows.
Classification eu MOD
Determinacy [11] p(21) <1, p(Fy) <1
Indeterminacy [1 0] p(2y) < 1, p(Fy) > 1
No Stable Solution | eu(1l) <1 p(€)>1

The MOD conditions are those by pulling the DA and DIA partitions in Table .

A.1.3 Supplementary Codes: Examples

modire_sample.m

This code applies the three solution techniques to 7 atheoretical models belong to DA-
DET, DA-INDET, DA-NSS, DIA-INDET(real- and complex-valued MOD solution) and
DIA-NSS(real- and complex-valued M OD solution). This shows that gzmlre.m is a stand-
alone procedure. The code also shows that fmlre.m is equivalent to gzmlre.m except for DIA
model with complex-valued solutions. DIA models are not economic ones and taken from
Sims| (2007)).

1. Instruction : Choose one of the seven models (See the instruction of the code.) and
run it. This code automatically implements the forward method followed by the QZ
approach using an auxiliary code modlre_.FM_QZ.m. One can manually choose fmlre.m

or gzmlre.m.

methods_comparison_LRE.m

This code shows the equivalence between QZ method (gzmlre.m), the sequential technique
(fmlre.m and gzmlre.m if necessary) and gensys algorithm (gzmlre2gensys.m) for all 7 examples

above. Simply run the code.
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A.2 MSRE Models
A.2.1 Main Codes

fmmsre.m

This is the main matlab code implementing the M OD method using the modified forward
method (explained below). It takes P, A(sy, si4+1) and optional B(s;), C(s;) or R(s;) as input
arguments and produces the following output: conditions for determinacy, indeterminacy or
the case of no stable solution, forward convergence condition (FCC), the forward solution

and others. The function format, input and main outputs are given in the following way.
[DETC, FCC, OmegaK,GammaK,FK,OtherOutput,IRS]=fmmsre(P,A,B,C,R,Opt);

where fmmsre stands for the forward method for MSRE models. (OmegaK=Q*(s;), Gam-
maK:P*(St), FK:F*(St7 St+1))

e Input Arguments:

Input format Concepts Default
P | S xS matrix P(ij)=P(st+1 = jlst = 1) Required
A S x S cell array or A{f,j}:A(st = z, St.+1 =j}or Required
S x 1 cell array A{i,1}=A(s; =i} if A(-)=A(s¢)
B | S x1cell array B{i,1}=B(s; =i} Optional  B{i,1}= 0,xn,
C | 9 x1cell array C{i,1}=C(s; =i} Optional C{i,1}= L,xn
R S x 1 cell array or R{i,1}=R(s; =i} or Optional R= 0,
m X m matrix R=R
Opt Other optional input arguments: See the code

Remark 1. To conduct impulse-response analysis, we recommend to specify C(s;) =
Bl_l(st)cl(st).

Remark 2. Specify optional inputs as [] if they are followed by other inputs. For instance,
set B=[]; C=[]; to specify R and/or Opt.
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e Output Arguments:

Output Format Concepts

DETC 1 x 4 vector p(Targa) p(Trer) p(Yaea )p(Vror) p(Pargr-)]

FCC 1 x 2 vector (K p(Vper:)], K is # of forward iteration
OmegaK S x 1 cell array | OmegaK{i,1} = Q*(s;)

G K{i,1} =TI* if FCC2 < 1
GammaK S x 1 cell array ammak{i.1} (s¢) 1 =
=TI'(s;) if FCC2 >1
FK S x S cell array | FK{i,j}= F*(s¢, St41)
OtherOutput, IRS Other output arguments: See the code for details

e Interpretation of DETC. Refer to Table

1. If DETC(3)=p(Vq:-g0+)p(¥r-gr-) < 1, then the model is determinacy-admissible
and Q* = QMOD,

2. If DETC(3) > 1 and p(¥g-gq+) < 1, the model is indeterminate.

3. If DETC(3) > 1 and p(¥gego+) > 1, or DET(3)=NaN (2*(s;) does not exist),
then use gbmsre.m to find the M OD solution.

Remark 3. There is an additional condition in DETC, p(¥q«gr+) unlike the LRE mod-
els. Recall that DETC = [p(Q*) p(F*) p(Q*)p(F*)] in LRE models where p(Q*)p(F*) =
p(Q* @ F*). In MSRE models, p(Vq:g0-)p(Vpegr) < 1 implies that p(Ugugp) < 1 but
the converse is not true. This is the major difference between the two types of models.
This is precisely the reason why the uniqueness of a stable MSV solution does not mean
determinacy in general. In fact, such a case can always be generated by the order-preserving
transformation of the model as long as the M OD solution is stable in DIA model such that
p(Va,er) < 1 but p(Vo,00,)p(Vrer) > 1. Refer to Corollary 2.

Remark 4. If FCC(2) < 1, GammaK = I'"*(s;) and therefore, OmegaK and GammaK con-
stitute the forward solution. If FCC(2) > 1, the FCC condition is violated. Thus there is
no well-defined forward solution even if Q*(s;) exists. The code still produces I'(s;) using
the formula @, which is rejected as an RE equilibrium on the ground of the NBC criterion.
Refer to |Cho (2016)) for detail.
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gbmsre.m or gbmsre_mac.m

gbmsre.m is the main matlab code implementing the M OD method using the Grébner basis
approach in Windows. Mac users must use gbmsre_mac.m. It plays the same role as qgzmlre.m
for LRE models but identifies the M OD solution by computing all MSV solutions. It takes
the same input P, A(s, s¢y1) and B(s;) as those of fmmsre.m where a non-zero B(s;) for at
least one regime must be included. The code produces the following output: conditions for
determinacy, indeterminacy or the case of no stable solution. The function format, input

and main outputs are given in the following way.
[DETCMOD,OmegaMOD,FMOD,DETC_All,AllOmegas|=gbmsre(P,A,B);

where gbmsre stands for the Grobner basis method for MSRE models. (OmegaMOD=%, (s;),
FMOD:F1(8t7 8t+1))~

Unlike fmmsre.m, this code uses the language called “Singular”, which must be installed
in advance. Therefore, one must manually follow the step displayed in the matlab command

window.

e Input Arguments: same as those of fmmsre.m but P, A and B must be specified
because the purpose of this code is to find all MSV solutions when lagged variables are
present with B # 0,,%p,.

e Output Arguments:

Output Format Concepts

DETCMOD | 1 x 5 vector [p(qjﬂ1®91) p(\IJF1®F1) p(@91®91>p(qu1®F1) p(qu1®F1) TC]
and rc = 1 if the solution €, is real-valued and 0 otherwise.

OmegaMOD | S x 1 cell array | OmegaMOD{i, 1} = Q;(s;)
FMOD S x S cell array | FMOD{i j}= Fi(st, St41)

DETCAIl | N x5 cell array | DETC_AINi,:}=

p(Po,e0.) P(Vror) P(Yae0)p(Yren) p(Ya,er,) re(h)]
for h =1,...N, where N is the total # of MSV solutions

and rc(h) = 1 if €, is real-valued and 0 otherwise.

AllOmegas | N x S cell array | AllOmegas{h,s}=Q(s: = s).
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A.2.2 Supplementary Codes: Auxiliary Funtions

lambda_min.m

For a given F(s;, si41), this code computes A,,(ss, s¢41) such that p(Vper)p(Va, or,,) = 1
following the analytical form presented in Proposition 1 of (Cho (2021)). This is important
because it states that there exists no mean-square stable sunspot components associated with
a given F'(s;, sy41) if and only if p(Vpgr) < 1. This improves Lemma 2 of |Cho| (2016]). This
code just confirms that Proposition 1 holds numerically. In fact, the p(¥pgr)p(Waga) > 1 for
all possible A(sq, s¢4+1) is the relation that Farmer et al.| (2009) wants to verify this numerically
but not completely. Proposition 1 proves their conjecture by providing an analytical form
of Amin(St, S¢4+1). If one wants to compute Ay (+) for history-dependent sunspots, define s, 4,

P,and F(sg¢, Squ+1) following (Cho| (2021)) and use the latter two as input arguments.

The function format is given by
[Lmin,tau2,xi2,V,D,u,Q]=lambda_min(P,F)

e Input Arguments: The code takes P and F as input arguments.

Input format Concepts Default

P | S xS matrix P(ij)=P(st+1 = jlst = 1) Required

. S x S cell array or F{?,j}:F(st = z, St‘+1 =j}or Required
S x 1 cell array F{i,1}=F(s; =i} if F'(-) = F(s¢)

e Output Arguments:

Output Format Concepts

Lmin{i,j} = Awin(8t, 5¢41) = arg min P(‘I’A®A> s.t.
Wy = Et[F(Sta 5t+1)wt+1] = Et[F(St; St+1)Amin(St7 5t+1)wt]
tau2 scalar tau2 = 7 = p(Vp . on.. ), xi2 =& = p(Vper)

\Y S x 1 cell array V =V (st41)
Phi S x S cell array Phi = & (s, S¢41)
Amin(sta St+1) = V(8t+1)q>(5t7 3t+1)V/(3t)
D,u,Q Refer to Proposition 1 of |Chol (2021))

Lmin S x S cell array

such that
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A.2.3 Supplementary Codes: Examples

Examples are for Windows users. Mac Users must use gbmsre_mac.m. To do so, replace
gbmsre.m with gbmsre_mac.m in the codes modmsre_sample.m, modmsre_.FM_GB.m, Exam-

ple_for_Corollary2.m and computation_time_comparison.m.

modmsre_sample.m

This code applies the three solution techniques to 7 atheoretical models belong to DA-DET,
DA-INDET, DA-NSS, DIA-INDET (real- and complex-valued MOD solutions) and DIA-
NSS(real- and complex-valued M OD solutions). The code also shows that fmmsre.m is equiv-
alent to modmsre_.FM_GB.m except for DIA model with complex-valued solutions. Choose
one of the seven models (See the instruction of the code.) and run it. This code automati-
cally implement the forward method followed by the GB approach using an auxiliary code

modmsre_FM_GB.m. One can manually choose fmmsre.m or gbmsre.m.

lambda_min_Example.m

Sample code for using lambda_min.m: Finding A,,, is not required as it is proven in Proposition

1. This code just shows how the formula works numerically. Simply run it.

Example_for_Corollary2.m

This code shows an example in which the model has a unique stable MSV solution but is
indeterminate. The sample model is randomly generated, which implies that this is not a

rare event, but an intrinsic property of MSRE models. Just run it.

computation_time_comparison.m

This code compares the computation time for 4 solution methods: QZ method, gensys
and FM for LRE models, and FM for MSRE models. Random atheoretical determinacy-
admissible models of dimension N and S are generated and the code reports average com-
putation time over T trials. Set N, S, and T at the beginning and run it. Then it will show

the computation time for the four cases for n =1, ..., N.

GBmsre_Testing_computation_time.m or GBmsre_Testing_computation_time_mac.m

This code shows that the computation time to compute all MSV solutions using the Grébner
basis approach increases exponentially as the dimension of the model, number of lagged

variables and the number of regimes increase.

Instruction: Set S =1, n and m for LRE models and set S = 2 or 3, n and m for MSRE

models. Read the instruction of the code or the code explanation in the following section.
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We first show that the technique can be applied to LRE models as if no eigensystem were
available. Then one can also infer how tough to apply this approach to MSRE models.

A. Grobner basis approach for LRE models
For LRE models, the problem of computing all MSV solutions boils down to the system of

polynomial equations implied by
AQ? — Q + B = 0pun.

Vectorizing this implies that there are n? quadratic equations in n? unknown w;;, which is
the (i, 7)-th element of 2. When some of elements of B are zeros, the number of unknowns
can be reduced. For simplicity, let m be the rank of B and construct arbitrary B such
that the first n — m columns are n x (n — m) matrix of zeros. The code gbmsre.m can also
handle the LRE models by setting P = 1 and S = 1. Let Model(n,m) denotes a LRE

model with an n dimensional model and m being the rank of B. Then, the number of MSV
_ (n+m)!
- In!

solutions is NV as it is the same as the number of combination of choosing n out of
2n — (n —m) = n+ m. This can be derived from Generalized Schur Decomposition. Refer

to gzmlre.m for detail.

The code GBmsre_Testing_computation_time.m computes the solution to a model specified
by P,n and m using gbmsre.m. For an LRE model, set P = 1. The code generates n x n
matrices A and B of random numbers such that the rank of B is m. Table [l shows that
the number of seconds required to compute the all solutions to Model(n,m). The case of
m = 1 is instructive because the number of N = n 4+ 1. The number of ideals implied by
the system of the polynomial equations is equal to the total number of solutions. Grobner
basis approach is a way of finding these ideals, and therefore, we can infer how long it would
take as the number of unknowns increases by one. Table [4] indicates that the computation
time increases by a factor of around 2V. This is the source of the problem why finding all

solutions to a polynomial is difficult.

For Model(n > 2,m = 2), the number of solutions explodes and it takes about 10 minutes
for Model(6,2) but computation fails to yield the solution as n > 7. The most general model
that the Grobner basis approach is successful is Model(4,3). N.A in Table {4] is this case
where gbmsre.m stops computation because of lack of memory within a day. Of course,
when the structure of the model is simpler, the Grobner basis technique may work for higher

dimensional models, for instance, the rank of A is less than n, but this simulation exercise
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Table 4: Computation Time for Grobner basis in LRE Models

n m N |Seconds || n m N | Seconds
1 1 2 <12 2 6 <1
2 1 3 <1l{3 2 10 <1
3 1 4 <14 2 15 ~1
9 1 10 ~15| 5 2 21 ~ 7
10 1 11 ~3|16 2 28 ~ H48
11 1 12 ~4 1|7 2 36 N.A
12 1 13 ~12 3 3 20 ~ 3
13 1 14 ~35 (4 3 35| =4500
14 1 15 ~9 || 5 3 252 N.A
15 1 16 ~208 14 4 70 N.A

shows that it is extremely difficult to use this approach for non-trivial economic models.

B. Grobner basis approach for MSRE models
The problem is much more serious for MSRE models. Indeed, the model can be stated as

Model(n,m,S) where S is the number of regimes. There is no analytical form for N, the

number of MSV solutions but N > ITS_, ! iy general. This is because when P = Ig, each

ms!n!

regime collapses to Model(n, ms) Thus the minimum number of solution is the product of
the number of solutions at each regime. For instance, Model(n,n) = 2,6, 20, ... forn = m =
1,2,3... Therefore, N > 4,36,400,.. for MSRE models Model(n,n,S). This implies that
the computation time will increase more than 24, 2364 2400=36 " Tndeed the method works
extremely fast for Model(1,1,2) with N = 4, and it takes several minutes for Model(2,2,2)
with N = 44 > 36. However, computation fails for Model(3,3,2). Table [5| shows the MSRE

models for which Grobner basis works and does not work.

Table 5: Computation Time for Grobner basis in MSRE Models

n m S| N |[Seonds||n m S| N | Seconds
1 1 2 4 <12 2 2 44 ~ 227
2 1 2| 9 <13 2 2|N.A N.A
3 1 2116 <11 1 3 8 <1
4 1 2125 ~32 1 3 27 ~ 2
5 1 2136 ~60(3 1 3 64 ~ 592
6 1 2149 ~b573 |4 1 3 125 N.A
7 1 2|64 NAJ2 2 3|NA N.A
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B Examples

B.1 Codes for Replicating (Cho (2016)

All of the models turn out to be determinacy-admissible and the forward solution is now
confirmed by the MOD method. Therefore, the results of (Cho| (2016)) is necessary as well

as sufficient.

B.1.1 The Fisherian Model

X1.m: This is a univariate MSRE model without predetermined variables considered by
Davig and Leeper| (2007)) and [Farmer et al.| (2009):

a(s)m = Eime + 1y,

Ty = pPri1 + €

where 7, and 7, are inflation and the real interest rate, respectively. When a(s;) < (>)1,

monetary policy is passive (active). The model can be cast in the form of as:
xy = A(se) Byeyin + C(se) 2, 20 = pzie1 + &,

where x; =y, 2 =11, A(st) = C(s¢) = 1/a(st), B(s;) = 0 and R = p. The forward solution
will be of the form z, = I'*(s;)z if it exists. Let p = 0.9, p;; = 0.8 and poy = 0.9.

Case=1: This is an example of determinacy with «(1) = 0.95 and «(2) = 1.5. One may

write the code as:

S=2: pl1=0.8; p22=0.9; pl2=1-p11; p21=1-p22; P=[p11 p12;p21 p22];
rho=0.9; alpha{1}=0.95; alpha{2}=1.5;

for i=1:S, A{i,1}=1/alpha{i}; C{i,1}=1/alpha{i}; end, R=rho;

[DET, FCC, OmegaK,GammaK,FK]=fmmsre(P,A,[],C,R);

The first three lines specify the number of regimes, transition probability matrix and A,
C and R. The last line shows the function “fmmsre.m”. Since no lagged variables are
present, FCC(1) holds trivially because there is no forward iteration and so FCC1=1. DET(1)
= p(Wgrga+) = 0 and DET(2) = p(Vp+gp-) = 0.9059 < 1.
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Since DET(1)xDET(2)= 0 < 1, the model is determinacy-admissible and the model is
determinate. Since FCC(2) = p(Vpgp+) = 0.8014 < 1, the forward solution exists, which is
given by z; = I'*(s;) 2. GammaK{1,1} representing I'*(1) is 6.11 and GammaK{2,1} =2.25.

Case=2: This is an example of indeterminacy with a(1) = 0.9 and «(2) = 1.5. Set
alpha{1}=0.9 above and run the code. In this case, FCC(1)= 1. DET(1) = 0. DET(2)=

1.01 > 1. The model is determinacy-admissible, but indeterminate.

B.1.2 Regime-Switching Monetary Policy

X2.m: This is the model analyzed in Section 5 of |Cho (2016]). The model is given by:

T = BEm+ Kyt zsy, (23)
L.

Y = B — E(Zt — Eymi1) + 2pt, (24)

i = (1= p)ox(se)m + pis—1 + 2mpy- (25)

; _ P _ / __[.S .D _MPYy
In matrix form, x; = [m vt 4], 2e = (254 2D+t 2mpe]’s € = € € €], and,

Bi(si)xe = A1(s) Ei[ve1]) + Baxyo1 + 20, 2 = Rzq + €,

1 -+ 0 g 00 000
By (st) = 0 1 1/o |, Ai(sy)=|1/c 1 0|,Bo=]0 0 0
—(1=p)os(s) 0 1 0 00 00 p

The matrix R is now a matrix of zeros. Then the model is given by:
xr = A(st) Ex[re1] + B(si) i1 + C(se) 2,

where A(s;) = Bi(s;) ' Ai(st), B(s;) = Bi(s;) !By and C(s;) = By(s;)~'. The parameter

values are chosen as follows.

P11 = 0.85, poy = 0.95. B =0.99, k =0.132, o = 1,
p=20.7, pp=ps =038, pyp=0.

Case=1: Determinate | ¢,(1) =0.9, ¢.(2) = 1.5.

Case=2: Indeterminate | ¢,.(1) = 0.8, ¢.(2) = 1.5.

Common Parameters
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The results are qualitatively similar to those of the Fisherian model. In the case of
determinacy, FCC(1)=22. DET(1) = p(Vq:g0-) = 0.2839 < 1 and DET(2) = p(Vp-gp) =
0.9539 < 1. So the model is determinate and it is of course determinacy-admissible as
DET(1)xDET(2)= 0.2708 < 1. Since FCC(2) = 0.7442 < 1, the forward solution exists,
which is given by x; = Q*(s;) + I'*(s¢)2:. In the case of indeterminacy, FCC(1)=24. DET(1)
= 0.2895 < 1 and DET(2) = 1.0082 > 1. But the model is determinacy-admissible as
DET(1)DET(2)= 0.2919 < 1.

X2figure.m: This code computes the locus of ¢,(1) and ¢,(2) such that p(Vp+gpr+) = 1 by
“fsolve.m”, which partitions the parameter space into the determinacy and indeterminacy

regions.

B.1.3 Regime-Switching Elasticity of Intertemporal Substitution

The code X3.m considers a New-Keynesian model with regime-switching elasticity of in-
tertemporal substitution. The model is presented in Section 6.3 of the previous version of
Cho (2016) “Characterizing Markov-Switching Rational Expectations (MSRE) models”.

T = BEmi1 + Ky + 2y, (26)
o(St+1) 1 . 1

- E, | 20T -y, — F — 27

w = B Zoyn] - = Bin) + o @

it = (1= p)oami+ pir-1 + 2mpy (28)

This example differs from the Markov-switching monetary policy model in that A depends
both on s; and s;y1. This new feature can be handled by simply specifying A(i, j) for all
1,7 = 1,2,...,S. For a numerical exercise we have § = 0.99, x = 0.132, ¢, = 1.5, pp =
ps = 0.95, pyp = 0 and p = 0.95. For o(s;) we set o(1) = 1 and o(2). Since ¢, > 1,
the model would be determinate and this can be easily verified by p(¥g«gq-) = 0.56 and
p(Vpegrs) = 0.95. Of course, the model is determinacy-admissible as the product of the two

metrics is less than 1.

Remark The impulse response function is an optional output argument of the code “fmmsre.m”.
All three codes X1.m, X2.m and X3.m will display the impulse response functions starting

at two different initial regimes.
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B.2 Codes for Replicating Cho| (2021)

)

1. ReplicatingFigurel.m produces Figure 1 of Cho|(2021). It applies “fmlre.m” and “fmmsre.m’
for more than 120,000 times of parameter combinations in about a couple of minutes.

Just run this code.

2. Example_Corollary2_Fisher FTPL.m is another example for Corollary 2 using the model
with regime-switching in monetary and fiscal policies in the paper. To verify Corollary
2, we need to compute all other MSV solutions. Thus, this code requires to run the

code gbmsre.m.

B.3 Sample Codes for Cho and Moreno| (forthcoming)

Please refer to the link in the website, https://sites.google.com/site/sc719en /research.
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C DModified Forward Method

The original forward method of |(Cho and Moreno| (2011)) for LRE models and the forward
method (Cho| (2016)) for MSRE models yields the forward solution different from the MOD
solution only when the model has a special block-recursive structure. The modification of the
original forward method aims at recovering the equivalence of the forward solution and the
MOD solution for models with a block-recursive structure or a type of models that breaks

down the equivalence of the two solutions for unknowns reasons for MSRE models. Refer to
Cho (2021)) for detail.

The information with which expectations are formed may not contain all of the state
variables for block-recursive models. Thus let the original forward method use partial in-
formation. The information can be extended to include all of the state variables regardless
of the model structure. This case uses full information. Modified forward method can be
summarized as follows. First, apply the original forward method. If the forward solution is
the M OD solution, that is, if the model is determinacy-admissible, then it is done. If not,
use the forward method under full information. It suffices to illustrate the forward method
for MSRE models because the forward method for LRE models is just a special case. The
following briefly explains the original forward method and the forward method under full

information.

C.1 Original Forward Method for MSRE models.

1. Forward Representation of the Model (Proposition 3 of |Cho| (2016))): There

is a unique set of sequences i (s;), I'x(s;) and F(s, S¢+1) such that
zy = By [My(st, Stq1, -, Seak)Terk] + Qu(se) w1 + Tr(se) 2, (29)

where 4 (st) = B(st), I'1(st) = C(st), Fi(St, st41) = A(st, Se41) for all s; and sp4q, and

for k=23, ..,
Q(s)) = {In — EA(st, s01)Q—1(se01)]} ' Blsy), (30)
ie(se) = {Ln — Ex[A(ss, 3t+1)Qk—1(5t+1)]}_lC(3t) (31)
+E[F (8¢, 5041) Tkt (S041) R(5¢41)],
Fr(se, s041) = {In — EiA(se, 5t+1)9k71(5t+1)]}7114(3t> St11)- (32)
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e No-bubble Condition (NBC) holds if llmk_>oo Et[Mk(Stvst-I—la "'7St+k‘)xt+k‘] = 0n><1

when expectations are formed with that solution.

e Forward Convergence Condition (FCC)

Table 6: Forward Convergence Conditions

Notations Concepts How to check
FCC1 Q" (s¢) = limg 00 Q(s¢) every element of Qp(s;) — Q_1(s;) — 0
FCC2 F*<8t) = limy_,o Fk(st) r(qu’®F*) <1

e The forward solution is:
Ty = Q*(St)ﬂj‘t,l -+ F*(st)zt. (33)
— Remark 1. In practice, Q*(s;) always exists except for the case in which the
model has no real-valued solutions — the case the FCC should not hold.
— Remark 2. F*(s;,8141) = klim Fr(s4, 8141) exists whenever Q*(s,) exists.
—00

— Remark 3. Existence of I'*(s;) can be checked easily by computing p(V g/ ).
One can understand why this is true from (3I). That is, T'x(s;) explodes if
P(Vrer) > 1.

2. Property of the Forward Solution (Proposition 4 of Cho| (2016))): The forward
solution is the unique RE solution that satisfies the NBC.

3. Classification of the solutions by the forward method (Proposition 5 and 6 of
Cho| (2016)): Suppose that the forward solution *(s,) exists and p(Uq«ga-)p(V prgpe) <

1. Then Q*(s;) = QMOP(s,). Classify the model following Table (3| (See (Chol (2021)).
Done.

C.2 Forward Method for MSRE models under Full Information.
If p(Varga-)p(Vpgp+) > 1, forward one period ahead and take expectations as:
Eizi1] = Elkia] + E[B(s41)] 21, (34a)
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which must be true under rational expectations where k; = E[A(Sy, S¢41)Tes1]. Er[B(Si41)]
at each regime s; can be easily computed by Zf P(i,j)B(siy1 = j) ateach s(t) =i =1,..., S.

Then the model is transformed as follows.

Ty = ki+ B(st)xi—y (35a)
ke = EiA(st, se01)ven] + H(Ei[ze1] — Eilki] — B [B(s041)]70), (35Db)

where H is an n X n matrix in which every single element is arbitrary but non-zero. Applying
the expectational relation of the whole model is innocuous because it must hold regardless
of block-recursiveness of the model. By doing this, the model is no-longer block-recursive
and has no autonomous block. Now we write this into the original form of the model in the
following way. Let y, = [z} k;]’ be a 2n x 1 vector. Notice that E;[B(s;11)] is a function of

s¢. Collecting the coefficient matrices yields:

In _In
HE[B(st41)]  In

]yt:Et

B(St) Onxn ]
Yg—1,

OTLXTL OTLXTL

0n><n Onxn _"_
A(St, St+1) + H —-H Yert
Finally, by multiplying the inverse of the coefficient matrix of y;, we have the following form
of the model:
Yr = E[AY (51, 5041)Yeq1) + BY(50) -1 (36)
Forward method under full information is to apply the forward method to and obtain

the solution for ;.
ye = (Q(s0)) 1. (37)

The solution (£2Y(s;))* is 2n X 2n and since z; is the first n x 1 subvector of y;, the first n x n
component of (Q¥(s;))* is the forward solution of the original model under the modified

forward method.

C.3 Existence of the Forward Solution

Both the original model and the adjusted model has the same form. Therefore, we
can examine the existence condition for the forward solution using the same formula as
and . Under the modified forward method, (s;) can be interpreted as Q7 (s;) in .

The condition for the existence of the forward solution can be understood by differentiating
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and vectoring such that:

vec(d2x(1)) vec(dQx_1(1))

- [\IJ%_@F,C_I} . (38)
vec(dQ(9)) vece(dQ_1(S))

Proposition 4 of (Cho| (2021)) formally states the convergence condition for €. There are two

possibilities:
L p(Ve or,_,) <lforalk>K>>1

2. p(\Pﬂk_l@Fk_l) > 1 for some k > 1 and ujvec(d€—1) = 0,251 for every eigenvector uy

associated with an unstable root of Voy  p, -

Under the original forward method, Proposition 4 states that the equivalence of the
forward solution and the MOD solution may break down only in the second case. In that
case, even if Vo gg _, contains a root larger than unity, it does not affect {2, thus the
forward solution can still exist. The forward method under full information is to adjust the
model such that Case 2 of Proposition does not arise in the class of determinacy-admissible
models.ﬂ Then Case 1 implies that in the MSRE framework, the forward solution exists for a
broader class of models including determinacy-inadmissible models because, p(Vgwgp) < 1
can be consistent with p(Vgrgo)p(Vpsgr+) > 1. That is, if p(Vorga:)p(Vpgr:) < 1,
then p(¥qowgp«) < 1, but the converse is not true in general. An extensive experiment so
far has never found a single case in which the forward solution is not the M OD solution
in atheoretical and economic examples. Nevertheless, the equivalence to a model with a

real-valued M OD solution is an open question to be explored in the future.

2When a model has completely decoupled equations, Case 2 still exists even under the forward method
under full information. The example in Section 4 when ¢ = 0 is such a case. However, recall that in that
case, the solution with the smallest generalized eigenvalues does not exists, thus the model is determinacy-
inadmissible. Moreover, the forward solution coincides with the M OD solution.

32



References

Cho, Seonghoon, “Sufficient conditions for determinacy in a class of Markov-switching

rational expectations models,” Review of Economic Dynamics, 2016, 21, 182—-200.

_, “Determinacy and classification of Markov-switching rational expectations models,”
Journal of Economic Dynamics and Control, 2021, 127, 104115.

_ and Antonio Moreno, “The Forward Method as a Solution Refinement in Rational
Expectations Models,” Journal of Economic Dynamics and Control, 2011, 35 (3), 257
272.

_ and _ , “Generalizing Determinacy under Monetary and Fiscal Policy Switches: The

Case of the Zero Lower Bound,” Journal of Money, Credit and Banking, forthcoming.

_ and Bennett T McCallum, “Refining linear rational expectations models and equilib-
ria,” Journal of Macroeconomics, 2015, 46, 160—169.

Davig, Troy and Eric M. Leeper, “Generalizing the Taylor Principle,” American Eco-
nomic Review, 2007, 97 (3), 607-635.

Farmer, Roger E.A., Daniel F. Waggoner, and Tao Zha, “Understanding Markov-
Switching Rational Expectations Models,” Journal of Economic Theory, 2009, 144 (5),
1849-1867.

Foerster, Andrew, Juan F Rubio-Ramirez, Daniel F Waggoner, and Tao Zha,
“Perturbation methods for Markov-switching dynamic stochastic general equilibrium mod-
els,” Quantitative Economics, 2016, 7 (2), 637-669.

2

Sims, Christopher A., “Solving Linear Rational Expectations Models,” Computational

Economics, 2002, 20 (1), 1-20.

Sims, Christopher A, “On the genericity of the winding number criterion for linear rational

expectations models,” Technical Report, Citeseer 2007.

33



	Introduction
	MOD Method for LRE Models
	LRE Models and RE solutions
	The MOD Method
	Classification of LRE Models by the MOD Method
	Identification of the MOD Solution

	Standard Methods Using Eigensystem
	Implementing MOD Method for LRE Models

	MOD Method for MSRE Models
	MSRE Models and RE solutions
	The MOD Method
	Classification of MSRE Models by the MOD Method

	Implementing MOD Method for MSRE Models
	Implementing the Forward Method
	Implementing the Gröbner Basis.


	Set of Matlab Codes for LRE and MSRE Models
	MOD Method - LRE Models
	Main Codes
	Supplementary Codes: Auxiliary Functions
	Supplementary Codes: Examples

	MSRE Models
	Main Codes
	Supplementary Codes: Auxiliary Funtions
	Supplementary Codes: Examples


	Examples
	Codes for Replicating Cho2016RED
	The Fisherian Model
	Regime-Switching Monetary Policy
	Regime-Switching Elasticity of Intertemporal Substitution

	Codes for Replicating Cho2021
	Sample Codes for ChoMoreno2023JMCB

	Modified Forward Method
	Original Forward Method for MSRE models.
	Forward Method for MSRE models under Full Information.
	Existence of the Forward Solution


