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Abstract

In this paper, we will develop analysis of a model of firm’s exit and entry in a continu-
ous time setting. We will build our analysis based on Hopenhayn (1992) firm dynamics
framework and use the continuous time structure to solve the model. Solving the model
in continuous time brings in many advantages such as lower computational cost and
tractability of the model. However, there are some challenges too. One of the major
challenges is to have entry cost in the model, i.e. to obtain a Hamilton-Jacobi-Bellman
equation that incorporates the entry cost. We used a form of exit cost as the future
value of the entry cost to avoid this problem. To do so, we have to keep track of the
age distribution of the firms in addition to the shocks distribution, which makes our
model richer than Hopenhayn’s (1992). To solve for the joint stationary distribution
of the firms, we introduced a simple process for aging and got the Kolmogorov forward
equation using the age and shock processes. Another important contribution of this
paper is to introduce a way to deal with the Kolmogorov equation in two states with
discontinuity and combine them into one equation that governs the state of the econ-
omy. The results obtained in this paper are in line with those reported in Hopenhayn
(1992). However, the methods, tools, and the way of approaching the model differs de-
pending on whether we solve the model in discrete or continuous time. The tools and
procedures developed in this paper can easily be extended to other optimal stopping
time problems.

1 Introduction

Understanding the firm dynamics is one of the most important questions that
macroeconomists try to address. In particular, analyzing the distribution of
variables such as productivity, size and age of firms are of special interest in
macroeconomics. One of the leading works on firm dynamics in the literature
is the paper by Hopenhayn (1992) which introduces endogenous entry and exit
for firms in a partial equilibrium setting. The only source of firm heterogeneity
is the productivity shock, which leads to allocation of the resources across the
firms. This paper develops methods and tools to solve Hopenhayn (1992) model
in a continuous time framework.

Solving macroeconomics models in continuous time is attractive for mainly
two reasons: 1. It is more efficient quantitatively, i.e., the run-time for solving
the models in continuous time, in general, is much shorter than its conventional
counterpart based on iteration of Bellman equation, and consequently the mod-
els can be made richer by adding other shocks, states or frictions at almost no
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extra cost. 2. It often gives us extra analytical power to handle the model
differently and see through it from different angles, e.g., possibility of ignoring
some of the constraints because they never bind in the interior of the state space
in a continuous time setting (See Achdou et. al. 2015 for a good example on
this).

In continuous time, the economy breaks down to a system of partial differ-
ential equations (PDEs). To be more specific, in order to solve the model in
continuous time framework, we need to derive a Hmilton-Jacobi-Bellman (HJB)
equation which gives the evolution of the value function as provided with the
Bellman equation in its discrete time counterpart, and a Kolmogorov Forward
equation (KFE) which gives the evolution of the distribution of the variables
of interest. These PDEs are well known in optimal control theory (OCT), and
their solution concepts are developed in this context. Especially, the problems
that we are dealing with in the continuous time version of the heterogeneous
agent models are known as mean field games (Lasry and Lions (2007)). Achdou
et. al. (2015) develop methods to solve some main heterogeneous agent models
in continuous time. They provide analytical tools to solve and analyze three
leading works on heterogeneous agent models in the literature, Aiyagari (1994),
Bewley (1986), and Huggett (1993).

The presence of entry and exit in the model makes the problem different
than the standard optimal control problem. These kinds of problems are closely
related to stopping time problems in the optimal control theory, which is ex-
plained in details in Kushner and Dupuis (2013). In this case we will have a
Hamilton-Jacobi- Bellman variational inequality (HJBVI) instead of the stan-
dard HJB equation. Replacement of HJB with HJBVI in these models is due
to the firms optimal decision on exit time based on when their expected future
value would fall below a threshold, which is the firm’s entry cost in this case.
See Achdou et. al. (2014) for an example of a model that breaks down to
stopping time problem. They, however, do not discuss the solution methods for
these problems. The HJBVI can be efficiently solved as a Linear Complimenta-
rity Problem (LCP). Huang and Pang (1998) first developed techniques to solve
HJB equation using LCP.

In this paper, we will develop tools to solve the Hopenhayn (1992) economy in
continuous time. First, we ignore the firms entry costs and solve the stationary
equilibrium of the simplified model with no entry cost. The reason is that,
having entry cost in the model makes it challenging to translate the model into
HJBVI and KFE in a straightforward way. In order to deal with this problem,
we changed the presentation of the problem to fit into the full model with entry
cost. The idea used here is to convert the entry cost to exit cost in its future
value form. So, in this setting, instead of paying an entry cost in advance, firms
will have to pay a cost equivalent to the future value of the entry cost at the
time of exit. This treatment has its own complexities. The main difficulty arises
with the need to know the firms’ age when they exit the industry. That is, we
need to keep track of the age distribution too, in order to include the entry cost
in our model economy. For this reason, we need to introduce the aging process
of the firms. More specifically, we need to differentiate between the age process
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when the firms choose to continue production and when they choose to shut
down. We will have two simple processes for age, both of which only include
the drift part and no diffusion part. To solve for the distribution of firms, it
is easier to combine two KFEs into a single equation. We have dealt with this
issue in a straightforward way, which will be explained in section 4.

The paper is organized as follows. Section 2 explains the basic Hopenhayn
(1992) model and its characteristics that are developed in a discrete time setting.
Section 3 describes the continuous time formulation of the Hopenhayn economy
without the entry cost, and explains their solution methods, followed by a nu-
merical example. Section 4 gives the analysis the model with entry cost, and
obtains the stationary equilibrium of the model and reports some quantitative
results. Finally, section 5 concludes.

2 A Glance at the Hopenhayn Model

In this section, we will give a short summary of Hopenhayn (1992) and will
try to touch the basic parts of the model based on which we will develop the
continuous time version of it. This is a mere introduction of the environment
of the model, and the reader can refer to the original paper for all the detailed
analysis.

There is a continuum of competitive firms in the economy, i.e., price takers
in both input and output markets. The firms produce a homogeneous good for
which there is an aggregate demand given by an inverse demand function P (Q),
where Q is the total industry output. Firms use a single input, say labor, and
its price is given by function W (N), where N is the total labor demand. The
inverse demand function, P (·), is assumed to be strictly decreasing and satisfy
limx→0 P (x) = 0. The input price function, W (·), is assumed to be increasing
and strictly bounded above zero. Both P (·) and W (·) are continuous.

The production function is given by q(z, n), where n is the labor input of
the firm and z ∈ S = [0, 1] is the productivity shock. The productivity shock
follows a Markov process independent across firms which is standard in the
discrete time models literature. Given the output and input prices, p and w,
an individual firm chooses labor input and output to maximize lifetime profits.
Therefore, the labor demand depends on prices and the period’s productivity
shock, n(z, p, w). As a result, an individual firm’s output supply is given by
q(z, p, w), and the profit function is given by π(z, p, w). Every period that a
firm decides to produce, it must pay a fixed cost, cf . The fixed cost is a crucial
component of the model that can be interpreted as an outside option for the
firms, without which there would be no exit decision made by the firms. We
have π(z, 0, w) = −cf . Firms discount future profits with 0 < β < 1. There
are some other standard assumptions made on the functions n(·), q(·), π(·), and
the shock process, to ensure that the problem is well-behaved, and to guarantee
that there exists a reservation productivity level below which firms will decide
to shut down. We skip restating these assumptions here. See assumptions A.2
- A.5 in Hopenhayn (1992).
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Entrant firms should pay an entry cost, ce in order to observe their pro-
ductivity shock and start production. The exit decision is also made before
realization of the period’s productivity shock. After the shock is realized, firms
decide on their labor demand, n and output supply, q. Then, the input and
output prices are determined competitively to clear the markets. We denote
the distribution of the firms over shocks at period t by gt(A), A ⊂ S, where g
is the state of the economy. The aggregate output supply and labor demand
are Qs(g, p, w) =

∫
q(z, p, w)g(dz), and Nd(g, p, w) =

∫
n(z, p, w)g(dz), respec-

tively.
Firms will maximize the expected discounted profits,

E

∞∑
t=0

βtπ(nt, qt)

Since there is no aggregate uncertainty in the model, given the initial distri-
bution g0, the price sequence, {pt, wt}, follows a deterministic path. Therefore,
given the price sequence {pt, wt}, the recursive formulation of the incumbent
firm’s value is given by the following:

vt(z, pt, wt) = max {π(z, pt, wt)}+ βmax {0,Et [vt+1(z′, pt+1, wt+1)|z]} , (2.1)

where the conditional expectation is based on the Markov transition probabili-
ties. For the new entrants the value function is:

vet (pt, wt) = E [vt(z, pt, wt)] , (2.2)

where the unconditional expectation is based on the initial distribution of the
shocks. Free entry condition requires vet (pt, wt) ≤ ce, with equality if there is
positive entry.

Firms will base their exit decision on a reservation productivity shock below
which they will choose to exit the industry. The reservation rule is given by:

z = min
{

inf {z ∈ [0, 1] : Et [vt+1(z′, pt+1, wt+1)|z] ≥ 0}
⋃
{1}
}
. (2.3)

I skip the definition of the competitive equilibrium and its existence argu-
ment provided in Theorem 1 in Hopenhayn (1992) and jump into the stationary
equilibrium which is of direct relevance in this paper. Since the prices can be
determined using the distribution of the firms, g, we can write the Bellman
equation (2.1) as follows:

v(z, g) = max {π(z, g)}+ βmax {0,E [v(z′, g)|z]} . (2.4)

The reservation productivity level is such that E[v(z′, g)|z] = 0. The station-
ary equilibrium, i.e. invariant distribution of firms with positive entry can exist
if E[v(z, g)] = ce, where again the unconditional expectation is over the initial
distribution of the shocks. Theorem 2 in Hopenhayn provides the existence of
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a stationary competitive equilibrium, and Theorem 3 states that there exists a
real number c∗ > 0, such that ce < c∗ is both necessary and sufficient for an
stationary equilibrium with positive entry and exist. The latter is important
for our results since we will be using two specifications of the model, one with
and the other without the entry cost. The second specification justifies this
statement.

Sections 3 and 4 provide the continuous time version of the model discussed
in this section. Since the continuous time formulation of the model is different
for the case with entry cost and without it, we will explain these two structures
in two separate sections. First we introduce the model without entry cost,
which is a standard stopping time problem. Next, we will discuss the model
with entry cost, which is different than the standard models and needs to be
treated differently. For this case we will keep track of the joint distribution
of the shocks and age in order to have the entry cost in our continuous time
formulation.

3 Continuous-Time Model Without Entry Cost

Here, a version of the firm entry/exit model with no entry cost, i.e. ce = 0,
is explained in a continuous time framework. The state of the economy is the
distribution of the shocks. Firms expected present discounted profits are given
by

max
τ,nt

E0

∫ τ

0

e−ρtπ(zt, nt)dt (3.1)

where the profit function π(·) is continuous and strictly increasing in z. We let
the shocks process to follow a diffusion process as follows

dzt = µ(zt)dt+ σ(zt)dWt (3.2)

where µ and σ are the drift and diffusion of the process respectively, and dWt is
the Brownian motion component of the diffusion process. This is the continuous
time analogue of the Markov process with no jumps, i.e. it has continuous paths.
Later on, when we provide numerical examples in section 4, we will use Ornstein-
Uhlenbeck process (O-U process) which is a stationary process, and is similar
to AR(1) process in its continuous time form.

Given the evolution of the prices, pt and wt, for t ≥ 0, firms will maximize
(3.1) subject to (3.2). Let g(z, t) denote the distribution of the shocks at time
t. For all t ≥ 0, the distribution satisfies∫

S

g(z, t)dz = 1. (3.3)

The prices are determined by the functions P (Qt) and W (Nt), where Qt and
Nt are aggregate output supply and input demand respectively. We have
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Nt =
∫
S
nt(z, pt, wt)g(dz, t),

Qt =
∫
S
qt(z, nt(z, pt, wt))g(dz, t).

(3.4)

This implies that the evolution of the aggregates and consequently the prices
are governed by the evolution of the shocks distribution.

3.1 Stationary Equilibrium

Now, we will derive the equations/inequalities that characterize the stationary
equilibrium of the model. These are the so-called HJBVI and KFE. We work
with the discrete time model and take the period’s length to be equal to ∆.
Given this, the firm’s discounting factor can be interpreted as a function of ∆,
and can be approximated by β(∆) = e−ρ∆ ≈ 1 − ρ∆ when ∆ gets arbitrarily
close to zero. Ignoring the firm’s exit decision, from equation (3.1) we can get
the Bellman equation

v(zt) = max
nt

π(zt, nt)∆ + (1− ρ∆)E[v(zt+∆)|zt], (3.5)

which yields

ρ∆v(zt) = max
nt

π(zt, nt)∆ + (1− ρ∆) {E[v(zt+∆)|zt]− v(zt)} .

After dividing by ∆ and taking the limit as ∆→ 0, we have

ρv(zt) = max
nt

π(zt, nt) +
E[dv(zt+∆)|zt]

dt
. (3.6)

By Ito’s Lemma:

dv(zt) =

(
v̇(zt) + v′(zt)µ(zt) +

1

2
v′′(zt)σ

2(zt)

)
dt+ σ(zt)v

′(zt)dWt.

Taking expectation conditional on zt gives

E [dv(zt)|zt] =

(
v′(zt)µ(zt) +

1

2
v′′(zt)σ

2(zt)

)
dt. (3.7)

Finally, plugging back equation (3.7) into equation (3.6) and suppressing the
time subscript, we get a form of HJB equation

ρv(z) = max
n

π(z, n) + v′(z)µ(z) +
1

2
v′′(z)σ2(z). (3.8)

Let’s assume that the exiting firms secure a fixed reservation value of v ∈ R.
This assumption can be made without loss of generality, since we can always
ignore the reservation value and set v = 0. Firms decide to exit the industry
if their value falls below the reservation value v(zt) < v. Note that a negative
value for v means that the exit decision is costly for firms, and therefore rises
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their tolerance of bad shocks, i.e. more negative v translates into lower exit
cutoff shock, and vice versa. Equation (3.8) combined with the exit decision,
gives the HJBVI,

min

{
ρv(z)− v′(z)µ(z)− 1

2
v′′(z)σ2(z)− π(z, n), v(z)− v

}
= 0. (3.9)

In order to be able to solve the HJBVI, we need to clarify the boundary condi-
tions for v(z). We know that the shock process gets reflected from some upper
and lower bounds since the state space is bounded, i.e. S = [s, s] = [0, 1]. As a
result, the boundary conditions are

v′(s) = v′(s) = 0. (3.10)

We now turn to Kolmogorov Forward equation which describes the evolution
of the shocks distribution. KFE depends only on the diffusion process for shocks
and the entry/exit decisions have nothing to do with the distribution of the
shocks. Derivation of the KFE using any diffusion process also follows from Ito’s
Lemma. It is out of the scope of this paper to derive the KFE, however, the
procedure for its derivation can be found in several sources including Rackauckas
(2014). For our model, the KFE becomes

1

2

d2

dz2

(
σ2(z)g(z)

)
− d

dz
(µ(z)g(z)) = 0. (3.11)

The distribution satisfies the following condition∫
S

g(z)dz = 1, g ≥ 0. (3.12)

Also, the prices are given by

w = W (N) = W
(∫
S
ng(dz)

)
,

p = P (Q) = P
(∫
S
q(z, n)g(dz)

)
.

(3.13)

The stationary competitive equilibrium of the economy is fully characterized
by the equations (3.9)-(3.13). The following proposition deals with the existence
of the stationary equilibrium with positive entry. This proposition is equivalent
to the combination of the theorems 2 and 3 in Hopenhayn (1992).The proof for
proposition 1 can be obtained from the proofs provided for theorems 2 and 3 in
Hopenhayn (1992).

Proposition 1. There exists a range of fixed costs, [cf , cf ], for which there

exists a stationary equilibrium with positive entry/exit for the economy.

The HJBVI, (3.9) can be written as a Linear Complimentarity Problem
(LCP) for which there are standard procedures to solve. See http://www.

princeton.edu/~moll/HACTproject/option_simple.pdf for derivation of the
LCP form. The algorithm for solving for stationary equilibrium is described
below. We start with an initial guess on price, p0 and wage, w0, and then for
i = 0, 1, 2, ... we do as follows:

http://www.princeton.edu/~moll/HACTproject/option_simple.pdf
http://www.princeton.edu/~moll/HACTproject/option_simple.pdf
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Tab. 1: Functions used for the quantitative exercise

Production Technology: q(z, n) = znα

Inverse Demand Function: P (Q) = Q
1

1−γ

Wage Function: W (N) = 1

Profit Function: π(z, n) = pq − wn− cf
Shock Process (O-U): dz = θ(z − z)dt+ σdW

1. Given prices, solve for the optimal labor all over the shock grid, i.e. ni =
argmax π(z, n). Then solve for q, and π given the labor choice.

2. Solve for the value function, vi, from (3.9) using its LCP form considering
the boundary conditions on (3.10).

3. Solve for the distribution, gi, from (3.11) and (3.12).

4. Solve for the aggregate quantity supply, Qi, and labor demand, Ni, using
distribution on the shocks. Update the price and wage given the aggre-
gates.

5. Given the newly obtained values for price and wage, return to step 1. Stop
if |pi+1 − pi| < ε and |wi+1 − wi| < ε for some desirably small ε.

This gives us the stationary equilibrium of the economy, (pi, wi, vi, gi, z
c
i , Qi, Ni).

Note that, in this case we don’t need to know the cutoff shocks to solve the
KFE. That is because of the fact that the shock distribution is independent of
firms’ entry-exit decision. In the next section we will see the case where the
joint distribution of shocks and age depend on the firms’ exit decision, which
makes things rather complicated. As stated earlier, in this section we’ve tried
to explain the easiest and basic case in order to have a grasp on the model in
continuous time. We will turn to keep control of age, and have a non zero entry
cost in the model in section 3. Note also that, it is not hard nor would it be
costly to enrich the model by adding, for example, physical capital or assets, or
other types of state or non-state variables. To solve for the model in a general
equilibrium setting would be another easy extension of this model.

3.2 A Quantitative Work

Now we will run our simplified model using the following functions that satisfy
the model assumptions mentioned earlier in the paper. The functions are re-
ported in Table 1. The parameter values used in this exercise are reported in
Table 2.

The results of the model for given functions and parameter values are shown
in Figure 3.1. For this case, we have chosen the fixed cost cf = 0.35 to match
the exit rate of about 10% as we have in the data. In Figure 3.1, we have
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Tab. 2: Parameter values

Model parameters Values

α 0.5

γ 2

θ 0.3

z 0.5

σ 0.1

ρ 0.05

Fig. 3.1: Results of the model

reported the distribution of the shocks which is obtained through KFE, and
the value of the firms for different shocks which is obtained from HJBVI. We
have also reported the profits, labor demand and quantity supply, for different
shocks. Note that all values for profits, labor demand and quantity supply are
increasing in the shocks. This means, the firms with higher shocks will hire
more in order to take advantage of the high productivity, and as a result the
output and profits will also increase. The bottom-right panel in the Figure 3.1
displays the age distribution of the firms in the economy which is the result of
simulating 10,000 samples.

We compared the age distribution of the firms for our model with the age
distribution in the U.S data. As we can see in Figure 3.2, the results of the
model is very close to the data except for slight differences for the bins 0 and
16 − 20. These results will be very helpful when we include the dynamics of
aging in the model in the next section. Figure 3.2 or the bottom-right panel of
Figure 3.1 can be our benchmark to see how the model with entry cost performs.

Since the cutoff for exit varies with the fixed cost, it would be interesting to
see the correspondence of fixed cost and the exit cutoff shock. We have run the
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Fig. 3.2: Age distributions

model with different values for the fixed cost to see how the exit rule responds to
changes in the fixed cost. As we expected, the exit cutoff shock increases with
the fixed cost. That is, with firms paying more fixed cost each period, more
firms will have to shut down and only more productive firms can survive. As
displayed in Figure 3.3, for lower values of the fixed cost (close to zero), no exit
will happen because no shock is low enough to make the present value of the
firms’ expected profits become negative. Therefore, all the firms in the market
will make positive profits independent of their productivity shock, so no firm
will leave the market. On the other side, for the fixed cost high enough (in our
case, more than 1.6), the exit rate will be 100%. This means that the fixed cost
is so high that even the firms with highest productivity cannot make positive
profits. As a result, no firm can stay in the market when fixed cost is too high.

Another important thing here is the rate at which the slope of this function
changes. For the first part it is convex, meaning that the slope is increasing,
i.e. the exit rule increases with a positive pace. The slope is about zero for
the low values and it increases to about 2 around the point cf = 0.55. This
means, adding to the fixed cost, makes firms exit at even higher rates. After
the point cf = 0.55, the function becomes concave and the slope decreases. The
slope goes down from 2 and becomes zero after the point cf = 1.6. That is,
higher fixed cost increases the exit rate by less as we move forward. This is
because we already have high exit rate and the firms in the economy are very
productive, so adding to the fixed cost won’t decrease the number of the firms
in the economy at a higher rate as we move ahead. What Figure 3.3 shows is
consistent with the Proposition 1 according to which there exists a range for
the fixed cost that we get an stationary equilibrium with positive entry/exit.
It could be very valuable to analytically derive and explain the shape of this
function (a step that we have skipped in this paper).
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Fig. 3.3: Exit rule for different values of fixed cost

4 Continuous-Time Model With Entry Cost

Now we turn to the analysis of the model with entry cost. The model discussed
in this section keeps track of the evolution of the age as well as the shocks. This
is a way to include the age in the model as a state variable that will show up
in the value function. The dependence of the value function to the age will be
through the entry cost. First we will explain the stationary equilibrium in this
setting, and then we will show some quantitative results. As we will see, the
model with entry cost completely encompasses the model without entry cost.
i.e. the latter is a special case of the former.

4.1 Stationary Equilibrium of the Model

The analysis in this part has lots of similarities to the model without entry cost,
hence we will not repeat those parts in this section. In this case firms will have
to pay a fixed cost, ce > 0 only once when they enter the market. The rest of
the firms’ activities are similar to the case with no entry cost discussed in the
previous section. In order to have the entry cost in the model in the continuous
time setting, we assume an equivalent characterization of the problem. We let
the firms to pay the future value of the entry cost when they exit the market.
To do so, we need to keep track of the firms’ age, and then calculate the future
value of the entry cost using the discount factor at the age that firms decide to
exit the market. Here, the state of the economy is the joint distribution of the
age and shocks. Firms expected present discounted profits are

max
τ,nt

E0

∫ τ

0

e−ρtπ(zt, nt)dt− ce (4.1)

where the profit function π(·) is continuous and strictly increasing in z as we
had before. The shocks process is given by equation 3.2. In order to include the
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evolution of the firm’s age as a state of the economy, or in order to have entry
cost in the model, we re-write the firm’s objective function as

max
τ,nt

E0

∫ τ

0

e−ρtπ(zt, nt)dt− e−ρτ (c∗e(τ)) , (4.2)

where c∗e(τ) = eρτ ce is the age-dependent equivalent of the entry cost, i.e. it’s
future value evaluated at the exit time. This will lead us to a new HJBVI that
depends on both age and shocks.

An important task here is to create a process for the evolution of age. Then,
based on the process for age, the most challenging task is to obtain the HJBVI
and KFE. The process for age has two components depending on whether the
firms decide to continue or shut down:

1. If the firms survive, they will continue, and their age will simply evolve
according to the following:

dat = (1)dt (4.3)

2. If the firms exit the market, their age will be set to zero, which is equivalent
of replacing the dead firms with newborn ones that enter the market in
the stationary equilibrium. That is, for any firm that exits at any age,
there is a new firm entering the market with age zero. This can be written
as

dat = (
−at
dt

)dt (4.4)

The drift part of these processes, µ(a), are shown in the parentheses, and there’s
no diffusion part here. Solving for the HJBVI is relatively straightforward com-
pared to the KFE, because in HJBVI we will only use the continuation process,
equation 4.3, and the other part, i.e exit decisions, will be taken care of by the
HJBVI itself. HJBVI can be written as follows:

min

{
ρv(z, a)− ∂

∂a
v(z, a)− ∂

∂z
v(z, a)µ(z)

−1

2

∂2

∂z2
v(a, z)σ2(z)− π(z, n), v(a, z) + eρa.ce

}
= 0

(4.5)

The way of obtaining this HJBVI, is exactly the same as the one we did
above. Again, here the first part in the left is the continuation value, and the
second part is the exit value. Note that for the first part we use the continuation
process, equation 4.5, with µ(a) = 1. The solution for this HJBVI will provide
us with the exit cutoff shock. Because the shocks are independent of age, there
is only one exit cutoff for the firms across the age distribution. From this we
will get the mass or probability of entry/exit.

We will have two Kolmogorov forward equations, one for each age process,
that need to be combined carefully. Note that the shocks process remains the
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same for both cases. Given the exit rule obtained from HJBVI, we will use the
corresponding KFE. That is, for any grid point in the shock-age distribution,
we will use the KFEX if the point lies in the exit region, and KFEN if the point
is in the no exit region. The general form for our KFEs is as follows

1

2

∂2

∂z2

(
σ2(z)g(a, z)

)
− ∂

∂z
(µ(z)g(a, z))− ∂

∂a
(µ(a)g(a, z)) = 0. (4.6)

This gives us the following two KFEs:

1

2

∂2

∂z2

(
σ2(z)g(a, z)

)
− ∂

∂z
(µ(z)g(a, z)) +

a

da

(
∂

∂a
g(a, z)

)
+ g(a, z) = 0

1

2

∂2

∂z2

(
σ2(z)g(a, z)

)
− ∂

∂z
(µ(z)g(a, z))− ∂

∂a
g(a, z) = 0

(4.7)

where the first equation is KFEX and the second one is KFEN . The distribution
satisfies the following condition∫ ∞

0

∫
S

g(a, z)dadz = 1, g ≥ 0, (4.8)

and the prices are given by

w = W (N) = W

(∫
n.g(da, dz)

)
,

p = P (Q) = P

(∫
q.g(da, dz)

)
.

(4.9)

The stationary competitive equilibrium is fully characterized by the equa-
tions (4.5), (4.7)-(4.9). Similar to the case with no entry cost, the following
proposition is about the existence of the stationary equilibrium with positive
exit/entry rate. This is also equivalent to the theorems 2 and 3 in Hopenhayn
(1992).

Proposition 2. For any positive value of fixed cost, there is a positive real num-
ber c̃e, such that for any entry cost ce < c̃e, there exists a stationary equilibrium
with positive exit rate for the economy.

In the next part we will report a wide range of fixed costs where for each
one of them there is a range of entry costs with positive exit rate. This result
is in full agreement with the Proposition 2. In order to solve the stationary
equilibrium of the model, we will follow the exact same steps of the algorithm
explained in the previous section with the exception of the 3rd step which will
become as follows:

3-1 Solve for the exit cutoff, zci , using the value function, or get the exit region
where the value is equal to the entry cost at those shock-age grid points.
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3-2 Solve for the distribution, gi, by solving KFENand KFEX , (4.7) jointly at
their corresponding regions.

In general it is very hard to deal with this kind of problem even with few states
in the model. The HJBVI part can be solved easily as a LCP, the same way as
the case without age and entry cost. The challenge here is to solve KFEs jointly
in their regions. We will explain a couple tricks that can be used to make it
easier to solve the KFEs.

First, we can use the fact that the shock distribution is independent of the
aging process and the exit decisions. Therefore, we can solve for two separate
distributions, one for the evolution of the shocks, and the other one for the
evolution of the age. It is much easier to solve for these two (2-dimensional)
distributions separately, and then combine them into one (3-dimensional) joint
distribution. One main advantage of using this method, is that it avoids all
the computational difficulties that arises from handling large matrices. In other
words, if we use Nz as the number of shock grid points, and Na as the number of
age grid points in our computation, using this method reduces the computational
difficulty from an order of Nz ×Na to an order of Nz + Na. It also avoids the
computational errors that may accumulate because of having many more linear
equations to solve.1

The second trick uses an altered structure for the KFEs and combines them
into one. The idea behind the KFE and HJB equation is that they capture the
interactions between single objects (decision makers) whose process is given,
and translate all these interactions into aggregate outcomes and distribution.
Therefore, the KFE is a measure in the aggregate level. We will use this fact to
simplify things even more. After solving the HJBVI, we get a cutoff shock for
exit, zc. Using this cutoff value and the distribution of shocks we can determine
the exit rate, i.e. the probability that a firm will exit independent of its age.
Let’s denote this probability by λ. Knowing the fact that the KFEs give the
distribution for the whole economy, we can convert these two equations into
one. The simplified KFE will be:2

1

2

∂2

∂z2

(
σ2(z)g(a, z)

)
− ∂

∂z
(µ(z)g(a, z))− λ

[
∂

∂a
g(a, z)

]
+(1− λ)

[
a

da

(
∂

∂a
g(a, z)

)
+ g(a, z)

]
= 0

(4.10)

Now we got one KFE which will give us the joint shock-age distribution and
together with HJBVI will give us the stationary equilibrium of the economy. We
have solved all these differential equations using the Finite Difference Method

1 The separating method introduced here produces more accurate results compared to the
joint method mainly because in the separate method we shut down all the interactions between
the multipliers of the shocks and age processes.

2 This is to be analytically proven in the upcoming versions of the paper. For now we
proceed with the argument provided above.
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Fig. 4.1: Value function with ce = 2 and cf = 1

(FDM). To solve the KFE, we will use a kind of FDM algorithm developed
in Achdou et. al. (2015), and to solve the HJBVI we will solve it as a Linear
Complementarity Problem (LCP), which is based on the FDM. It can be proven
that under the conditions of our model, the FDM solution converges to the
viscosity solution of our HJB. A proof is provided in Barles and Souganidis
(1991) for the regular HJB equation (not for the variational inequality), but
the case for the HJBVI immediately follows, because we just need converging
results for the HJB differential equation part of our variational inequality, and
then taking the minimum of its solution and the entry cost won’t affect the
result. In the next subsection we will provide some quantitative results that
will clarify the function of the model.

4.2 Numerical Results

In this part we will report some numerical results of the model with entry cost.
The structure of the model here is similar to that of the model without entry
cost except for having the age in the value function. To be consistent with the
results obtained in section 3, the functions used here are the ones shown in
Table 1, and all the parameter values are those given in Table 2. Figure 4.1
gives the value function across shocks and age for entry cost, ce = 2, and fixed
cost, cf = 1. As expected, the value function is equal to the fixed entry cost for
the shocks below some threshold.

Figure 4.2 shows the shock-age distribution using the same values for entry
and fixed costs. Again, for the exit/entry rate of around 11% this is what we
expect for the distribution. That is, more young firms and less and less older
firms. With lower probability of exit, the distribution’s peak will shift forward
in the age dimension. For example for the exit rates below 1% we will see more
and more older firms compared to the younger ones. That is, more firms will
survive in the market and most of them will get to live longer, and as a result,
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Fig. 4.2: Distribution of firms across shocks and age for ce = 2 and cf = 1

the economy will be populated with older firms.
We have run the model for several values of fixed cost and entry cost. We

have used a wide range of entry costs from 0 to 30, and correspondingly we chose
the values for the fixed costs to vary from 0 to 8. According to Proposition 2,
for any given fixed cost, there exits an interval (0, c̃e] for entry costs, where
there is a positive exit rate in the model. Note that the entry cost interval
depends on the value picked for the fixed cost, and we expect these intervals to
move together, i.e. lower values of the fixed cost will require lower values of the
entry cost, and as a result lower c̃e, in order to have a positive exit rate in the
economy, and vice versa. Figure 4.3 shows the exit rate for different values of
entry cost and fixed cost. The results shown in Figure 4.3 are fully consistent
with Proposition 2. Also, it shows that, given any value for entry cost, the exit
rate increases with the fixed cost. This is the same result that we had got in
section 3, using the model without entry cost. Now we can also see the response
of the exit rate to the changes in entry cost. Given any fixed cost, it is obvious
from Figure 4.3 that the exit rate is decreasing in the entry cost. This is also
consistent with the analysis in Hopenhayn (1992). Having paid higher entry
cost, firms will exit in a lower rate because the shock threshold needs to be even
lower to drop the expected discounted payoffs below the value of the entry cost
and force the firms to shut down.

5 Conclusion

In this paper we developed tools to numerically solve and analyze a model
of firms entry and exit in a continuous time framework. The model we used
here is Hopenhayn’s (1992). Because of the structural differences between the
models in discrete and continuous time, we differentiated between the model
without entry cost and with entry cost. As our benchmark model we derived
the stationary equilibrium of the model with no entry cost in continuous time,
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Fig. 4.3: Response of exit/entry rate to changes in the fixed cost and entry cost

and then we turned to the full model with entry cost while keeping track of age
distribution in the model. Introducing the aging process in the model brings
in lot’s of analytical advantages, which can be easily adopted in other models.
We also developed a straightforward way of dealing with Kolmogorov Forward
equation when we have two processes for the evolution of the variable in charge
(age in our case). Although we haven’t yet proven it, our perception is that,
the process for combining the Kolmogorov forward equations introduced in this
paper can be extended for multiple states instead of two, and as a result of this,
we can easily handle models with more states to happen, instead of just having
exit and continuation decisions as we had in this paper.

One of the main advantages of the full model is that it gives us a clear
and bigger picture of what we expect from the model. We can easily see the
relationship between the variables and the effect of parameters on the model. As
we showed earlier, the exit rate is increasing in the fixed cost and is decreasing
in the entry cost. We saw in both models that the slope of the exit rate for
changes in the fixed cost increases up to some point and then decreases, which
produces a s-shaped curve. In a similar way, but going to an opposite direction
in the entry cost dimension, we have the the same response of the exit rate to
the changes in the entry cost, and this produces an inverse s-shaped curves.
Another result that can be drawn is that, when there is no fixed cost, cf = 0,
there can be no entry cost that can guarantee a positive exit rate. That is, with
no fixed cost, there is no reason to exit the market. Positive exit rate in this
case is only possible through some negative values for the entry cost.

There could be some extensions done on our work. It is easy to run the model
with different parameter values and see the effects of changes in some basic
parameters (e.g. discounting factor, parameters of the production function, etc.)
on the variables of interest such as exit rate, labor demanded, quantity supplied,
etc. It is also very interesting to solve this model in a general equilibrium
setting instead of partial equilibrium. To do so, we would need to introduce the
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household side in the economy and calibrate the model accordingly. Another
interesting extension of the model would be addition of new state and non-state
variables. The first example that comes to mind is the addition of physical
capital and/or bonds to the model. Adding any of these features to the model
would make it richer and can produce lots of interesting results.
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