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Abstract

This paper is concerned with the use of the bootstrap for spatial econometric models. We show that the

bootstrap for spatial econometric models can be studied based on linear-quadratic (LQ) forms of distur-

bances. By proving the uniform convergence of the cumulative distribution function for LQ forms to that

of normal distributions, we show that the bootstrap is generally consistent for test statistics that can be

approximated by LQ forms, which include Moran’s I, Cox-type and spatial J-type test statistics. Possi-

ble asymptotic refinements of the bootstrap for spatial econometric models may be studied based on some

asymptotic expansions for LQ forms. We discuss two cases: when the disturbances are normal, we directly

show the existence of Edgeworth expansions for LQ forms and apply the result to show that the bootstrap

for Moran’s I can provide asymptotic refinements; when the disturbances are not normal, we show the

existence of a one-term asymptotic expansion of LQ forms based on martingales, which sheds light on the

second-order correctness of the bootstrap for LQ forms.

Keywords: Bootstrap, spatial, consistency, asymptotic refinement, linear-quadratic form
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1. Introduction

The bootstrap is a statistical procedure that estimates the distributions of estimators or test statistics

by resampling the data. Its approximations can be at least as good as those from the first-order asymptotic

theory under mild conditions. Thus it can be used as an alternative when evaluating the asymptotic

distributions is difficult. A more appealing feature of the bootstrap is that it is often more accurate in finite

samples than the asymptotic theory, i.e., it can provide asymptotic refinements. The bootstrap is frequently

used to correct the bias of estimators, estimate the critical values for hypothesis tests, construct confidence

intervals, etc. Useful survey papers on the bootstrap include, among others, DiCiccio and Efron (1996),

MacKinnon (2002), Davison et al. (2003), and Horowitz (2001, 2003).

The bootstrap has been discussed and implemented by many researchers for models in spatial economet-

rics. Anselin (1988, 1990) discusses the bootstrap estimation in spatial autoregressive (SAR) models, which
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is implemented by Can (1992). Fingleton (2008) and Fingleton and Le Gallo (2008) use the bootstrap to

test the significance of the moving average parameter in models with spatial moving average disturbances.

Lin et al. (2011) investigate the properties of bootstrapped Moran’s I under heterogeneous and non-normal

disturbances with a Monte Carlo study. Fingleton and Burridge (2010) and Burridge (2012) find that the

bootstrap can essentially remove the size distortion of the spatial J test in Kelejian (2008) in Monte Carlo

studies. Yang (2011) proposes the residual bootstrap for LM tests of spatial dependence. Jin and Lee

(2012) employ the bootstrap to remove the size distortion of Cox-type tests for SAR models with SAR

disturbances (SARAR models for short). Su and Yang (2008) suggest a bootstrap procedure that leads to

a robust estimate of a variance-covariance matrix. Yang (2012) proposes a bootstrap procedure to correct

the bias and variance of quasi-maximum likelihood estimators (QMLE) for SAR models. Monchuk et al.

(2011) compare several bootstrap methods in Monte Carlo studies for constructing confidence intervals in a

spatial error model.

Although there have been many applications of the bootstrap in spatial econometric models including

Monte Carlo studies in the preceding papers, its validity for these models has not been formally justified.

The objective of this paper is to establish the consistency of the bootstrap for several test statistics in

spatial econometric models and provide a preliminary discussion of possible asymptotic refinements. We

shall show that many estimators in spatial econometric models can be approximated by linear-quadratic

(LQ) forms of the disturbances, and test statistics are either approximated by or closely related to LQ

forms, due to the presence of spatial dependence. The bootstrap in spatial econometric models thus can be

studied based on LQ forms in general. Kelejian and Prucha (2001) prove a central limit theorem for LQ

forms using a central limit theorem for martingale difference arrays. We shall show that the convergence

of the cumulative distribution function (CDF) for a LQ form is uniform under the same conditions. Using

this uniform convergence, the bootstrap can generally be shown to be consistent for statistics that can be

approximated by a LQ form. We apply the result to show the consistency of the bootstrap for Moran’s I

and the spatial J-type tests (Kelejian and Piras, 2011).

We shall also discuss possible asymptotic refinements of the bootstrap for spatial econometric models

based on the LQ forms. For non-spatial econometric models, the bootstrap is often considered for the

statistics that are smooth functions of sample averages of independent random vectors, see, e.g., Hall (1997),

or stationary dependent random vectors, see, e.g., Götze and Hipp (1983, 1994), for which the Edgeworth

expansions are well established. The existed Edgeworth expansions for the random vectors can be used to

prove the consistency and asymptotic refinements of the bootstrap. The framework does not apply to LQ

forms, which cannot be written as simple averages of disturbances or their cross-products. For statistics in

spatial econometric models, we may investigate whether the bootstrap can provide asymptotic refinements

by considering Edgeworth expansions of LQ forms. Such expansions, however, have not be proved to exist in

the literature. For LQ forms with normal disturbances, we shall show the existence of Edgeworth expansions
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and apply the result to show that the bootstrap can provide asymptotic refinements for Moran’s I; for LQ

forms with non-normal disturbances, we verify an asymptotic expansion of LQ forms based on martingales

(Mykland, 1993). The Edgeworth expansion for a LQ form is established by using a smoothing inequality

that bounds the gap between two functions with the related Fourier transforms. The special feature of the

square matrix involved in a LQ form for spatial econometric models, i.e., the boundedness in both row and

column sum norms, can be used to obtain the order of the bound. The asymptotic expansion based on

martingales is not in a pointwise topology but sheds light on the bootstrap. It implies the second-order

correctness of the bootstrap for LQ forms in the sense of the convergence in Mykland (1993).1

The rest of the paper is organized as follows: Section 2 demonstrates a close relationship between LQ

forms and estimators and test statistics in spatial econometric models; Section 3 first shows the uniform

convergence of the CDF for LQ forms and then applies the result to show the bootstrap is consistent for

Moran’s I and spatial J-type tests; Section 4 establishes the Edgeworth expansion of a LQ form with

normal disturbances, which is applied to show the second-order correctness of the bootstrap for Moran’s I,

and establishes the asymptotic expansion in Mykland (1993) for LQ forms with non-normal disturbances;

Section 5 concludes. Lemmas and proofs are collected in the appendices.

2. Statistics in Spatial Econometrics and LQ Forms

In this section, we show that several estimators for spatial econometric models can be approximated by

LQ forms of disturbances, and many test statistics can be approximated by or relate closely to LQ forms.

As a result, we may study the bootstrap for spatial econometric models based on LQ forms. As the SARAR

model is a popular and general spatial model, which contains both the spatial lag (SAR) model and spatial

error (SE) model as special cases, our discussion will mainly focus on this model. A SARAR model is

specified as

yn = λWnyn +Xnβ + un, un = ρMnun + εn, εn = (εn1, . . . , εnn)′, (1)

where n is the sample size, yn is an n-dimensional vector of observations on the dependent variable, Xn is an

n×kx matrix of exogenous variables, Wn and Mn are n×n spatial weights matrices with zero diagonals, εni’s

are i.i.d. with mean zero and variance σ2, and θ = (λ, ρ, β′, σ2)′ = (γ′, σ2)′ is a vector of parameters. Let θ0

be the true parameter vector, Sn(λ) = In − λWn and Rn(ρ) = In − ρMn with In being the n-dimensional

1For LQ forms with non-normal disturbances, directly investigating Edgeworth expansions can be hard. Götze et al. (2007)

establishes a one term Edgeworth expansion for a quadratic form. Their proof is based on a symmetrization inequality and

the differential inequality method. The quadratic matrix in Götze et al. (2007) has some special feature not shared by the

square matrix in the LQ form here. With a square matrix bounded in both row and column sum norms in the quadratic form,

the expansion established using similar methods may not generate a remainder term of a desirable order. In addition, the

generalization to a LQ form is not straightforward.
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identity matrix. Denote Sn = Sn(λ0) and Rn = Rn(ρ0) for short. The SARAR model nests the SAR and

SE models. The SAR model is (1) with i.i.d. disturbances, i.e., ρ = 0, and the SE model is (1) without the

spatially lagged term of the dependent variable, i.e., λ = 0. The spatial Durbin model has an additional

term (+WnXnζ) on the r.h.s. of the equation for yn of the SAR model. As WnXn can be taken as an

exogenous variable matrix, with some additional identification consideration in some cases, the analysis for

a spatial Durbin model is similar to that for a SAR model.

For estimators of the SARAR model, the derivatives of the corresponding criterion functions evaluated

at the true parameter vector are often LQ forms of the disturbances, rather than just linear forms, due to

the presence of spatial dependence. As a result, these estimators can be approximated by a LQ form. Lee

(2004) has proved the consistency and asymptotic normality of the QMLE for a SAR model without SAR

disturbances. The analysis can be extended to the SARAR model (1) as in Jin and Lee (2012), from which

we have
√
n(θ̂n − θ0) = −

( 1

n
E
∂2Ln(θ0)

∂θ∂θ′

)−1 1√
n

∂Ln(θ0)

∂θ
+ oP (1), (2)

where θ̂n is the QMLE and Ln(θ) denotes the log likelihood function of the model. Every element of the

vector 1√
n
∂Ln(θ0)
∂θ is linear in the disturbances or of the LQ form

(ε′nAnεn − σ2
0 tr(An) + b′nεn)/

√
n, (3)

where An is an n-dimensional square matrix and bn is an n-dimensional vector. Thus every element of
√
n(θ̂n − θ0) can be approximated asymptotically by a linear combination of LQ forms, which is still a LQ

form with the same εn. For the generalized method of moments (GMM) estimator, from Lee (2001, 2007),

√
n(γ̂n − γ0) = −

((
E
∂g′n(γ0)

∂γ

)
ana

′
n

(
E
∂gn(γ0)

∂γ′
))−1(

E
∂g′n(γ0)

∂γ

)
ana

′
n

√
ngn(γ0) + oP (1),

where γ̂n is the GMM estimator of γ, an is a matrix with full column rank greater than or equal to (kx+ 2),

and gn(γ) =
(
ε′n(γ)D1nεn(γ), . . . , ε′n(γ)Dmnεn(γ), ε′n(γ)Qn

)
/n with εn(γ) = Rn(ρ)[Sn(λ)yn − Xnβ], Din’s

being n-dimensional square matrices with zero traces and Qn being a matrix of instrumental variables

constructed as functions of Xn, Wn and Mn in a two-stage least squares (2SLS) approach. Every element

of
√
ngn(γ0) is a quadratic or linear form of the disturbances, then every element of

√
n(γ̂n − γ0) can

be approximated by a LQ form of the disturbances. The generalized spatial 2SLS (GS2SLS) approach in

Kelejian and Prucha (1998) first estimates (λ, β′)′ using only linear moments, then derives estimates of ρ

and σ2 based on quadratic moments using the residuals from the first step, and finally updates the estimate

of (λ, β′)′ by a G2SLS taking into account the covariance structure. As (λ, β′)′ is estimated using only linear

moments, its estimator can be approximated by a linear form of the disturbances, but the estimator of ρ is

approximated by a LQ form because quadratic moments are used.

The estimators discussed above can be used to implement hypothesis tests such as the classical Wald,

likelihood ratio and Lagrangian multiplier (LM) tests in the likelihood framework, or by the Wald test,
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the distance test, and the gradient test in the GMM framework. These asymptotically equivalent tests are

based on the asymptotic normality of the estimators. As a result, they can be studied based on LQ forms.

In addition to the classical hypothesis tests, Moran’s I test (Moran, 1950; Cliff and Ord, 1973, 1981) is a

popular test for spatial dependence, and tests for non-nested hypotheses, such as the spatial J-type tests

(Kelejian, 2008; Kelejian and Piras, 2011) and Cox-type tests (Jin and Lee, 2012), have been proposed for

testing the selection of various spatial weights matrices in spatial models.

The Moran I statistic is
n

l′nMnln
· ε̂
′
nMnε̂n
ε̂′nε̂n

,

where ln is an n-dimensional vector of ones and ε̂n is the residual vector from the least squares estimation.

The test is based on the asymptotic normality of the standardized test statistic by deducting the mean and

dividing by the standard deviation. Burridge (1980) shows that for the SE model with normal disturbances

or the spatial moving average model

yn = Xnβ + un, un = ρMnεn + εn, εn ∼ N(0, σ2In),

the LM test statistic is proportional to the Moran I statistic, which is

In =
n√

tr(M2
n +M ′nMn)

· ε̂
′
nMnε̂n
ε̂′nε̂n

. (4)

Let Hn = In −Xn(X ′nXn)−1X ′n. Under the null hypothesis of no spatial dependence, Eq. (4) becomes

In =
n√

tr(M2
n +M ′nMn)

ε′nHnMnHnεn
ε′nHnεn

=
n√

tr(M2
n +M ′nMn)

ε′nHnMnHnεn − σ2
0 tr(MnHn)

(n− kx)σ2
0

+
n√

tr(M2
n +M ′nMn)

tr(MnHn)

n− kx

− n√
tr(M2

n +M ′nMn)

ε′nHnMnHnεn
(
ε′nHnεn − (n− kx)σ2

0

)
(n− kx)σ2

0ε
′
nHnεn

.

(5)

Under some regularity assumptions, the last two terms on the r.h.s. of Eq. (5) have the order O(n−1/2),

thus the LM or Moran I statistic can be approximated by a quadratic form of the disturbances. When

the null hypothesis is the SARAR model with normal disturbances, (4) and (5) can still be used to test

for spatial dependence. Kelejian and Prucha (2001) propose a generalized Moran’s I test for which the

test statistic equals a quadratic form of some regression residuals divided by a normalizing factor. Their

regularity conditions guarantee that the test statistic can be approximated by a LQ form.

The spatial J-type tests for testing one spatial econometric model against another one are based on

augmenting the null model by using a predictor from the alternative model. The augmented model is

estimated by the 2SLS in Kelejian (2008) or Kelejian and Piras (2011) and then they test whether the

coefficient of the predictor is statistically different from zero or not. Due to the 2SLS estimation, the test

statistic is only a linear form of the disturbances plus a term that converges to zero in probability. But a
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linear form is just a special case of the more general LQ form, so the test statistic can also be studied using

LQ forms. The more efficient GMM estimation with both linear and quadratic moments for the augmented

model may significantly improve the power of the spatial J-type tests (Jin and Lee, 2012). The test statistics

with the GMM estimation are approximated by LQ forms.

Jin and Lee (2012) derive the Cox-type specification tests for SARAR models. The Cox-type tests

are based on the log likelihood ratios for the null and alternative models with a proper adjustment for the

asymptotically nonzero mean. While the first order asymptotic expansion of estimators can be approximated

by LQ forms, the adjusted log likelihood ratio itself is a LQ form at given parameters. As a result, the Cox

test statistic, equal to the adjusted log likelihood ratio divided by its standard error, is the sum of a LQ

form and a remainder term where the remainder converges to zero in probability.

Our study focuses on the bootstrap for test statistics which can be approximated by LQ forms, including

Moran’s I and spatial J-type test statistics.

3. Consistency of the Bootstrap

In this section, we first present a general result on the consistency of the bootstrap for statistics that

may be approximated by LQ forms. Then we apply the result to the Moran I statistic in Eq. (5) and J-type

test statistics for SARAR models.

Consider a statistic tn for a spatial econometric model which is asymptotically normal with mean zero.

The tn would involve spatial weights matrices, exogenous variables and dependent variables. The dependent

variables in tn can be replaced by their reduced forms as functions of disturbances εn = (εn1, . . . , εnn)′,

exogenous variables and the true parameter vector θ0. The tn may also involve the estimator θ̂n of θ0 and

the estimator ς̂n of other moment parameter vector ς0 for εni. To compute a bootstrapped version of tn,

a proper bootstrap procedure needs to be considered. The spatially dependent variable usually cannot be

resampled directly, because doing so would destroy the inherent dependence structure. Instead, the residual

bootstrap can be used as we usually assume that the disturbances εni’s are i.i.d.. We may first derive a

consistent estimator of parameters in a spatial econometric model and compute the residual vector ε̂n. The

ε̂n may not have a zero mean, so we deduct its empirical mean from the vector to obtain ε̃n = (In− 1
n lnl

′
n)ε̂n.2

Next, sample with replacement n times from the elements of ε̃n to obtain a vector ε∗n.3 Then a pseudo data

vector y∗n on the dependent variable can be computed by using the reduced form with the parameter θ̂n

and disturbances ε∗n. For example, for the SARAR model (1), we have y∗n = S−1
n (λ̂n)

(
Xnβ̂n +R−1

n (ρ̂n)ε∗n
)
.

2Freedman (1981) shows the necessity of recentering for regression models. For the SARAR model (1), if Xn contains ln

corresponding to an intercept term in the model, then the residuals from the quasi-maximum likelihood estimation have mean

zero and there is no need to recenter.
3That is, generate the bootstrap error terms from the empirical distribution function of the recentered residuals.
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Estimating θ using y∗n yields θ̂∗n and a residual vector ε̂∗n. The bootstrapped version of tn, t∗n, is the statistic

obtained from replacing εn, θ0, θ̂n and ς̂n in tn by, respectively, ε∗n, θ̂n, θ̂∗n and ς̂∗n, where ς̂∗n is a vector of

sample moments of ε̂∗n that correspond to the moment parameters in ς0.

Let σ2
0 , µ3 and µ4 be, respectively, the second, third and four moments of the zero-mean i.i.d. disturbances

εni’s, An = [an,ij ] be an n×n nonstochastic matrix, bn = (bn1, . . . , bnn)′ be an n-dimensional nonstochastic

vector, and cn = n−1/2
(
ε′nAnεn − σ2

0 tr(An) + b′nεn
)

be a LQ form with mean zero and variance σ2
cn =

n−1
[
2σ4

0 tr(A2
n) + σ2

0b
′
nbn +

∑n
i=1

(
(µ4 − 3σ4

0)a2
n,ii + 2µ3an,iibni

)]
. We assume that tn can be approximated

by cn/σcn such that dn = tn−cn/σcn converges to zero in probability. Let c∗n = n−1/2
(
ε∗
′

n Anε
∗
n−σ∗2n tr(An)+

b′nε
∗
n

)
with variance σ∗2cn = n−1

[
2σ∗4n tr(A2

n) +σ∗2n b
′
nbn +

∑n
i=1

(
(µ∗4n− 3σ∗4n )a2

n,ii + 2µ∗3nan,iibni
)]

conditional

on the bootstrap sampling process, where σ∗2n = n−1ε̃′nε̃n, µ∗3n = n−1
∑n
i=1 ε̃

3
ni and µ∗4n = n−1

∑n
i=1 ε̃

4
ni.

Define d∗n = t∗n − c∗n/σ∗cn . We assume the following conditions about cn.

Assumption 1. The εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. (0, σ2
0) and E |εni|4(1+δ) <∞ for some δ > 0.

Assumption 2. The sequence of symmetric matrices {An} are bounded in both row and column sum norm-

s,4 and elements of the vectors {bn} satisfy supn n
−1
∑n
i=1 |bni|2(1+δ) <∞.

Assumption 3. The sequence {σ2
cn} is bounded away from zero.

The An and bn are functions of spatial weights matrices and exogenous variables. As spatial weights

matrices are often assumed to be bounded in both row and column sum norms and the elements of exogenous

variables are assumed to be bounded constants (Kelejian and Prucha, 1998; Lee, 2004), it is reasonable to

impose Assumption 2. Kelejian and Prucha (2001) have proved the asymptotic normality of cn/σcn under

Assumptions 1–3. Under the same conditions, we can have the uniform convergence of the CDF for cn/σcn

to that for a standard normal variable as subsequently shown. As in Kelejian and Prucha (2001), we write

cn a sum of martingale differences, then theorems in Heyde and Brown (1970) and Haeusler (1988) on the

departure of cn/σcn from the standard normal distribution are applicable. Let Φ(x) be the CDF for a

standard normal random variable, P∗ and E∗ be, respectively, the probability distribution and expectation

induced by the bootstrap sampling process, and let Ka and Kb be constants such that for any n,

sup
1≤j≤n

n∑
i=1

|an,ij | ≤ Ka, sup
1≤i≤n

n∑
j=1

|an,ij | ≤ Ka, and
1

n

n∑
i=1

|bni|2(1+η) ≤ Kb for − 1 < η ≤ δ.

Theorem 1. Under Assumptions 1–3,

sup
x∈R
|P(cn/σcn ≤ x)− Φ(x)| ≤ rn, (6)

sup
x∈R
|P∗(c∗n/σ∗cn ≤ x)− Φ(x)| ≤ r∗n, (7)

4As ε′nAnεn = ε′n(An +A′n)εn/2, it is w.l.o.g. to assume the symmetry of An.
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sup
x∈R
|P∗

(
c∗n/σ

∗
cn + d∗n ≤ x

)
− P

(
cn/σcn + dn ≤ x

)
| ≤ rn + P(|dn| > τn) + r∗n + P∗(|d∗n| > τn) + 21/2π−1/2τn,

(8)

sup
x∈R

∣∣P∗((c∗n/σ∗cn + d∗n)e∗n ≤ x
)
− P

(
(cn/σcn + dn)en ≤ x

)∣∣ ≤ rn + P(|dn| > τn) + r∗n + P∗(|d∗n| > τn)

+ 21/2π−1/2τn + sup
x∈R

∣∣Φ(x/en)− Φ(x/e∗n)
∣∣, (9)

where τn is any positive term depending only on n, en is a positive nonstochastic term depending on n,

θ0 and moment parameters of εni, rn = Kσ
−2(1+δ)/(3+2δ)
cn n−δ/(3+2δ)

(
(Ka + 1)1+2δ

(
Ka E |ε2ni − σ2

0 |2+2δ +

22+2δKa(E |εni|2+2δ)2 + Kb E |εni|2+2δ
)

+ 41+δ
(
σ4

0K
4
a(µ4 − σ4

0) + 4σ8
0K

4
a + σ2

0K
2
a(µ2

3Ka + σ4
0Kb)(Ka + 1) +

2|µ3|σ2
0K

3
a(|µ3|Ka + σ2

0Kb)
)(1+δ)/2

)1/(3+2δ)

with K being a constant depending only on δ, r∗n is a term

obtained from replacing the population moment parameters of εni in rn with the corresponding sample mo-

ments of ε∗ni, and e∗n is a term obtained from replacing θ0 and population moment parameters of εni in en

by, respectively, θ̂n and corresponding sample moments of ε∗ni.

The l.h.s. of (6) is the Kolmogorov-Smirnov distance between the CDFs of two random variables. The

inequality gives a rate of convergence, O(n−δ/(3+2δ)), of the CDF of cn/σcn to that of a standard normal

random variable. The larger is δ, i.e., the higher moments of εni assumed to exist, the faster is the conver-

gence. The convergence rate approaches O(n−1/2), the rate for a sample average of i.i.d. random variables,

as δ becomes larger. A similar result for the bootstrapped version of cn/σcn is given in (7). The result in (8)

is shown by using (6) and (7). To prove the consistency of the bootstrapped tn, we may show that the r.h.s.

of (8) converges to zero in probability. This type of convergence with respect to the Kolmogorov-Smirnov

distance implies the asymptotic consistency of confidence intervals. If we can show that the sample moments

of ε∗ni converge in probability to the relevant population moments of εni, then the continuous mapping the-

orem implies that r∗n is of order OP (n−δ/(3+2δ)). The remainder term dn is often of order OP (n−1/2), thus

we may let τn = O(n−α) for some 0 < α < 1/2. It only remains to show that P∗(|d∗n| > τn) converges to

zero in probability. For asymptotically normal statistics with non-unit variances, e.g., various estimators,

we may rescale terms in (8) to obtain (9), which can be more convenient for the proof of consistency. Now

we apply the results in Theorem 1 to show the consistency of bootstrapped Moran’s I and spatial J-type

test statistics for SARAR models.

3.1. Moran’s I

To show the consistency of the bootstrap for Moran’s I in Eq. (5), we write In in the form on the l.h.s.

of (9). Note that the variance of ε′nHnMnHnεn is σ4
0 tr
(
HnMnHn(Mn + M ′n)

)
when εn ∼ N(0, σ2

0In), we

may let

cn = n−1/2
(
ε′nHnMnHnεn − σ2

0 tr(MnHn)
)
, (10)
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σ2
cn = n−1σ4

0 tr[HnMnHn(Mn +M ′n)], (11)

en =
n

n− kx

√
tr[HnMnHn(Mn +M ′n)]√

tr(M2
n +M ′nMn)

, (12)

dn = In/en − cn/σcn . (13)

Let I∗n be the bootstrapped In. The I∗n, and the corresponding c∗n, σ∗cn , e∗n and d∗n are derived as described

earlier.

Proposition 1. Under H0 and Assumptions I1–I4 in Appendix A.1, the Moran I statistic in Eq. (5)

satisfies supx∈R |P∗(I∗n ≤ x)− P(In ≤ x)| = oP (1).

The above proposition is the case where εn ∼ N(0, σ2
0In), which guarantees that In in (5) is asymptot-

ically standard normal. When the i.i.d. disturbances are not normal, In is still asymptotically normal but

with a non-unit variance in general, since the variance of ε′nHnMnHnεn is (µ4 − 3σ4
0)
∑n
i=1(HnMnHn)2

ii +

σ4
0 tr[HnMnHn(Mn + M ′n)]. To make the test statistic robust to the distribution of the disturbances, we

consider the following statistic

I′n =
ε′nHnMnHnεn√

nσ̂cn
, (14)

where σ̂2
cn = n−1(µ̂4n − 3σ̂4

n)
∑n
i=1(HnMnHn)2

ii + n−1σ̂4
n tr[HnMnHn(Mn +M ′n)] with µ̂3n = n−1

∑n
i=1 ε̂

3
ni

and µ̂4n = n−1
∑n
i=1 ε̂

4
ni. The I′n is asymptotically standard normal. We use (8) to show the consistency of

the bootstrap for I′n. Now let

cn = n−1/2
(
ε′nHnMnHnεn − σ2

0 tr(MnHn)
)
, (15)

σ2
cn = n−1(µ4 − 3σ4

0)

n∑
i=1

(HnMnHn)2
ii + n−1σ4

0 tr[HnMnHn(Mn +M ′n)], (16)

dn = I′n − cn/σcn . (17)

Denote the bootstrapped I′n by I′∗n . Correspondingly, we have c∗n, σ∗2cn and d∗n.

Proposition 2. Under H0 and Assumptions I1–I3 and I4’ in Appendix A.1, supx∈R |P∗(I′∗n ≤ x)−P(I′n ≤

x)| = oP (1).

3.2. Spatial J-type Tests

In this subsection, we show the consistency of the bootstrapped spatial J-type tests for SARAR models

(Kelejian and Piras, 2011). Consider the problem of testing one SARAR model against another one:

H0 : yn = λ1W1nyn +X1nβ1 + u1n, u1n = ρ1M1nu1n + ε1n, ε1n = (ε1n,1, . . . , ε1n,n)′, (18)

H1 : yn = λ2W2nyn +X2nβ2 + u2n, u2n = ρ2M2nu2n + ε2n, ε2n = (ε2n,1, . . . , ε2n,n)′, (19)
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where ε1n,i’s are i.i.d. (0, σ2
1) and ε2n,i’s are i.i.d. (0, σ2

2). Other terms in the above models, with subscripts

indicating different models, have similar meanings as those for the model (1). For i = 1, 2, let θi =

(λi, ρi, β
′
i, σ

2
i )′, Sin(λi) = In − λiWin, Rin(ρi) = In − ρiMin. The true parameter vector for the model (18)

is θ10. The idea of the J-type tests is to augment the null model using a predictor ŷn for the dependent

variable from the alternative model and test whether the coefficient of the predictor is significantly different

from zero. In specific, the augmented model is

R1n(ρ1)yn = λ1R1n(ρ1)W1nyn +R1n(ρ1)X1nβ1 + αR1n(ρ1)ŷn + εn, (20)

Note that a spatial Cochrane-Orcutt transformation has been used for the efficiency of the predictor ŷn.

Given an estimator θ̂2n for the alternative model, a predictor of yn can be λ̂2nW2nyn+X2nβ̂2n from the r.h.s.

of the equation for yn in (19) or S−1
2n (λ̂2n)X2nβ̂2n from the reduced form.5 In Kelejian and Piras (2011),

a GS2SLS estimator ρ1 is plugged in (20) and ŷn is also computed using the GS2SLS estimator, then (20)

is estimated by the 2SLS. Alternatively, we can use the QMLE to compute ŷn and then estimate ρ1 jointly

with λ1, β1 and α in (20) by the GMM. Under the null hypothesis, each estimator of α is asymptotically

normal and the test is based on such a distribution. We first investigate the case with the estimation method

in Kelejian and Piras (2011), and then study the case with the alternative estimation method.

The spatial 2SLS estimation of a SARAR model (Kelejian and Prucha, 1998), (18) or (19), involves sever-

al steps: γi = (λi, β
′
i)
′ is first estimated by the 2SLS, then the residuals are used to estimate ξi = (ρi, σ

2
i )′ by

a GMM with quadratic moments of the form E(ε′inDij,nεin) = σ2
i0 tr(Dij,n), where Dij,n is an n-dimensional

square matrix and σ2
i0 is the true second moment when the ith SARAR model generates the data, and finally

the estimates of λi and βi are updated by the 2SLS estimation of the Cochrane-Orcutt transformed spatial

model, for i = 1, 2. Kelejian and Prucha (1998) use the matrices In, Min and M ′inMin for their quadratic

moments in the second step. Let Zin = (Winyn, Xin), PAn = An(A′nAn)−1A′n for any full rank matrix

An with row dimension n, Υin be the instruments for the first step estimation, γ̌in be the first step 2SLS

estimator of γi, ξ̂in be the estimator of ξi in the second step, Ξin be the instruments for the final step and γ̂in

be the estimator of γi from the final step.6 With these notations, we have γ̌in = (Z ′inPΥin
Zin)−1Z ′inPΥin

yn,

the objective function of the second step in the spatial 2SLS is g′n(ξi; γ̌in)gn(ξi; γ̌in), where gn(ξi; γ̌in) =

n−1[ε′in(ρi; γ̌in)εin(ρi; γ̌in)− nσ2
i , ε
′
in(ρi; γ̌in)M ′inMinεin(ρi; γ̌in)− σ2

i tr(M ′inMin), ε′in(ρi; γ̌in)Minεin(ρi; γ̌in)]

with εin(ρi; γ̌in) = Rin(ρi)[Sin(λ̌in)yn−Xinβ̌in], and γ̂in = [Z ′inR
′
in(ρ̂in)PΞin

Rin(ρ̂in)Zin]−1Z ′inR
′
in(ρ̂in)PΞin

Rin(ρ̂in)yn.

For the estimation of (20), the instruments ∆n can be from both models, so they can be generated from

5The analyses for the two predictors are similar. In the following part, we only focus on the predictor λ̂2nW2nyn +X2nβ̂2n

for simplicity.
6The Υin can be generated from Win and Xin, say the linear independent columns of Xin, WinXin and W 2

inXin, and

Ξin can be generated from Win, Min and Xin, say the linear independent columns of Xin, WinXin, W 2
inXin, MinXin and

M2
inXin.
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X1n, X2n, W1n, W2n, M1n and M2n. By the Frisch-Waugh-Lovell theorem on partitioned regressions,

α̂n =
[(
P∆n

R1n(ρ̂1n)ŷn
)′

(In − PVn(ρ̂1n))P∆n
R1n(ρ̂1n)ŷn

]−1(
P∆n

R1n(ρ̂1n)ŷn
)′

(In − PVn(ρ̂1n))R1n(ρ̂1n)yn

= [ŷ′nR
′
1n(ρ̂1n)P∆n

(In − PVn(ρ̂1n))P∆n
R1n(ρ̂1n)ŷn]−1ŷ′nR

′
1n(ρ̂1n)P∆n

(In − PVn(ρ̂1n))R1n(ρ̂1n)R−1
1n ε1n,

(21)

where Vn(ρ̂1n) = P∆nR1n(ρ̂1n)Z1n. As R1n(ρ̂1n)R−1
1n = In + (ρ10 − ρ̂1n)M1nR

−1
1n , the spatial J test statistic

J1n = α̂n/σ̂α̂n
= α̂n[ŷ′nR

′
1n(ρ̂1n)P∆n

(In − PVn(ρ̂1n))P∆n
R1n(ρ̂1n)ŷn]1/2/σ̂1n, (22)

where σ̂2
1n = n−1ε̂′1nε̂1n with ε̂1n = R1n(ρ̂1n)[S1n(λ̂1n)yn−X1nβ̂1n], is asymptotically standard normal under

the null hypothesis and the assumption that n−1∆nR1n(ρ̂1n)ŷn converges to a non-zero limit in probability

along with other regularity conditions. The assumption on ŷn is on the whole term n−1∆nR1n(ρ̂1n)ŷn, but

remains implicit on the specific behavior of γ̂2n under the null hypothesis. As we would like to study the

consistency of the bootstrapped spatial J tests, there is a need to investigate the remainder term of the

spatial J test statistic after being approximated by a linear form of the disturbances. This can be done

by using the pseudo-true values. The alternative model may have different functional forms or variables

from those for the null model, thus the estimator for the alternative model generally would not converge

to the true parameter value of the null model. But we can often find a sequence of non-stochastic vec-

tors, i.e., pseudo-true values, such that the difference between the estimator and the pseudo-true value

converges to zero in probability. As the spatial 2SLS involves three steps, we have a pseudo-true value

in each step. In the first step, as γ̌in = (Z ′inPΥin
Zin)−1Z ′inPΥin

yn, the pseudo-true value γ̃in,1 can be

γ̃in,1 = (EZ ′inPΥin
EZin)−1 EZ ′inPΥin

E yn.7 As shown in Lemma 9, n1/2(γ̂in − γ̃in,1) = OP (1). Then in

step 2, the pseudo-true value ξ̄in,1 can be ξ̄in,1 = arg minξi n
−1 E g′n(ξi; γ̃in,1) E gn(ξi; γ̃in,1). In the last step,

the pseudo-true value γ̄in,1 is γ̄in,1 = [(Rin EZin)′PΞinRin EZin]−1(Rin EZin)′PΞinRin E yn, where Rin de-

notes Rin(ρ̄in,1) for short. Let σ̄2
α̂n

= σ2
10[γ̄′2n,1 E(Z ′2n)R′1nP∆n

(In − PVn
)P∆n

R1n E(Z2n)γ̄2n,1]−1 and ᾱn =

σ−2
10 σ̄

2
α̂n
γ̄′2n,1 E(Z ′2n)R′1nP∆n

(In−PVn
)ε1n with Vn = P∆n

R1n EZ1n. Then as shown in the proof of Proposi-

tion 3, J1n = ᾱn/σ̄α̂n
+oP (1). Although J1n is approximated by a linear form of the disturbances, the boot-

strap for J1n can be proved to be consistent using a LQ form.8 Corresponding to the bootstrapped data vec-

tor y∗n,9 let γ̌∗in = (Z∗
′

inPΥin
Z∗in)−1Z∗

′

inPΥin
y∗n with Z∗in = (Winy

∗
n, Xin), ξ̂∗in = arg minξi g

∗′
n (ξi; γ̌

∗
in)g∗n(ξi; γ̌

∗
in),

where g∗n(ξi; γ̌
∗
in) = n−1[ε∗

′

in(ρi; γ̌
∗
in)ε∗in(ρi; γ̌

∗
in)− nσ2

i , ε
∗′
in(ρi; γ̌

∗
in)M ′inMinε

∗
in(ρi; γ̌

∗
in)− σ2

i tr(M ′inMin),

ε∗
′

in(ρi; γ̌
∗
in)Minε

∗
in(ρi; γ̌

∗
in)] with ε∗in(ρi; γ̌

∗
in) = Rin(ρi)[Sin(λ̌∗in)y∗n −Xinβ̌

∗
in], and

γ̂∗in = [(Rin(ρ̂∗in)Z∗in)′PΞnRin(ρ̂∗in)Z∗in]−1(Rin(ρ̂∗in)Z∗in)′PΞnRin(ρ̂∗in)y∗n. Then the bootstrapped spatial J test

7For generality, we use the term pseudo-true value for both i = 1 and i = 2. Note that γ̃1n,1 = γ10.
8An alternative is to use the Mallows metric as in regression models. See Freedman (1981).
9Here y∗n = S−1

n (λ̂1n)[X1nβ̂1n +R−1
1n (ρ̂1n)ε∗1n], where ε∗1n is an n-dimensional vector of random samples from the elements

of (In − lnl′n/n)ε̂1n, with ε̂1n being the residual vector from the GS2SLS estimation of the model (18).
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statistic is

J∗1n = α̂∗n/σ̂
∗
α̂∗n

= α̂∗n[ŷ∗
′

n R
′
1n(ρ̂∗1n)P∆n

(In − PV ∗n (ρ̂∗1n))P∆n
R1n(ρ̂∗1n)ŷ∗n]1/2/σ̂∗1n, (23)

where ŷ∗n = Z∗2nγ̂
∗
2n, σ̂∗21n = n−1ε∗

′

1n(ρ̂∗1n; γ̂∗1n)ε∗1n(ρ̂∗1n; γ̂∗1n), V ∗n (ρ̂∗1n) = P∆nR1n(ρ̂∗1n)Z∗1n, and

α̂∗n = [ŷ∗
′

n R
′
1n(ρ̂∗1n)P∆n

(In − PV ∗n (ρ̂∗1n))P∆n
R1n(ρ̂∗1n)ŷ∗n]−1ŷ∗

′

n R
′
1n(ρ̂∗1n)P∆n

(In − PV ∗n (ρ̂∗1n))R1n(ρ̂∗1n)R−1
1n (ρ̂1n)ε∗1n.

Proposition 3. Under H0 and the assumptions in Appendix A.2, supx∈R |P∗(J∗1n ≤ x) − P(J1n ≤ x)| =

oP (1).

Consider now the alternative estimation method of the augmented model (20). Let θ̈2n = (γ̈′2n, σ̈
2
2n)′ be

the QMLE of the model (19) with θ̄2n,1 being the pseudo-true value under H0. For the estimation of (20),

we can use both linear moments and quadratic moments for the GMM. Let D1n, . . . , Dmn be n-dimensional

square matrices with zero traces for the quadratic moments and ∆n be the instrumental matrix used in the

2SLS estimation approach. The Din’s can be constructed from W1n, M1n, W2n and M2n. The moment

vector is gn(ψ; γ̈2n) = n−1(ε′n(ψ; γ̈2n)D1nεn(ψ; γ̈2n), . . . , ε′n(ψ; γ̈2n)Dmnεn(ψ; γ̈2n), ε′n(ψ; γ̈2n)∆n)′, where ψ =

(λ1, ρ1, β
′
1, α)′ and εn(ψ; γ̈2n) = R1n(ρ1)[S1n(λ1)yn−X1nβ1−α(λ̈2nW2nyn +X2nβ̈2n)]. The true parameter

vector of ψ is ψ0 = (λ10, ρ10, β
′
10, 0)′. A general objective function of the GMM is g′n(ψ; γ̈2n)ana

′
ngn(ψ; γ̈2n),

where {an} is a sequence of full rank matrices that converges to a constant matrix a0. By the generalized

Cauchy-Schwarz inequality, the optimal weighting matrix is the variance-covariance (VC) matrix Ωn of

n1/2gn(ψ0; γ2). For the feasible optimal GMM, a first step consistent estimator ψ̌n can be derived from

minimizing g′n(ψ; γ̈2n)gn(ψ; γ̈2n), then an estimator ψ̂n can be the minimizer of g′n(ψ; γ̈2n)Ω̂−1
n gn(ψ; γ̈2n),

where Ω̂n is the matrix obtained by replacing the ψ0 and other moment parameters of ε1n,i in Ωn by,

respectively, ψ̌n and the corresponding sample moments of the first-step residuals. Under some regularity

conditions, ψ̂n is consistent for ψ0 and n1/2(ψ̂n − ψ0) is asymptotically normal with limiting VC matrix

limn→∞[EG′n(ψ0; γ2)Ω−1
n EGn(ψ0; γ2)]−1, where Gn(ψ; γ2) = ∂gn(ψ;γ2)

∂ψ′ . Then we may let the spatial J test

statistic be

J2n = n1/2e′ψψ̂n/[e
′
ψ(G′n(ψ̂n; γ̈2n)Ω̂−1

n Gn(ψ̂n; γ̈2n))−1eψ]1/2, (24)

where eψ is a vector with length equal to that of ψ, whose last element is 1 and other elements are zero.

As shown in Section 2, J2n can be approximated by a LQ form as every element of gn(ψ0; γ2) is a linear or

quadratic form of ε1n. With the bootstrapped data vector y∗n,10 let θ̈∗2n be the QMLE of the model (19),

the moment vector for the GMM estimation of (20) be g∗n(ψ; γ̈∗2n) = n−1(ε∗
′

n (ψ; γ̈∗2n)D1nε
∗
n(ψ; γ̈∗2n), . . . ,

ε∗
′

n (ψ; γ̈∗2n)Dmnε
∗
n(ψ; γ̈∗2n), ε∗

′

n (ψ; γ̈∗2n)∆n)′ with ε∗n(ψ; γ̈∗2n) = R1n(ρ1)[S1n(λ1)y∗n − X1nβ1 − α(λ̈∗2nW2ny
∗
n +

10Here we may let y∗n = S−1
n (λ̈1n)[X1nβ̈1n + R−1

1n (ρ̈1n)ε∗1n], where θ̈1n = (λ̈1n, ρ̈1n, β̈′1n, σ̈
2
1n)′ is the QMLE of the model

(18), and ε∗1n is an n-dimensional vector of random samples from the elements of (In − lnl′n/n)ε̂1n, with ε̂1n being the residual

vector from the QML estimation of the model (18).
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X2nβ̈
∗
2n)], ψ̌∗n and ψ̂∗n be the first-step and second-step estimators in the feasible optimal GMM approach

respectively, G∗n(ψ; γ2) =
∂g∗n(ψ;γ2)

∂ψ′ , and Ω̂∗n be the matrix obtained by replacing the estimators in Ω̂n by the

corresponding ones with y∗n. Then the bootstrapped J2n is

J∗2n = n1/2e′ψψ̂
∗
n/[e

′
ψ(G∗

′

n (ψ̂∗n; γ̈∗2n)Ω̂∗−1
n G∗n(ψ̂∗n; γ̈∗2n))−1eψ]1/2. (25)

Proposition 4. Under H0 and the assumptions in Appendix A.3, supx∈R |P∗(J∗2n ≤ x) − P(J2n ≤ x)| =

oP (1).

4. Asymptotic Refinements

The Edgeworth expansion has been well established for a smooth function of sample averages of inde-

pendent random vectors and/or stationary dependent random vectors. It provides a useful tool to prove

that the bootstrap may provide asymptotic refinements. The LQ forms for spatial econometric models

involve spatial weights matrices and cannot be written as simple sample averages of disturbances or their

cross-products. If we would like to investigate possible asymptotic refinements of the bootstrap in spatial

econometric models using some expansions, we need to justify the validity for such expansions first. When

the disturbances in a LQ form are normally distributed, Edgeworth expansions can be established without

much difficulty. But when the disturbances are not normal, directly investigating possible expansions can be

hard. An alternative approach is to decompose a LQ form into the sum of martingale differences and then

study the expansions for martingales. Mykland (1993) establishes an asymptotic expansion for martingales,

but the expansions are not in a pointwise topology. Below we discuss the cases of normal and non-normal

disturbances separately.

4.1. Normal Disturbances

When the disturbances in a LQ form cn/σcn = n−1/2
(
ε′nAnεn − σ2

0 tr(An) + b′nεn
)
/σcn are i.i.d. normal,

we can easily derive its characteristic function. By a smoothing inequality in Feller (1970), the difference

between two functions has an upper bound generated from the Fourier transforms relating to these two

functions. The inequality is used to establish the Berry-Esseen bound for the error in the approximation

of the normal distribution or the Edgeworth expansion to the true distribution for a sample mean of i.i.d.

disturbances. It can also be used to establish the Edgeworth expansion of a LQ form. Let f (k)(x) be the

kth order derivative of a function f(x). We can use the boundedness in both row and column sun norms of

the matrix An to bound the derivatives of the characteristic function for a LQ form.

Theorem 2. Under Assumptions 2 and 3, when εn ∼ N(0, σ2
0In),

sup
x∈R
|P(cn/σcn ≤ x)− [Φ(x) + κn(1− x2)Φ(1)(x)]| = O(n−1), (26)
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sup
x∈R
|P∗(c∗n/σ∗cn ≤ x)− [Φ(x) + κ∗n(1− x2)Φ(1)(x)]| = OP (n−1), (27)

where κn = n−3/2σ−3
cn [4σ6

0 tr(A3
n)/3 + σ4

0b
′
nAnbn] = O(n−1/2) with σ2

cn = n−1[2σ4
0 tr(A2

n) + σ2
0b
′
nbn] and

κ∗n = n−3/2σ∗−3
cn [4σ∗6n tr(A3

n)/3 + σ∗4n b
′
nAnbn] = OP (n−1/2) with σ∗2cn = n−1[2σ∗4n tr(A2

n) + σ∗2n b
′
nbn], and for

r ≥ 3, there exist real polynomials Pn3(x), . . . , Pnr(x) with bounded coefficients such that

sup
x∈R

∣∣P(cn/σcn ≤ x)− Φ(x)− Φ(1)(x)

r∑
i=3

n−(i−2)/2Pni(x)
∣∣ = O(n−(r−1)/2). (28)

Eqs. (26) and (27) can be used to show that the bootstrap can provide asymptotic refinements for some

statistics that can be approximated by a LQ form. Eq. (28) presents a general high order expansion for

the CDF of a LQ form. Note that κn has a relatively simple form. Instead of bootstrapping test statistics,

we may correct the bias distortion for test statistics that can be approximated by a LQ form.11 The above

theorem can be applied to show that the bootstrap for Moran’s I is more accurate than the first-order

asymptotic theory.

Proposition 5. Under H0 and Assumptions I1–I4 in Appendix A.1, the Moran I statistic in Eq. (5)

satisfies P∗(I∗n ≤ x)− P(In ≤ x) = OP (n−1).

4.2. Non-normal Disturbances

For LQ forms with non-normal disturbances, a theorem on asymptotic expansions for martingales in

Mykland (1993) can be applied to establish an expansion, which the author calls the Edgeworth expansion

for martingales. The conditions needed are mainly imposed on the variation measures associated with

martingales, e.g., the optional kth-order variation, which is defined as the sum of the kth powers of the

martingale differences. One condition is the central limit theorem which relates to the optional second-order

variations. The cn/σcn can be decomposed as the sum of martingale differences that are quadratic in the

disturbances. We need the existence of E |εni|4(1+δ) for some δ > 0 to show the asymptotic normality of

cn/σcn , which is based a central limit theorem for martingales. For the central limit theorem relating to the

optional second-order variations, higher moments for εni are required to exist. Correspondingly, a stronger

condition on bn is also assumed.

Assumption 1’. The εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. (0, σ2
0) and E |εni|8(1+δ) <∞ for some δ > 0.

Assumption 2’. The sequence of symmetric matrices {An} are bounded in both row and column sum norms

and the elements of the vectors {bn} satisfy supn n
−1
∑n
i=1 |bni|4(1+δ) <∞.

11Robinson and Rossi (2010) have considered a finite sample correction of Moran’s I test for a pure SAR model. They have

not shown the validity of their expansion for the CDF of Moran’s I test statistic, which is in terms of the CDF for a chi-square

distribution.
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Theorem 3. Under Assumptions 1’, 2’ and 3, we have∫ +∞

−∞
h(x) dFn(x) =

∫ +∞

−∞
h(x) dΦ(x) +

1

6
n−1/2 E

[(
ψo(Y ) + 2ψp(Y )

)
h(2)(Y )

]
+ o(n−1/2), (29)

where Fn(x) = P(cn/σcn ≤ x), Y is the normal random variable that cn/σcn converges to, and expressions

for ψo(Y ) and ψp(Y ) are given in (C.17)–(C.20), uniformly on a set ` of functions h which are twice

differentiable, with h, h(1) and h(2) uniformly bounded, and with {h(2), h ∈ `} being equicontinuous a.e.

Lebesgue. Denote the convergence in (29) by o2(n−1/2) (Mykland, 1993), then

Fn(x) = Φ(x) +
1

6
n−1/2

(
ψ(1)
o (x) + 2ψ(1)

p (x)− [ψo(x) + 2ψp(x)]x
)
Φ(1)(x) + o2(n−1/2). (30)

As pointed out by Mykland (1993), the expansion generally does not hold when h is an indicator function

of an interval, so it is a “smoothed” expansion. Note that ψo(x) and ψp(x) are linear in x, then ψ
(1)
o (x) +

2ψ
(1)
p (x)− [ψo(x)+2ψp(x)]x = (1−x2)[ψ

(1)
o (x)+2ψ

(1)
p (x)]. In the special case that εni’s are i.i.d. normal, we

can verify that 1
6n
−1/2[ψ

(1)
o (x) + 2ψ

(1)
p (x)− [ψo(x) + 2ψp(x)]x] = (1− x2) limn→∞ κn, thus (30) has similar

terms as the usual one-term Edgeworth expansion (26).

5. Conclusion

In this paper, we consider the use of the bootstrap in spatial econometric models. We show that the

bootstrap for estimators and test statistics in spatial econometric models can be studied based on LQ forms.

We have established the uniform convergence of the CDF for a LQ form to that of the standard normal

random variable. Based on this result, we show that the bootstrap is consistent for Moran’s I and spatial

J-type test statistics. As possible asymptotic refinements for the bootstrap are usually shown by using some

asymptotic expansions, we discuss expansions for LQ forms: for normal disturbances, we have established

the Edgeworth expansions for LQ forms and applied the result to show the second-order correctness of the

bootstrap for Moran’s I; for non-normal disturbances, we have established an asymptotic expansion based

on martingales.

There are some extensions which can be of interest for future research. Some asymptotic chi-square tests

in spatial econometrics, e.g., hypothesis tests with multiple constraints, are constructed from vectors of LQ

forms. The current uniform convergence result, which is only about a single LQ form, does not cover vectors

of LQ forms. It is of interest to establish the uniform convergence result for vectors of LQ forms so that the

bootstrap can be shown to be consistent for asymptotic chi-square tests. It also remains to show high order

expansions of a vector of LQ forms for asymptotic refinements of the bootstrap.

15



Appendix A. Assumptions

Appendix A.1. Assumptions for Moran’s I

Assumption I1. The sequence of matrices {Mn} have zero diagonals and are bounded in both row and

column sum norms.

Assumption I2. The sequence of full rank matrices {Xn} have uniformly bounded constant elements, and

limn→∞
1
nX
′
nXn exists and is nonsingular.

Assumption I3. The sequence {(2n)−1[2(µ4 − 3σ4
0)
∑n
i=1(HnMnHn)2

ii + σ4
0 tr((Mn + M ′n)2)]} is bounded

away from zero.

Assumption I4. The disturbance vector εn ∼ N(0, σ2
0In).

Assumption I4’. The εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. and E ε8ni <∞.

The variance of n1/2ε′nHnMnHnεn is guaranteed to be bounded away from zero in Assumption I3, as

n−1 tr[HnMnHn(Mn +M ′n)] = (2n)−1 tr[(Mn +M ′n)2] + o(1) by Lemma 1. When the disturbances are not

assumed to be normal, I′n generally involves the estimated fourth moment of εni. To prove the consistency

of the bootstrapped I′n using Theorem 1, we need to know the rate of convergence of the estimated fourth

moment to the true one, thus a strong condition on εni is imposed in Assumption I4’.

Appendix A.2. Assumptions for the Spatial J Tests: J1n

Assumption J1. The ε1n,i’s are i.i.d. (0, σ2
10) and the moment E(ε41n,i) exists.

Assumption J2. The matrices X1n and X2n have full ranks and uniformly bounded constants. The limits

limn→∞
1
nX
′
1nX1n and limn→∞

1
nX
′
2nX2n exist and are nonsingular.

Assumption J3. Matrices S1n and R1n are nonsingular.

Assumption J4. The sequences of matrices {W1n}, {M1n}, {R−1
1n } and {S−1

1n } are bounded in both row

and column sum norms. The {W1n} and {M1n} have zero diagonals.

Assumption J5. The n−1Υ′1nΥ1n, n−1Ξ′1nΞ1n, n−1Υ′1n(W1nS
−1
1nX1nβ10, X1n) and n−1Ξ′1nR1n(W1nS

−1
1nX1nβ10, X1n)

converge to full rank matrices.

Assumption J6. The minimum eigenvalue of the matrix

1

n


n 2σ2

10 tr(M1nR
−1
1n ) σ2

10 tr(R′−1
1n M

′
1nM1nR

−1
1n )

tr(M ′1nM1n) 2σ2
10 tr(M ′1nM

2
1nR

−1
1n ) σ2

10 tr(R′−1
1n M

′2
1nM

2
1nR

−1
1n )

0 σ2
10 tr[(M1n +M ′1n)M1nR

−1
1n ] σ2

10 tr(R′−1
1n M

′
1nM

2
1nR

−1
1n )


is bounded away from zero, |λ1| < 1, |ρ1| < 1 and 0 < σ2

1 < c for some c > 0.
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Assumption J7. The n−1Υ′2nΥ2n, n−1Ξ′2nΞ2n, n−1Υ′2n(W2nS
−1
1nX1nβ10, X2n) and n−1Ξ′2nR2n(W2nS

−1
1nX1nβ10, X2n)

converge to full rank matrices.

Assumption J8. For any η > 0, there exists κ > 0 such that, when ||ξ2−ξ̄2n,1|| > η, n−1[E g′n(ξ2; γ̃2n,1) E gn(ξ2; γ̃2n,1)−

E g′n(ξ̄2n,1; γ̃2n,1) E gn(ξ̄2n,1; γ̃2n,1)] > κ for all large enough n. The ξ̄2n,1 is in the interior of the compact

parameter space of ξ2.

Assumption J9. The n−1∆′n∆n and n−1∆′nR1n(W2nS
−1
1nX1nβ10, X2n)γ̄2n,1 converge to full rank matrices.

Assumptions J1–J6 are similar to those in Kelejian and Prucha (1998). Assumption J7 is for the es-

timators γ̌2n and γ̂2n, similar to Assumption J5 for γ̌1n and γ̂1n. Assumption J8 states the identification

uniqueness condition for ξ̄2n,1. The condition for the estimation of the augmented model (20), Assump-

tion J9, is stated in terms of the pseudo-true value γ̄2n,1.

Appendix A.3. Assumptions for the Spatial J Tests: J2n

Let L1n(θ1) be the log likelihood function of the model (18), L2n(θ2) be the log likelihood function

of the model (19), and θ̄in,1 = arg max L̄in(θi; θ10) with L̄in(θi; θ10) = ELin(θi) under H0, for i = 1, 2.

Maximizing Lin(θi) and L̄in(θi; θ1) for given βi and σ2
i yields functions Lin(φi) and L̄in(φi; θ1) respectively,

where φi = (λi, ρi)
′.

Assumption J10. The ε1n,i’s are i.i.d. (0, σ2
10) and the moment E(ε81n,i) exists.

Assumption J11. The matrices X1n and X2n have full ranks and uniformly bounded constants. The limits

limn→∞
1
nX
′
1nX1n and limn→∞

1
nX
′
2nX2n exist and are nonsingular.

Assumption J12. Matrices S1n and R1n are nonsingular.

Assumption J13. The sequences of matrices {W1n}, {M1n}, {R−1
1n }, {S

−1
1n }, {W2n} and {M2n} are bound-

ed in both row and column sum norms. The {W1n}, {M1n}, {W2n} and {M2n} have zero diagonals.

Assumption J14. Each sequence of matrices {S−1
1n (λ1)}, {R−1

1n (ρ1)}, {S−1
2n (λ2)} and {R−1

2n (ρ2)} is bounded

in either row or column sum norm uniformly in the compact parameter space. The λ10, ρ10, λ̄2n,1 and ρ̄2n,1

are in the interiors of their parameter spaces.

Assumption J15. The limits limn→∞
1
nX
′
1nR

′
1n(ρ1)R1n(ρ1)X1n and limn→∞

1
nX
′
2nR

′
2n(ρ2)R2n(ρ2)X2n ex-

ist and are nonsingular for any ρ1 and ρ2 in their respective parameter spaces. The smallest eigenvalues of

R′1n(ρ1)R1n(ρ1) and R′2n(ρ2)R2n(ρ2) are bounded away from zero uniformly on their respective parameter

spaces.
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Assumption J16. For the identification of the model (18), either (i) limn→∞
1
n [ln |σ2

10S
−1
1n R

−1
1nR

′−1
1n S

′−1
1n |−

ln |σ̄2
1n,a(φ1)S−1

1n (λ1)R−1
1n (ρ1)R′−1

1n (ρ1)S′−1
1n (λ1)|] exists and is nonzero for any φ1 6= φ10, where σ̄2

1n,a(φ1) =

σ2
10

n tr[R′−1
1n S

′−1
1n S′1n(λ1)R′1n(ρ1)R1n(ρ1)S1n(λ1)S−1

1n R
−1
1n ], or (ii) limn→∞

1
n (Q1nX1nβ10, X1n)′(Q1nX1nβ10, X1n)

exists and is nonsingular, and limn→∞
1
n [ln |σ2

10S
−1
1n R

−1
1nR

′−1
1n S

′−1
1n |−ln |σ̄2

1n,a(λ10, ρ1)S−1
1n R

−1
1n (ρ1)R′−1

1n (ρ1)S′−1
1n |]

exists and is nonzero for any ρ1 6= ρ10, where Q1n = W1nS
−1
1n . For the model (19), for η > 0, there exists

κ > 0 such that, when ||φ2 − φ̄2n,1|| > η, n−1
(
L̄2n(φ̄2n,1; θ10)− L̄2n,1(φ2; θ10)

)
> κ for any large enough n.

Assumption J17. The limits limn→∞
1
n
∂2L̄1n(φ10;θ10)

∂φ1∂φ′1
and limn→∞

1
n
∂2L̄2n(φ̄2n,1;θ10)

∂φ2∂φ′2
exist and are nonsin-

gular.

Assumption J18. The limit of n−1 tr[R′−1
1n S

′−1
1n S′2nR

′
2nR2nS2nS

−1
1n R

−1
1n ] or

n−1(X1nβ10)′S′−1
1n S′2nR

′
2nH2nR2nS2nS

−1
1nX1nβ10 exists and is non-zero.

Assumption J19. Either (i) limn→∞ n−1∆′nR1n(ρ1)Γn, where Γn = (W1nS
−1
1nX1nβ10, X1n, λ̄2n,1W2nS

−1
1nX1nβ10+

X2nβ̄2n,1), has full rank kx1 + 2 for each possible ρ1 in its parameter space, and the moment equations

tr[R′−1
1n R

′
1n(ρ1)PimR1n(ρ1)R−1

1n ] = 0, for i = 1, . . . ,m, have the unique solution at ρ10, or (ii) limn→∞ n−1∆′nR1n(ρ1)X1n

has full rank kx1
for each possible ρ1 in its parameter space, and the moment equations

tr[R′−1
1n S

′−1
1n (S′1n(λ1)−αλ̄2n,1W

′
2n)R′1n(ρ1)PimR1n(ρ1)(S1n(λ1)−αλ̄2n,1W2n)S−1

1n R
−1
1n ] = 0, for i = 1, . . . ,m,

have the unique solution at the true parameter values.

Assumptions J10–J18 are directly from Jin and Lee (2012) with the exception of Assumption J10. A

strong condition is needed in Assumption J10 as explained in Appendix A.1 for Assumption I4’. Assump-

tion J19 is the identification uniqueness condition of the GMM estimation for the augmented model (20),

which resembles a condition for the GMM estimation of high order SARAR models in Lee and Liu (2010).

Appendix B. Lemmas

Appendix B.1. Elementary Lemmas

Lemmas 1–4 can be found in, e.g., Lin and Lee (2010).

Lemma 1. Suppose that n × n matrices {An} are bounded in both row and column sum norms. Elements

of n× k matrices {Xn} are uniformly bounded and limn→∞ n−1X ′nXn exists and is nonsingular. Let Hn =

In − Xn(X ′nXn)−1X ′n. Then {Hn} are bounded in both row and column sum norms and tr(HnAn) =

tr(An) +O(1).

Lemma 2. Suppose that An = [an,ij ] and Bn = [bn,ij ] are n× n matrices and εni’s in εn = (εn1, . . . , εnn)′

are i.i.d. with mean zero and variance σ2
0. Then,

(1) E(εn · ε′nAnεn) = E(ε3ni)(an,11, . . . , an,nn)′, and

(2) E(ε′nAnεn · ε′nBnεn) = [E(ε4ni)− 3σ4
0 ]
∑n
i=1 an,iibn,ii + σ4

0 tr(An) tr(Bn) + σ4
0 tr[An(Bn +B′n)].
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Lemma 3. Suppose that n×n matrices {An} are bounded in both row and column sum norms, elements of

the n × k matrices {Cn} are uniformly bounded, and εni’s in εn = (εn1, . . . , εnn)′ are independent (0, σ2
ni).

The sequences {σ2
ni} and {E(ε4ni)} are bounded. Then ε′nAnεn = OP (n), E(ε′nAnεn) = O(n), n−1[ε′nAnεn −

E(ε′nAnεn)] = oP (1) and n1/2C ′nAnεn = OP (1).

Lemma 4. Suppose that {An} is a sequence of symmetric n× n matrices with row and column sum norms

bounded and bn = (bn1, . . . , bnn)′ is an n-dimensional column vector such that supn n
−1
∑n
i=1 |bni|2+η1 <∞

for some η1 > 0. Furthermore, suppose that εn1, · · · , εnn are mutually independent with zero means and

the moments E(|εni|4+η2) for some η2 > 0 exist and are uniformly bounded for all n and i. Let σ2
Qn

be the

variance of Qn where Qn = ε′nAnεn + b′nεn − tr(AnΣn) with Σn being a diagonal matrix with E ε2ni’s on its

diagonal. Assume that n−1σ2
Qn

is bounded away from zero. Then Qn

σQn

d−→ N(0, 1).

Lemmas 5–8 are for the SARAR model (1), where εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. with mean zero,

variance σ2
0 , third moment µ3 and finite fourth moment µ4, and ε̂n = Rn(ρ̂n)[Sn(λ̂n)yn − Xnβ̂n] with θ̂n

being n1/2-consistent, i.e., n1/2(θ̂n − θ0) = OP (1). The ε∗n, y∗n and θ̂∗n are derived as described in Section 3.

Let || · || be the Euclidean norm of a vector.

Lemma 5. Let Pln = [pln,ij ] be n × n matrices which are bounded in row sum norms, for l = 1, . . . , s. If

supn,j E |εnj |s <∞, then n−1
∑n
i=1

∏s
l=1

∑n
j=1 |pln,ijεnj | = OP (1).

Proof. For s = 1, the result is immediate. So consider s > 1. For s > 1, there exists a finite r such that

1
r + 1

s = 1. Hölder’s inequality implies that

n∑
j=1

|pln,ij ||εnj | ≤
n∑
j=1

|pln,ij |
1
r |pln,ij |

1
s |εnj | ≤ [

n∑
j=1

(|pln,ij |
1
r )r]

1
r [

n∑
j=1

(|pln,ij |
1
s |εnj |)s]

1
s

≤ c 1
r [

n∑
j=1

|pln,ij ||εnj |s]
1
s ≤ c 1

r [

n∑
j=1

(

s∑
l=1

|pln,ij |)|εnj |s]
1
s ,

where c = supl=1,··· ,s ||Pln||∞. It follows that

s∏
l=1

n∑
j=1

|pln,ij ||εnj | ≤ c
s
r [

n∑
j=1

(

s∑
l=1

|pln,ij |)|εnj |s].

Hence,

E(

s∏
l=1

n∑
j=1

|pln,ij ||εnj |) ≤ c
s
r (

s∑
l=1

n∑
j=1

|pln,ij |) sup
n,j

E |εnj |s ≤ sc1+ s
r sup
n,j

E |εnj |s = scs sup
n,j

E |εnj |s = O(1).

The result of stochastic boundedness follows from Markov’s inequality. �

Lemma 6. For any integer r, if E |εni|r < ∞, E∗ ε∗rni = E εrni + oP (1), n−1
∑n
i=1 ε̂

r
ni = E εrni + oP (1),

E∗ |ε∗ni|r = E |εni|r+oP (1) and n−1
∑n
i=1 |ε̂ni|r = E |εni|r+oP (1). If E ε2rni <∞, n1/2[E∗ ε∗rni−E εrni] = OP (1)

and n1/2[n−1
∑n
i=1 ε̂

r
ni − E εrni] = OP (1).
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Proof. Let Jn = In − 1
n lnl

′
n. As yn = S−1

n (Xnβ0 +R−1
n εn),

ε∗n = Jnε̂n

= Jn
(
Rn + (ρ0 − ρ̂n)Mn

)(
Snyn −Xnβ0 + (λ0 − λ̂n)Wnyn +Xn(β0 − β̂n)

)
= εn −

l′nεn
n

ln + (λ0 − λ̂n)
(
JnRn + (ρ0 − ρ̂n)JnMn

)
WnS

−1
n Xnβ0

+
(
JnRnXn + (ρ0 − ρ̂n)JnMnXn

)
(β0 − β̂n)

+ (λ0 − λ̂n)
(
JnRn + (ρ0 − ρ̂n)JnMn

)
WnS

−1
n R−1

n εn + (ρ0 − ρ̂n)JnMnR
−1
n εn.

(B.1)

Write ε∗n = εn +
∑r
j=1 ζ1n,jpnj +

∑s
j=1 ζ2n,jQnjεn, where pnj = [pnj,i] is an n-dimensional vector with

bounded constant elements, Qnj = [qnj,il] is an n × n matrix with bounded row and column sum norms,

and ζ1n,j and ζ2n,j ’s are equal to l′nεn/n, λ0 − λ̂n, ρ0 − ρ̂n, elements of β0 − β̂n or their products. Then

ζ1n,j = OP (n−1/2) and ζ2n,j = OP (n−1/2). The ε∗rni can be expanded by the multinomial theorem, which

states that (x1+· · ·+xm)r =
∑
k1,...,km

(
r

k1,...,km

)
xk11 . . . xkmm , where

(
r

k1,...,km

)
is a multinomial coefficient and

the summation is taken over all sequences of nonnegative integer indices k1 through km such that their sum

is r. Then we have an expansion form for n−1
∑n
i=1 ε

∗r
ni−n−1

∑n
i=1 ε

r
ni, where each term in the expansion has

the product form T1nT2n with T1n being products of ζ1n,j and ζ2n,j ’s and T2n not involving ζ1n,j and ζ2n,j ’s.

The T2n is either bounded or stochastically bounded by Lemma 5. It follows that E∗ ε∗rni = E εrni + oP (1)

by the law of large numbers and n1/2[E∗ ε∗rni − E εrni] = OP (1) by Chebyshev’s inequality. Other results are

similarly derived. �

Lemma 7. Let Pln = [pln,ij ] be n × n matrices with bounded row sum norms for l = 1, . . . , s, then

P∗(n−1
∑n
i=1

∏s
k=1

∑n
j=1 |pkn,ijε∗nj | > η) = OP (1) for η > 0, if E |εni|s <∞.

Proof. The proof is similar to that for Lemma 5 except for the application of Lemma 6. �

Lemma 8. For η > 0 and an integer r, P∗(|n−1
∑n
i=1 ε̂

∗r
ni − E∗ ε∗rni| > η) = oP (1) if E |εni|r < ∞ and

P∗(||θ̂∗n − θ̂n|| > κ) = oP (1) for κ > 0, and P∗(na|n−1
∑n
i=1 ε̂

∗r
ni − E∗ ε∗rni| > η) = oP (1) for 0 ≤ a < 1/2 if

E |εni|2r <∞ and P∗(na||θ̂∗n − θ̂n|| > κ) = oP (1) for κ > 0.

Proof. As y∗n = S−1
n (λ̂n)(Xnβ̂n +R−1

n (ρ̂n)ε∗n),

ε̂∗n =
(
Rn(ρ̂n) + (ρ̂n − ρ̂∗n)Mn

)(
Sn(λ̂n)y∗n −Xnβ̂n + (λ̂n − λ̂∗n)Wny

∗
n +Xn(β̂n − β̂∗n)

)
= ε∗n + (λ̂n − λ̂∗n)

(
Rn(ρ̂n) + (ρ̂n − ρ̂∗n)Mn

)
WnS

−1
n (λ̂n)Xnβ̂n

+
(
Rn(ρ̂n)Xn + (ρ̂n − ρ̂∗n)MnXn

)
(β̂n − β̂∗n)

+ (λ̂n − λ̂∗n)
(
Rn(ρ̂n) + (ρ̂n − ρ̂∗n)Mn

)
WnS

−1
n (λ̂n)R−1

n (ρ̂n)ε∗n + (ρ̂n − ρ̂∗n)MnR
−1
n (ρ̂n)ε∗n.

Write ε̂∗n = ε∗n +
∑r
j=1 ζ1n,jpnj +

∑s
j=1 ζ2n,jQnjε

∗
n, where pnj = [pnj,i] is an n-dimensional vector with

bounded constant elements, Qnj = [qnj,il] is an n×n matrix with bounded row and column sum norms, and
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ζ1n,j and ζ2n,j ’s are equal to λ̂n − λ̂∗n, ρ̂n − ρ̂∗n, elements of β̂n − β̂∗n or their products. Now the argument is

similar to that for Lemma 6 except for the application of Lemma 7. �

Appendix B.2. Lemmas for the Spatial J Tests: J1n

Lemma 9. n1/2(γ̌1n − γ10) = OP (1) and n1/2(γ̌2n − γ̃2n,1) = OP (1).

Proof. Noting that γ̌in = [ 1
nZ
′
inΥin( 1

nΥ′inΥin)−1 1
nΥ′inZin]−1 1

nZ
′
inΥin( 1

nΥ′inΥin)−1 1
nΥ′inyn, where n−1Υ′inZin =

n−1Υ′in EZin + oP (1) = OP (1) and n−1/2Υ′in(yn − E yn) = OP (1) for i = 1, 2, the result follows. �

Lemma 10. n1/2(ξ̂1n − ξ10) = OP (1) and n1/2(ξ̂2n − ξ̄2n,1) = OP (1).

Proof. It has been shown in Kelejian and Prucha (1998) that ξ̂1n − ξ10 = oP (1). By the mean value

theorem,

0 =
∂g′n(ξ̂1n; γ̌1n)

∂ξ1
gn(ξ̂1n; γ̌1n) =

∂g′n(ξ̂1n; γ̌1n)

∂ξ1

(
gn(ξ10; γ̌1n) +

∂gn(ξ̃1n; γ̌1n)

∂ξ′1
(ξ̂1n − ξ10)

)
,

where ξ̃1n is between ξ̂1n and ξ10. Then n1/2(ξ̂1n−ξ10) = −
(∂g′n(ξ̂1n;γ̌1n)

∂ξ1

∂gn(ξ̃1n;γ̌1n)
∂ξ′1

)−1 ∂g′n(ξ̂1n;γ̌1n)
∂ξ1

n1/2gn(ξ10; γ̌1n).

Noting that gn(ξ1; γ1) is linear in σ2
1 and quadratic in ρ1 and γ1, we can write ρ̃1n = (ρ̃1n − ρ10) + ρ10

and γ̌1n = (γ̌1n − γ10) + γ10, and expand relevant terms in ∂gn(ξ̃1n;γ̌1n)
∂ξ′1

. Then it is easy to see that

∂gn(ξ̃1n;γ̌1n)
∂ξ′1

= ∂gn(ξ10;γ10)
∂ξ′1

+ oP (1). In addition, ∂gn(ξ10;γ10)
∂ξ′1

= E ∂gn(ξ10;γ10)
∂ξ′1

+ oP (1) by Chebyshev’s inequal-

ity. Thus, ∂gn(ξ̃1n;γ̌1n)
∂ξ′1

= E ∂gn(ξ10;γ10)
∂ξ′1

+ oP (1) = OP (1). Furthermore, n1/2gn(ξ10; γ̌1n) = n1/2gn(ξ10; γ10) +

∂gn(ξ10;γ10)
∂γ′1

n1/2(γ̌1n − γ10) + 1
2 (γ̌1n − γ10)′ ∂

2gn(ξ10;γ10)
∂γ1∂γ′1

n1/2(γ̌1n − γ10) = OP (1), as n1/2gn(ξ10; γ10) = OP (1)

by Chebyshev’s inequality and n1/2(γ̌1n − γ10) = OP (1). Thus, n1/2(ξ̂1n − ξ10) = OP (1).

As g2n(ξ2; γ2) is quadratic in ξ2, it is easy to see that g2n(ξ2; γ̌2n) − E g2n(ξ2; γ̃2n,1) = oP (1) uniformly

in the parameter space of ξ2, by showing that g2n(ξ2; γ̌2n) − g2n(ξ2; γ̃2n,1) = oP (1) and g2n(ξ2; γ̃2n,1) −

E g2n(ξ2; γ̃2n,1) = oP (1) uniformly in the parameter space of ξ2. In addition, E g′2n(ξ2; γ̃2n,1) E g2n(ξ2; γ̃2n,1)

is uniformly equicontinuous. Then the identification uniqueness assumption implies that ξ̂2n − ξ̄2n = oP (1).

With this result, it can be proved that n1/2(ξ̂2n− ξ̄2n,1) = OP (1) in a way similar to the proof for the result

on ξ̂1n. �

Lemma 11. n1/2(γ̂1n − γ10) = OP (1) and n1/2(γ̂2n − γ̄2n,1) = OP (1).

Proof. Write γ̂in = [ 1
nZ
′
inR
′
in(ρ̂in)Ξin( 1

nΞ′inΞin)−1 1
nΞ′inRin(ρ̂in)Zin]−1 1

nZ
′
inR
′
in(ρ̂in)Ξin( 1

nΞ′inΞin)−1 1
nΞ′inRin(ρ̂in)yn.

Since n−1Ξ′inRin(ρ̂in)Zin = n−1Ξ′inRinZin+oP (1) = n−1Ξ′inRin EZin+oP (1) = OP (1) and n−1/2Ξ′in(Rin(ρ̂in)yn−

Rin E yn) = n−1/2Ξ′inRin(yn−E yn)+n−1ΞinMinynn
1/2(ρ̄in,1− ρ̂in) = OP (1) for i = 1, 2, the result follows.

�

Lemma 12. For i = 1, 2, η > 0 and 0 ≤ a < 1
2 , P∗(na||γ̌∗in − γ̌in|| > η) = oP (1).
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Proof. Since γ̌∗in = [ 1
nZ
∗′
inΥin( 1

nΥ′inΥin)−1 1
nΥ′inZ

∗
in]−1 1

nZ
∗′
inΥin( 1

nΥ′inΥin)−1 1
nΥ′iny

∗
n, where P∗(||n−1Υ′in(Z∗in−

E∗ Z∗in)|| > η) = oP (1) and P∗(||na−1/2Υ′in(y∗n − E∗ y∗n)|| > η) = oP (1) by Chebyshev’s inequality and Lem-

ma 6, the result follows. �

Lemma 13. For i = 1, 2 and η > 0, P∗(||ξ̂∗in − ξ̂in|| > η) = oP (1).

Proof. Note that ε∗in(ρi; γ̌
∗
in) = Rin(ρi)[Sin(λ̌∗in)y∗n − Xinβ̌

∗
in] = ε∗in(ρi; γ̌in) + Rin(ρi)[(λ̌in − λ̌∗in)Wny

∗
n +

Xin(β̌in− β̌∗in)], then P∗(supξi∈$i

∣∣||g∗n(ξi; γ̌
∗
in)||2− ||g∗n(ξi; γ̌in)||2

∣∣ > η) = oP (1) for η > 0, where $i denotes

the parameter space of ξi, as Rin(ρi) is linear in ρi. Since εin(ρi; γ̃in,1) = Rin(ρi)[Sin(λ̃in,1)yn −Xinβ̃in,1]

and ε∗in(ρi; γ̌in) = Rin(ρi)[Sin(λ̌in)y∗n − Xinβ̌in], supξi∈$i
||E∗ g∗n(ξi; γ̌in) − E gn(ξi; γ̃in,1)|| = oP (1) by

the mean value theorem. As a result, supξi∈$i

∣∣||E∗ g∗n(ξi; γ̌in)||2 − ||E gn(ξi; γ̃in,1)||2
∣∣ = oP (1), since

supξi∈$i
||E gn(ξi; γ̃in,1)|| = OP (1).

If ||ξi − ξ̂in|| > η, ||ξi − ξ̄in,1|| ≥ ||ξi − ξ̂in|| − ||ξ̂in − ξ̄in,1|| > η/2 with probability 1− o(1). Then given

η > 0, there exists a κ > 0, such that ||ξi− ξ̂in|| > η implies that ||E∗ g∗n(ξi; γ̌in)||2−||E∗ g∗n(ξ̄in,1; γ̌in)||2 ≥ κ

with probability 1− o(1). Then for η1 > 0,

P
(
P∗(||ξ̂∗in − ξ̂in|| > η) > η1

)
≤ P

(
P∗(||E∗ g∗n(ξ̂∗in; γ̌in)||2 − ||E∗ g∗n(ξ̄in,1; γ̌in)||2 ≥ κ) > η1

)
+ o(1)

≤ P
(
P∗(||E∗ g∗n(ξ̂∗in; γ̌in)||2 − ||g∗n(ξ̂∗in; γ̌in)||2 + ||g∗n(ξ̂∗in; γ̌∗in)||2 − ||E∗ g∗n(ξ̄in,1; γ̌in)||2 ≥ κ) > η1

)
+ o(1)

≤ P
(
P∗(||E∗ g∗n(ξ̂∗in; γ̌in)||2 − ||g∗n(ξ̂∗in; γ̌in)||2 + ||g∗n(ξ̄in,1; γ̌∗in)||2 − ||E∗ g∗n(ξ̄in,1; γ̌in)||2 ≥ κ) > η1

)
+ o(1)

≤ P
(
P∗(||E∗ g∗n(ξ̂∗in; γ̌in)||2 − ||g∗n(ξ̂∗in; γ̌in)||2 + ||g∗n(ξ̄in,1; γ̌in)||2 − ||E∗ g∗n(ξ̄in,1; γ̌in)||2 ≥ κ) > η1

)
+ o(1)

≤ P
(
P∗
(

sup
ξi∈$i

2
(∣∣||g∗n(ξi; γ̌in)||2 − ||E∗ g∗n(ξi; γ̌in)||2

∣∣ ≥ κ) > η1

))
+ o(1).

The g∗n(ξi; γ̌in) is a 3×1 vector with each element being of the form g∗nj(ξi; γ̌in) = n−1[ε∗
′

in(ρi; γ̌in)Dnε
∗
in(ρi; γ̌in)−

σ2
i tr(Dn)], whereDn is an n×nmatrix. By Chebyshev’s inequality, P(P∗(supξi∈$i

|g∗nj(ξi; γ̌in)−E∗ g∗nj(ξi; γ̌in)| ≥

κ) > η1) = P(κ−2 E∗(supξi∈$i
|g∗nj(ξi; γ̌in)− E∗ g∗nj(ξi; γ̌in)|)2 > η1) = o(1) by Lemma 6. Then

P(P∗
(
supξi∈$i

(∣∣||g∗n(ξi; γ̌in) − E∗ g∗n(ξi; γ̌in)||2
∣∣ ≥ κ

)
> η1) = o(1) and P(P∗

(
supξi∈$i

2
(∣∣||g∗n(ξi; γ̌in)||2 −

||E∗ g∗n(ξi; γ̌in)||2
∣∣ ≥ κ) > η1)) = o(1). Thus P(P∗(||ξ̂∗in − ξ̂in|| > η) > η1) = o(1). �

Lemma 14. For i = 1, 2, η > 0 and 0 ≤ a < 1
2 , P∗(na||γ̂∗in − γ̂in|| > η) = oP (1).

Proof. Since γ̂in = [Z ′inR
′
in(ρ̂in)PΞin

Rin(ρ̂in)Zin]−1Z ′inR
′
in(ρ̂in)PΞin

Rin(ρ̂in)yn and

γ̂∗in = [Z∗
′

inR
′
in(ρ̂∗in)PΞin

Rin(ρ̂∗in)Z∗in]−1Z∗
′

inR
′
in(ρ̂∗in)PΞin

Rin(ρ̂∗in)y∗n, we only need to show that

P∗(n−1||ΞinRin(ρ̂∗in)Z∗in−ΞinRin(ρ̂in)Zin|| > η) = oP (1) and P∗(na−1||ΞinRin(ρ̂∗in)y∗in−ΞinRin(ρ̂in)yin|| >

η) = oP (1). Write n−1[ΞinRin(ρ̂∗in)Z∗in−ΞinRin(ρ̂in)Zin] = n−1ΞinRin(ρ̂in)(Z∗in−Zin)+n−1ΞinMinZ
∗
in(ρ̂in−

ρ̂∗in)], where Zin = [WinS
−1
1n (X1nβ10 +R−1

1n ε1n), Xin] and Z∗in = [WinS
−1
1n (λ̂1n)(X1nβ̂1n+R−1

1n (ρ̂1n)ε∗1n), Xin].

Since n−1ΞinRin(ρ̂in)WinS
−1
1n R

−1
1n ε1n = n−1ΞinRinWinS

−1
1n R

−1
1n ε1n+n−1ΞinMinWinS

−1
1n R

−1
1n ε1n(ρ̂in−ρ̄in,1) =
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oP (1), P∗
(
||n−1ΞinRin(ρ̂in)WinS

−1
1n (λ̂in)R−1

1n (ρ̂in)ε∗1n|| > η
)

= oP (1) by first using Chebyshev’s inequality

and then using the mean value theorem, and P∗
(
||n−1ΞinRin(ρ̂in)Win[S−1

1n (λ̂in)X1nβ̂1n − S−1
1nX1nβ10]|| >

η
)

= oP (1) by the mean value theorem, we have P∗
(
||n−1ΞinRin(ρ̂in)(Z∗in −Zin)|| > η

)
= oP (1). Similarly,

P∗
(
||n−1ΞinMin(Z∗in − Zin)|| > η

)
= oP (1), and P∗(na−1||ΞinRin(ρ̂∗in)y∗in − ΞinRin(ρ̂in)yin|| > η) = oP (1)

by a similar argument with adjustments of orders. Thus the result in the lemma holds. �

Appendix B.3. Lemmas for the Spatial J Tests: J2n

Lemma 15. n1/2(θ̈1n − θ10) = OP (1) and n1/2(θ̈2n − θ̄2n,1) = OP (1).

Proof. See Jin and Lee (2012). �

Lemma 16. 1√
n

∥∥∂2L2n(θ̃2n)
∂θ2∂θ′2

− ∂2L̄2n(θ̄2n,1;θ10)
∂θ2∂θ′2

∥∥ = OP (1), where θ̃2n is between θ̈2n and θ̄2n,1.

Proof. We prove the result by showing that (i) n−1/2
∥∥∂2L2n(θ̃2n)

∂θ2∂θ′2
−∂

2L2n(θ̄2n,1)
∂θ2∂θ′2

∥∥ = OP (1) and (ii) n−1/2
∥∥∂2L2n(θ̄2n,1)

∂θ2∂θ′2
−

E
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

∥∥ = OP (1). To prove (i), apply the mean value theorem to each term in the second order deriva-

tive. Specifically, we investigate n−1/2
∣∣∂2L2n(θ̃2n)

∂λ2
2

− E
∂2L2n(θ̄2n,1)

∂λ2
2

∣∣. Results for other terms can be derived

similarly. The L2n(θ2) is equal to

L2n(θ2) = −n
2

ln(2πσ2
2)+ln |S2n(λ2)|+ln |R2n(ρ2)|− 1

2σ2
2

[S2n(λ2)yn−X2nβ2]′R′2n(ρ2)R2n(ρ2)[S2n(λ2)yn−X2nβ2].

By the mean value theorem,

1√
n

(∂2L2n(θ̃2n)

∂λ2
2

− ∂2L2n(θ̄2n,1)

∂λ2
2

)
= B1n +

2

σ̇2
2n

B2n

√
n(ρ̃2n − ρ̇2n) +B3n,

where B1n = −2n−1 tr
[(
W2nS

−1
2n (λ̇2n)

)3]
n1/2(λ̃2n − λ̂2n), B2n = n−1y′nW

′
2nM

′
2nR2n(ρ̇2n)W2nyn and B3n =

(2nσ̇4
2n)−1y′nW

′
2nR

′
2n(ρ̇2n)R2n(ρ̇2n)W2nynn

1/2(σ̃2
2n− σ̂2

2n) with θ̇2n being between θ̃2n and θ̄2n,1. By the uni-

form boundedness of S−1
2n (λ2) in the parameter space, B1n = OP (1). Note that B2n = B2n,1 +B2n,2(ρ̄2n,1−

ρ̇2n), where B2n,1 = n−1y′nW
′
2nM

′
2nR2nW2nyn = OP (1) and B2n,2 = n−1y′nW

′
2nM

′
2nM2nW2nyn = OP (1),

then 2σ̇−2
2nB2nn

1/2(ρ̃2n − ρ̇2n) = OP (1). Similarly, B3n = OP (1). Hence (i) holds. (ii) follows from Cheby-

chev’s inequality. �

Lemma 17. For η > 0, P∗(||θ̈∗2n − θ̈2n|| > η) = oP (1).

Proof. Let L̄2n(φ2; θ10) = maxβ2,σ2
2
L̄2n(θ2; θ10) and L̄2n(φ2; θ̈1n,a) = maxβ2,σ2

2
E∗ L∗2n(θ2), where θ̈1n,a =

(λ̈1n, ρ̈1n, β̈
′
1n,E

∗ ε∗21n,i)
′, then

L̄2n(φ2; θ10) = −n
2

[ln(2π) + 1]− n

2
ln σ̄2

2n(φ2) + ln |S2n(λ2)|+ ln |R2n(ρ2)|,

L̄2n(φ2; θ̈1n,a) = −n
2

[ln(2π) + 1]− n

2
ln σ̄∗22n(φ2) + ln |S2n(λ2)|+ ln |R2n(ρ2)|,
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where

σ̄2
2n(φ2) =

1

n
σ2

10 tr
(
R′−1

1n S
′−1
1n S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n R
−1
1n

)
+

1

n
(X1nβ10)′S′−1

1n S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1nX1nβ10,

σ̄∗22n(φ2) =
1

n
(E∗ ε∗21n,i) tr

(
R′−1

1n (ρ̈1n)S′−1
1n (ρ̈1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̈1n)R−1
1n (ρ̈1n)

)
+

1

n
(X1nβ̈1n)′S′−1

1n (λ̈1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̈1n)X1nβ̈1n,

with σ̄2
2n(φ2) being bounded away from zero uniformly in the parameter space ϕ2 and H2n(ρ2) = In −

R2n(ρ2)X2n[X ′2nR
′
2n(ρ2)R2n(ρ2)X2n]−1X ′2nR

′
2n(ρ2) being bounded in both row and column sum norms u-

niformly in ρ2 (see the proof of Proposition 3 in Jin and Lee (2012)). By the mean value theorem,

1

n
[L̄2n(φ2; θ̈1n,a)− L̄2n(φ2; θ10)] = −1

2

σ̄∗22n(φ2)− σ̄2
2n(φ2)

σ̃2
2n

,

where σ̃2
2n is between σ̄2

2n(φ2) and σ̄∗22n(φ2), and

σ̄∗22n(φ2)− σ̄2
2n(φ2)

=
1

n
(E∗ ε∗21n,i − σ2

0) tr
(
R′−1

1n (ρ̇1n)S′−1
1n (ρ̇1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̇1n)R−1
1n (ρ̇1n)

)
+

2

n
(X1nβ̇1n)′S′−1

1n (λ̇1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̇1n)X1n(β̈1n − β10)

+
2σ̇2

1n

n
tr
(
R′−1

1n (ρ̇1n)S′−1
1n (ρ̇1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̇1n)R−1
1n (ρ̇1n)M1nR

−1
1n (ρ̇1n)

)
(ρ̈1n − ρ10)

+
2σ̇2

1n

n
tr
(
R′−1

1n (ρ̇1n)S′−1
1n (ρ̇1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̇1n)W1nS
−1
1n (λ̇1n)R−1

1n (ρ̇1n)
)
(λ̈1n − λ10)

+
2

n
(X1nβ̇1n)′S′−1

1n (λ̇1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̇1n)W1nS

−1
1n (λ̇1n)X1nβ̇1n(λ̈1n − λ10),

with γ̇1n = (λ̇1n, ρ̇1n, β̇1n, σ̇
2
1n)′ being between θ10 and θ̈1n,a. By Lemma 6, supφ2∈ϕ2

|σ̄∗22n(φ2)− σ̄2
2n(φ2)| =

oP (1). Then supφ2∈ϕ2
|n−1[L̄2n(φ2; θ̈1n,a)− L̄2n(φ2; θ10)]| = oP (1).

If ||φ2 − φ̈2n|| > η, ||φ2 − φ̄2n,1|| ≥ ||φ2 − φ̈2n|| − ||φ̈2n − φ̄2n,1|| > η/2 with probability 1 − o(1). Note

that

1

n

(
L̄2n(φ̈2n; θ̈1n,a)− L̄2n(φ2; θ̈1n,a)

)
=

1

n

(
L̄2n(φ̈2n; θ̈1n,a)− L̄2n(φ̈2n; θ10)

)
− 1

n

(
L̄2n(φ2; θ̈1n,a)− L̄2n(φ2; θ10)

)
+

1

n

(
L̄2n(φ̄2n,1; θ10)− L̄2n(φ2; θ10)

)
− 1

n

(
L̄2n(φ̄2n,1; θ10)− L̄2n(φ̈2n; θ10)

)
,

given η > 0, there exists a κ > 0, such that ||φ2−φ̈2n|| > η implies that n−1
(
L̄2n(φ̈2n; θ̈1n,a)−L̄2n(φ2; θ̈1n,a)

)
≥

κ with probability 1− o(1). Then for η1 > 0,

P(P∗(||φ̈∗2n − φ̈2n|| > η) > η1)

≤ P
(
P∗
(
n−1

(
L̄2n(φ̈2n; θ̈1n,a)− L̄2n(φ̈∗2n; θ̈1n,a)

)
≥ κ

)
> η1

)
+ o(1)

≤ P
(
P∗
(
n−1

(
L̄2n(φ̈2n; θ̈1n,a)− L∗2n(φ̈2n) + L∗2n(φ̈∗2n)− L̄2n(φ̈∗2n; θ̈1n,a)

)
≥ κ

)
> η1

)
+ o(1)

≤ P
(
P∗
(
2n−1 sup

φ2∈ϕ2

∣∣L∗2n(φ2)− L̄2n(φ2; θ̈1n,a)
∣∣ ≥ κ) > η1

)
+ o(1),
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where
1

n

(
L∗2n(φ2)− L̄2n(φ2; θ̈1n,a)

)
= − σ̈

∗2
2n(φ2)− σ̄∗22n(φ2)

2σ̇∗22n(φ2)
,

with σ̇∗22n(φ2) being between σ̈∗22n(φ2) and σ̄∗22n(φ2), and

σ̈∗22n(φ2)− σ̄∗22n(φ2) =
1

n
ε∗
′

1nR
′−1
1n (ρ̈1n)S′−1

1n (λ̈1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̈1n)R−1

1n (ρ̈1n)ε∗1n

−
E∗ ε∗21n,i

n
tr[R′−1

1n (ρ̈1n)S′−1
1n (λ̈1n)S′2n(λ2)R′2n(ρ2)R2n(ρ2)S2n(λ2)S−1

1n (λ̈1n)R−1
1n (ρ̈1n)]

+
2

n
(X1nβ̈1n)′S′−1

1n (λ̈1n)S′2n(λ2)R′2n(ρ2)H2n(ρ2)R2n(ρ2)S2n(λ2)S−1
1n (λ̈1n)R−1

1n (ρ̈1n)ε∗1n.

The σ̈∗22n(φ2)−σ̄∗22n(φ2) is equal to a LQ form plus n−1(E∗ ε∗21n,i) tr
(
R′−1

1n (ρ̈1n)S′−1
1n (λ̈1n)S′2n(λ2)R′2n(ρ2)[H2n(ρ2)−

In]R2n(ρ2)S2n(λ2)S−1
1n (λ̈1n)R−1

1n (ρ̈1n)
)
. Since R2n(ρ2) is linear in ρ2, S2n(λ2) is linear in λ2 and H2n(ρ2) is

bounded in both row and column sum norms uniformly in the parameter space of ρ2, Chebyshev’s inequality

implies that nP∗(supφ2∈ϕ2
|σ̈∗22n(φ2)− σ̄∗22n(φ2)| > η) for η > 0 is bounded by a term depending only on θ̈1n,

E ε∗21n,i, E ε∗31n,i and E ε∗41n,i, which has the order OP (1) by Lemma 6. Then P∗(supφ2∈ϕ2
|σ̈∗22n(φ2)− σ̄∗22n(φ2)| >

η) = oP (1). It has been shown that supφ2∈ϕ2
|σ̄∗22n(φ2)− σ̄2

2n(φ2)| = oP (1) with σ̄2
2n(φ2) being bounded away

from zero uniformly in φ2, then P∗(||φ̈∗2n− φ̈2n|| > η) = oP (1). Now the mean value theorem and the formu-

las of β̈∗2n and σ̈∗22n as functions of φ̈∗2n can be used to show that we also have P∗(||β̈∗2n − β̈2n|| > η) = oP (1)

and P∗(||σ̈∗22n − σ̈2
2n|| > η) = oP (1). �

Lemma 18. For η > 0, P∗
(
n−1

∥∥∂2L∗2n(θ̃∗2n)
∂θ2∂θ′2

− E∗
∂2L∗2n(θ̈2n)
∂θ2∂θ′2

∥∥ > η
)

= oP (1), where θ̃∗2n is between θ̈∗2n and

θ̈2n.

Proof. The result is proved by showing that (i) P∗
(
n−1

∥∥∂2L∗2n(θ̃∗2n)
∂θ2∂θ′2

− ∂2L∗2n(θ̈2n)
∂θ2∂θ′2

∥∥ > η
)

= oP (1) and (ii)

P∗
(
n−1

∥∥∂2L∗2n(θ̈2n)
∂θ2∂θ′2

− ∂2 E∗ L∗2n(θ̈2n)
∂θ2∂θ′2

∥∥ > η
)

= oP (1). As in the proof of Lemma 16, use the mean value theorem

for each term in the second order derivative to prove (i). Here we only investigate n−1
∣∣∂2L∗2n(θ̃2n)

∂λ2
2
− ∂2L∗2n(θ̈2n)

∂λ2
2

∣∣.
Results for other terms are similarly derived. By the mean value theorem,

1

n

(∂2L∗2n(θ̃∗2n)

∂λ2
2

− ∂2L∗2n(θ̈2n)

∂λ2
2

)
= B∗1n +

2

σ̇∗22n

B∗2n(ρ̃∗2n − ρ̈2n) +B∗3n,

where B∗1n = −2n−1 tr
((
W2nS

−1
2n (λ̇∗2n)

)3)
(λ̃∗2n − λ̈2n), B∗2n = n−1y∗

′

nW
′
2nM

′
2nR2n(ρ̇∗2n)W2ny

∗
n and B∗3n =

(nσ̇∗42n)−1y∗
′

nW
′
2nR

′
2n(ρ̇∗2n)R2n(ρ̇∗2n)W2ny

∗
n(σ̃∗22n − σ̈2

2n) with θ̇∗2n being between θ̃∗2n and θ̈2n. By Lemma 17

and the uniform boundedness of S−1
2n (λ2), P

(
P∗(|B∗1n| > η1) > η2

)
= O(n−1) for η1 > 0 and η2 > 0.

Let B∗2n,1 = n−1y∗
′

nW
′
2nM

′
2nR2n(ρ̈2n)W2ny

∗
n and B∗2n,2 = n−1y∗

′

nW
′
2nM

′
2nM2nW2ny

∗
n. Then P∗(|B∗2n,1 −

E∗B∗2n,1| > η) = oP (1) and P∗(|B∗2n,2 − E∗B∗2n,2| > η) = oP (1). Since B∗2n = B∗2n,1 + B∗2n,2(ρ̈2n − ρ̇∗2n),

P∗
(∣∣2σ̇∗−2

2n B∗2n(ρ̃∗2n − ρ̈2n)
∣∣ > η

)
= oP (1). Similarly, P∗(|B∗3n| > η) = oP (1). Therefore, P∗

(
1
n

∣∣∂2L∗2n(θ̃∗2n)

∂λ2
2

−
∂2L∗2n(θ̈2n)

∂λ2
2

∣∣ > η
)

= oP (1). (ii) is proved by using Chebyshev’s inequality and Lemma 6. �

Lemma 19. n−1
∥∥E∗

∂2L∗2n(θ̈2n)
∂θ2∂θ′2

− E
∂2L2n(θ̄2n,1)

∂θ2∂θ′2

∥∥ = oP (1).
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Proof. The lemma is proved by using the mean value theorem and Lemma 6. �

Lemma 20. For η > 0 and 0 ≤ a < 1
2 , P∗(na||θ̈∗2n − θ̈2n|| > η) = oP (1).

Proof. By the mean value theorem,

na(θ̈∗2n − θ̈2n) =
(
− 1

n

∂2L∗2n(θ̃∗2n)

∂θ2∂θ′2

)−1

na−1 ∂L
∗
2n(θ̈2n)

∂θ2
, (B.2)

where θ̃∗2n is between θ̈∗2n and θ̈2n. Then

P∗(na||θ̈∗2n − θ̈2n|| > η) ≤ P∗
(∥∥ 1

n

∂2L∗2n(θ̃∗2n)

∂θ2∂θ′2
− 1

n
E∗

∂2L∗2n(θ̈2n)

∂θ2∂θ′2

∥∥ > η
)

+ P∗
(
na||θ̈∗2n − θ̈2n|| > η,

∥∥ 1

n

∂2L∗2n(θ̃∗2n)

∂θ2∂θ′2
− 1

n
E∗

∂2L∗2n(θ̈2n)

∂θ2∂θ′2

∥∥ ≤ η).
Using (B.2), the result follows from Lemmas 6, 18–19 and Chebyshev’s inequality. �

Lemma 21. n1/2(ψ̌n−ψ0)
d−→ N(0,Σ) and n1/2(ψ̂n−ψ0)

d−→ N(0, limn→∞[EG′n(ψ0; γ2)Ω−1
n EGn(ψ0; γ2)]−1),

where Σ = limn→∞[EG′n(ψ0; γ2) EGn(ψ0; γ2)]−1 EG′n(ψ0; γ2)Ωn EGn(ψ0; γ2)[EG′n(ψ0; γ2) EGn(ψ0; γ2)]−1.

Proof. As yn = S−1
1n (X1nβ10+R−1

1n ε1n), E gn(ψ; γ̄2n,1) = n−1(Γ′1n(ψ)D1nΓ1n(ψ)+σ2
10 tr[Γ′2n(ψ)D1nΓ2n(ψ)],

. . . ,Γ′1n(ψ)DmnΓ1n(ψ)+σ2
10 tr[Γ′2n(ψ)DmnΓ2n(ψ)],Γ′1n(ψ)∆n)′ with Γ1n(ψ) = R1n(ρ1)[W1nS

−1
1nX1nβ10(λ10−

λ1)+X1n(β1−β10)−(λ̄2n,1W2nS
−1
1nX1nβ10+X2nβ̄2n,1)(α−α0)] and Γ2n(ψ) = R1n(ρ1)[S1n(λ1)−αλ̄2n,1W2n]S−1

1n R
−1
1n .

Since εn(ψ; γ2) is linear in ψ, it is straightforward to verify that ||gn(ψ; γ̈2n)− E gn(ψ; γ̄2n,1)|| converges to

zero uniformly in the parameter space of ψ by the mean value theorem. The E gn(ψ; γ̄2n,1) has a similar

form to that of E gn(λ1, ρ1, β1, 0; γ2), i.e., the expected value of the moment conditions for the SARAR

model (18), then Assumption J19 ensures that E gn(ψ; γ̄2n,1) = 0 has a unique solution at ψ0, according

to Lee and Liu (2010). As E gn(ψ; γ̄2n,1) is quadratic in ψ, it is equicontinuous in ψ. It follows from the

uniform convergence and identification uniqueness condition that ψ̌n − ψ0 = oP (1) (White, 1994). For the

distribution of ψ̌n, applying the the mean value theorem to the first order condition yields

G′n(ψ̌n; γ̈2n)gn(ψ̌n; γ̈2n) = 0 = G′n(ψ̌n; γ̈2n)[gn(ψ0; γ̈2n) +Gn(ψ̃n; γ̈2n)(ψ̌n − ψ0)],

where ψ̃n is between ψ0 and ψ̌n. Then

√
n(ψ̌n − ψ0) = −[G′n(ψ̌n; γ̈2n)Gn(ψ̃n; γ̈2n)]−1Gn(ψ̃n; γ̈2n)

√
ngn(ψ0; γ̈2n).

As ψ̃n − ψ0 = OP (n−1/2), by writing ψ̃n in Gn(ψ̃n; γ̈2n) as (ψ̃n − ψ0) + ψ0 and expanding Gn(ψ̃n; γ̈2n), we

have Gn(ψ̃n; γ̈2n) = Gn(ψ0; γ̈2n) + OP (n−1/2), where Gn(ψ0; γ̈2n) = Gn(ψ0; γ2) = EGn(ψ0; γ2) + oP (1) by

Chebyshev’s inequality. Noting that elements of
√
ngn(ψ0; γ̈2n) are either linear or quadratic in ε1n, the

distribution of γ̌n follows from Lemma 4.

By Lemmas 2 and 6, Ω̂n−Ωn = OP (n−1/2). Following the argument for Proposition 1 in Lee (2007), we

have ψ̂n − ψ0 = oP (1). The distribution of ψ̂n again follows from the expansion of the first order condition.

�
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Lemma 22. For η > 0 and 0 ≤ a < 1/2, P∗(na||ψ̌∗n−ψ̂n|| > η) = oP (1) and P∗(na||ψ̂∗n−ψ̂n|| > η) = oP (1).

Proof. By an argument similar to that for Lemma 13, we have P∗(||ψ̌∗n − ψ̂n|| > η) = oP (1) and P∗(||ψ̂∗n −

ψ̂n|| > η) = oP (1). Then by an argument similar to that for Lemma 20, we have P∗(na||ψ̌∗n − ψ̂n|| > η) =

oP (1) and P∗(na||ψ̂∗n − ψ̂n|| > η) = oP (1). �

Appendix C. Proofs

Proof of Theorem 1. As in Kelejian and Prucha (2001), write cn as cn =
∑n
i=1 cni with

cni = n−1/2
(
an,ii(ε

2
ni − σ2

0) + 2εni

i−1∑
j=1

an,ijεnj + bniεni

)
.

Obviously, E |cni| <∞. Consider the σ-fields Fn0 = {∅,Ω}, Fni = σ(εn1, . . . , εni), 1 ≤ i ≤ n, where Ω is the

sample space. Then {cni,Fni, 1 ≤ i ≤ n, n ≥ 1} forms a martingale difference array and σ2
cn =

∑n
i=1 E(c2ni),

where

E(c2ni) = n−1
(
a2
n,ii(µ4 − σ4

0) + 4σ4
0

i−1∑
j=1

a2
n,ij + b2niσ

2
0 + 2µ3an,iibni

)
.

By a theorem in Heyde and Brown (1970), if there is a constant δ with 0 < δ ≤ 1 such that

E |cni|2+2δ <∞, (C.1)

then there exists a finite constant K depending only on δ, such that12

sup
x
|P(cn ≤ σcnx)− Φ(x)| ≤ K

{
σ−2−2δ
cn

( n∑
i=1

E |cni|2+2δ + E
∣∣∣( n∑
i=1

E(c2ni|Fn,i−1)
)
− σ2

cn

∣∣∣1+δ
)}1/(3+2δ)

.

(C.2)

Thus if

lim
n→∞

σ−2−2δ
cn

n∑
i=1

E |cni|2+2δ = 0, (C.3)

lim
n→∞

E
∣∣∣(σ−2

cn

n∑
i=1

E(c2ni|Fn,i−1)
)
− 1
∣∣∣1+δ

= 0, (C.4)

P(cn ≤ σcnx) converges uniformly to Φ(x) and a bound on the rate of convergence is given by (C.2). Now

we check that (C.1), (C.3) and (C.4) hold. Let q = 2 + 2δ for 0 < δ ≤ 1 and 1/p+ 1/q = 1. By the triangle

12Note that the result in Heyde and Brown (1970) is on a fixed square integrable martingale difference sequence with

0 < δ ≤ 1, but the result also applies to a triangular array of martingale differences with δ > 1 (Haeusler, 1988).

27



and Hölder’s inequalities,

n∑
i=1

E |cni|q ≤ n−q/2 E

n∑
i=1

(
|an,ii|1/p|an,ii|1/q|ε2ni − σ2

0 |+
i−1∑
j=1

|an,ij |1/p2|an,ij |1/q|εni||εnj |+ |bni||εni|
)q

≤ n−q/2 E

n∑
i=1

( i∑
j=1

|an,ij |+ 1
)q/p(

|an,ii||ε2ni − σ2
0 |q +

i−1∑
j=1

2q|an,ij ||εni|q|εnj |q + |bni|q|εni|q
)

≤ n(2−q)/2(Ka + 1)q/p
(
Ka E |ε2ni − σ2

0 |q + 2qKa(E |εni|q)2 +Kb E |εni|q
)
.

(C.5)

Thus (C.1) holds. As σ2
cn =

∑n
i=1 E c2ni, (C.5) implies that σ2

cn is bounded. Then Eq. (C.3) holds by

Assumption 3.

E
∣∣∣(σ−2

cn

n∑
i=1

E(c2ni|Fn,i−1)
)
− 1
∣∣∣1+δ

= σ−2(1+δ)
cn E

∣∣∣ n∑
i=1

(
E(c2ni|Fn,i−1)− E c2ni

)∣∣∣1+δ

≤ σ−2(1+δ)
cn

(
E
∣∣∣ n∑
i=1

(
E(c2ni|Fn,i−1)− E c2ni

)∣∣∣2)(1+δ)/2

= 41+δn−1−δσ−2(1+δ)
cn

(
E
(
σ2

0

n∑
i=1

i−1∑
j=1

a2
n,ij(ε

2
nj − σ2

0) + 2σ2
0

n∑
i=1

i−1∑
j=1

j−1∑
k=1

an,ijan,ikεnjεnk

+

n∑
i=1

i−1∑
j=1

(µ3an,ii + σ2
0bni)an,ijεnj

)2
)(1+δ)/2

= 41+δn−1−δσ−2(1+δ)
cn

(
σ4

0(µ4 − σ4
0)

n−1∑
j=1

( n∑
i=j+1

a2
n,ij

)2

+ 4σ8
0

n−1∑
j=1

j−1∑
k=1

( n∑
i=j+1

an,ijan,ik

)2

+ σ2
0

n−1∑
j=1

( n∑
i=j+1

(µ3an,ii + σ2
0bni)an,ij

)2

+ 2µ3σ
2
0

n−1∑
j=1

( n∑
i=j+1

a2
n,ij

)( n∑
i=j+1

(µ3an,ii + σ2
0bni)an,ij

))(1+δ)/2

≤ 41+δn−1−δσ−2(1+δ)
cn

(
nσ4

0K
4
a(µ4 − σ4

0) + 4σ8
0K

2
a

n−1∑
j=1

j−1∑
k=1

n∑
i=j+1

|an,ij ||an,ik|

+ σ2
0

n−1∑
j=1

n∑
i=j+1

(|µ2
3an,iian,ij |+ σ4

0b
2
ni|an,ij |)

n∑
i=j+1

(|an,iian,ij |+ |an,ij |)

+ 2|µ3|σ2
0K

2
a

n−1∑
j=1

n∑
i=j+1

|(µ3an,ii + σ2
0bni)an,ij |

)(1+δ)/2

≤ 41+δn−δσ−2(1+δ)
cn

(
σ4

0K
4
a(µ4 − σ4

0) + 4σ8
0K

4
a + σ2

0K
2
a(µ2

3Ka + σ4
0Kb)(Ka + 1)

+ 2|µ3|σ2
0K

3
a(|µ3|Ka + σ2

0Kb)
)(1+δ)/2

. (C.6)
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Thus Eq. (C.4) holds. Using (C.2), (C.5) and (C.6), we have

sup
x
|P(cn ≤ σcnx)− Φ(x)|

≤ Kσ−2(1+δ)/(3+2δ)
cn n−δ/(3+2δ)

(
(Ka + 1)1+2δ

(
Ka E |ε2ni − σ2

0 |2+2δ + 22+2δKa(E |εni|2+2δ)2 +Kb E |εni|2+2δ
)

+ 41+δ
(
σ4

0K
4
a(µ4 − σ4

0) + 4σ8
0K

4
a + σ2

0K
2
a(µ2

3Ka + σ4
0Kb)(Ka + 1)

+ 2|µ3|σ2
0K

3
a(|µ3|Ka + σ2

0Kb)
)(1+δ)/2

)1/(3+2δ)

= rn,

i.e., (6) holds. Similarly, (7) holds. Since

P
(
cn/σcn + dn ≤ x

)
− Φ(x) ≤ P(cn/σcn + dn ≤ x, |dn| ≤ τn)− Φ(x) + P(|dn| > τn)

≤ [P(cn/σcn ≤ x+ τn)− Φ(x+ τn)] + [Φ(x+ τn)− Φ(x)] + P(|dn| > τn),

and similarly

P
(
cn/σcn + dn ≤ x

)
− Φ(x) ≥ [P(cn/σcn ≤ x− τn)− Φ(x− τn)]− [Φ(x)− Φ(x− τn)]− P(|dn| > τn),

we have

sup
x∈R

∣∣P(cn/σcn + dn ≤ x
)
− Φ(x)

∣∣
≤ max

{
sup
x∈R

∣∣[P(cn/σcn ≤ x+ τn)− Φ(x+ τn)]
∣∣+ sup

x∈R
[Φ(x+ τn)− Φ(x)] + P(|dn| > τn),

sup
x∈R

∣∣[P(cn/σcn ≤ x− τn)− Φ(x− τn)]
∣∣+ sup

x∈R
[Φ(x)− Φ(x− τn)] + P(|dn| > τn)

}
≤ rn + (2π)−1/2τn + P(|dn| > τn).

(C.7)

Similarly,

sup
x∈R

∣∣P∗(c∗n/σ∗cn + d∗n ≤ x
)
− Φ(x)

∣∣ ≤ r∗n + (2π)−1/2τn + P∗(|d∗n| > τn). (C.8)

Thus,

sup
x∈R

∣∣P(cn/σcn + dn ≤ x
)
− P∗

(
c∗n/σ

∗
cn + d∗n ≤ x

)∣∣
≤ sup

x∈R

∣∣P(cn/σcn + dn ≤ x
)
− Φ(x)

∣∣+ sup
x∈R

∣∣P∗(c∗n/σ∗cn + d∗n ≤ x
)
− Φ(x)

∣∣
= rn + P(|dn| > τn) + r∗n + P∗(|d∗n| > τn) + 21/2π−1/2τn,

i.e., (8) holds. Since

P∗
(
(c∗n/σ

∗
cn + d∗n)e∗n ≤ x

)
− P

(
(cn/σcn + dn)en ≤ x

)
=
(
P∗(c∗n/σ

∗
cn + d∗n ≤ x/e∗n)− Φ(x/e∗n)

)
−
(
P(cn/σcn + dn ≤ x/en)− Φ(x/en)

)
+
(
Φ(x/e∗n)− Φ(x/en)

)
,

(9) holds by (C.7) and (C.8). �

Proof of Proposition 1. We use (9) in Theorem 1 to prove the result. From (10)–(13),

dn =
σ2

0ε
′
nHnεn tr(MnHn)− ε′nHnMnHnεn[ε′nHnεn − (n− kx)σ2

0 ]

σ2
0ε
′
nHnεn

√
HnMnHn(Mn +M ′n)

.
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By Lemmas 1 and 3, tr(MnHn) = tr(Mn) + O(1) = O(1), n−1/2[ε′nHnMnHnεn − σ2
0 tr(MnHn)] = OP (1),

n−1/2[ε′nHnεn− (n−kx)σ2
0 ] = OP (1) and n−1 tr[HnMnHn(Mn+M ′n)] = n−1 tr(M2

n+M ′nMn)+o(1) = O(1)

is bounded away from zero by Assumption I3, then dn = OP (n−1/2). Let τn = n−1/4. As en = e∗n,

rn = O(n−δ/(3+2δ)) and r∗n = OP (n−δ/(3+2δ)) by Lemma 6 if we let δ = 1/2, it remains to show that

P∗(|d∗n| > τn) = oP (1).

P∗(|d∗n| > τn)

≤ P∗
(
|d∗n| > τn,

1

n
|ε∗
′

nHnε
∗
n − (n− kx)σ∗2n | ≤ κn

)
+ P∗

( 1

n
|ε∗
′

nHnε
∗
n − (n− kx)σ∗2n | > κn

)
≤ P∗

( |ε∗′nHnMnHnε
∗
n|κn

σ∗2n
(
n−kx
n σ∗2n − κn

)√
tr
(
Hn(Mn +M ′n)HnMn

) ≥ τn − | tr(MnHn)|√
tr
(
Hn(Mn +M ′n)HnMn

))
+ P∗

( 1

n
|ε∗
′

nHnε
∗
n − (n− kx)σ∗2n | > κn

)
≤ κ2

n E∗ |ε∗′nHnMnHnε
∗
n|2

σ∗4n
(
n−kx
n σ∗2n − κn

)2
tr
(
MnHn(Mn +M ′n)Hn

)(
τn − | tr(MnHn)| tr−1/2

(
Hn(Mn +M ′n)HnMn

))2

+
(E∗ ε∗4ni − 3σ∗4n )

∑n
i=1(Hn)2

ii + 2(n− kx)σ∗4n
n2κ2

n

p−→ 0, if κn = n−3/8,

where E∗ |ε∗′nHnMnHnε
∗
n|2 = (E∗ ε∗4ni − 3σ∗4n )

∑n
i=1(HnMnHn)2

ii + σ∗4n tr2(HnMn) + σ∗4n tr(HnMnHn(Mn +

M ′n)). Thus the result follows. �

Proof of Proposition 2. From (15)–(17),

dn = I′n − cn/σcn =
(σcn − σ̂cn)[ε′nHnMnHnεn − σ2

0 tr(MnHn)]√
nσcn σ̂cn

+
σ2

0 tr(MnHn)√
nσ̂cn

.

By Lemma 6, n1/2(σ̂2
cn − σ

2
cn) = OP (1); by Lemma 3, n−1/2[ε′nHnMnHnεn − σ2

0 tr(MnHn)] = OP (1); by

Lemma 1, tr(MnHn) = tr(Mn) + O(1) = O(1). Then dn = OP (n−1/2). Let τn = κn−1/4 with κ > 0. It

remains to show that P∗(|d∗n| > τn) = oP (1) by (8) in Theorem 1. The d∗n is

d∗n = I′∗n − c∗n/σ∗cn =
(σ∗cn − σ̂

∗
cn)[ε∗

′

nHnMnHnε
∗
n − σ∗2n tr(MnHn)]

√
nσ∗cn σ̂

∗
cn

+
σ∗2n tr(MnHn)√

nσ̂∗cn
.

By Lemma 8, P∗(n1/4|σ̂∗2cn−σ
∗2
cn | > η) = oP (1) for η > 0. By Chebyshev’s inequality, P∗(n1/4|n−1ε∗

′
HnMnHnε

∗
n−

σ∗2n tr(MnHn)| > κ) ≤ κ−2n1/2 E∗ |n−1ε∗
′
HnMnHnε

∗
n − σ∗2n tr(MnHn)|2 = oP (1). Then P∗(|d∗n| > τn) =

oP (1). �

Proof of Proposition 3. We first show the following results: (i) n−1/2∆′n[R1n(ρ̂1n)Z1n − R1n EZ1n] =

OP (1), (ii) n−1/2∆′n[R1n(ρ̂1n)Z2nγ̂2n−R1n EZ2nγ̄2n,1] = OP (1), (iii) P∗(||na−1∆′n[R1n(ρ̂∗1n)Z∗1n−R1n(ρ̂1n) E∗ Z∗1n]|| >

η) = oP (1), and (iv) P∗(||na−1∆′n[R1n(ρ̂∗1n)Z∗2nγ̂
∗
2n − R1n(ρ̂1n) E∗ Z∗2nγ̂2n]|| > η) = oP (1), for 0 ≤ a < 1/2

and η > 0. (i) holds since n−1/2∆′n[R1n(ρ̂1n)Z1n−R1n EZ1n] = n−1/2∆′nR1n[Z1n−EZ1n]+n−1∆′nM1nZ1nn
1/2(ρ10−

ρ̂1n) = OP (1). Similar to (i), n−1/2∆′n[R1n(ρ̂1n)Z2n − R1n EZ2n] = OP (1). Then by Lemma 11, (i-

i) holds. (iii) holds since na−1∆′n[R1n(ρ̂∗1n)Z∗1n − R1n(ρ̂1n) E∗ Z∗1n] = na−1∆′nR1n(ρ̂1n)[Z∗1n − E∗ Z∗1n] +
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na−1∆′nM1nZ
∗
1n(ρ̂1n−ρ̂∗1n), where P∗(||na−1∆′nR1n(ρ̂1n)[Z∗1n−E∗ Z∗1n]|| > η) = oP (1) and P∗(||na−1∆′nM1n[Z∗1n−

E∗ Z∗1n]|| > η) = oP (1) by first applying Chebyshev’s inequality and then the mean value theorem. (iv) holds

by an argument similar to that for (iii) and Lemma 14. By (i) and (ii), n−1σ̂2
α̂n

= n−1σ̄2
α̂n

+OP (n−1/2) and

n1/2α̂n = n1/2ᾱn +OP (n−1/2). Thus, J1n = ᾱn/σ̄α̂n
+OP (n−1/2). Let

σ̄∗2α̂n
= σ̂2

1n[γ̂′2n E∗ Z∗
′

2nR
′
1n(ρ̂1n)P∆n(In − PV̄ ∗n (ρ̂1n))P∆nR1n(ρ̂1n) E∗ Z∗2nγ̂2n]−1 and

ᾱ∗n = σ̂−2
1n σ̄

∗2
α̂n
γ̂′2n E∗ Z∗

′

2nR
′
1n(ρ̂1n)P∆n

(In − PV̄ ∗n (ρ̂1n))ε
∗
1n, where V̄ ∗n (ρ̂1n) = P∆n

R1n(ρ̂1n) E∗ Z∗1n. Then by

(iii) and (iv), P∗(na|J∗1n − n1/2ᾱ∗n/σ̄
∗
α̂n
| > η) = oP (1) for 0 ≤ a < 1/2 and η > 0. The result now follows

from Lemma 6 and Theorem 1. �

Proof of Proposition 4. By the mean value theorem,

G′n(ψ̂n; γ̈2n)Ω̂−1
n gn(ψ̂n; γ̈2n) = 0 = G′n(ψ̂n; γ̈2n)Ω̂−1

n [gn(ψ0; γ̈2n) +Gn(ψ̃n; γ̈2n)(ψ̂n − ψ0)],

where ψ̃n is between ψ0 and ψ̂n. Then

√
n(ψ̂n − ψ0) = −[G′n(ψ̂n; γ̈2n)Ω̂−1

n Gn(ψ̃n; γ̈2n)]−1Gn(ψ̃n; γ̈2n)Ω̂−1
n

√
ngn(ψ0; γ̈2n).

Let

cn = −e′ψ[EG′n(ψ0; γ2)Ω−1
n EGn(ψ0; γ2)]−1 EGn(ψ0; γ2)Ω−1

n

√
ngn(ψ0; γ2),

σ2
cn = e′ψ[EG′n(ψ0; γ2)Ω−1

n EGn(ψ0; γ2)]−1eψ.

As in the proof of Lemma 21, Ω̂n − Ωn = OP (n−1/2) and Gn(ψ̃n; γ̈2n) = EGn(ψ0; γ2) + OP (n−1/2), then

J2n − cn/σcn = OP (n−1/2). In Eq. (8), let τn = η1n
−1/4 for some η1 > 0, then it remains to show that

P(n1/4|J∗2n − c∗n/σ∗cn | > η2) = oP (1) for η2 > 0 by Theorem 1, where

c∗n = −e′ψ[E∗G∗
′

n (ψ̂n; γ̈2n)Ω̂−1
n E∗G∗n(ψ̂n; γ̈2n)]−1 E∗G∗n(ψ̂n; γ̈2n)Ω̂−1

n

√
ng∗n(ψ̂n; γ̈2n),

σ∗2cn = e′ψ[E∗G∗
′

n (ψ̂n; γ̈2n)Ω̂−1
n E∗G∗n(ψ̂n; γ̈2n)]−1eψ.

As Ωn is quadratic in the parameters, it can be verified that P∗(n1/4||Ω̂∗n − Ω̂n|| > η) = oP (1) for η > 0.

Since Gn(ψ; γ2) is linear in ψ and quadratic in γ2, P∗(n1/4||G∗n(ψ̂∗n; γ̈∗2n) − E∗G∗n(ψ̂n; γ̈2n)|| > η) = oP (1)

for η > 0, by showing that P∗(n1/4||G∗n(ψ̂∗n; γ̈∗2n) −G∗n(ψ̂n; γ̈2n)|| > η) = oP (1) and P∗(n1/4||G∗n(ψ̂n; γ̈2n) −

E∗G∗n(ψ̂n; γ̈2n)|| > η) = oP (1). Thus, P(n1/4|J∗2n − c∗n/σ∗cn | > η2) = oP (1). �

Proof of Theorem 2. The characteristic function of cn/σcn is

ϕn(t) = E exp(itcn/σcn) =

∫ +∞

−∞
(2πσ2

0)−n/2 exp
(
− 1

2σ2
0

ε′nεn +
it

σcn
cn
)
dεn

=

∫ +∞

−∞
(2πσ2

0)−n/2 exp
(
−1

2
(εn − rn(t))′Bn(t)(εn − rn(t)) +

1

2
rn(t)′Bn(t)rn(t)− itσ2

0√
nσcn

tr(An)
)
dεn

= σ−n0 |Bn(t)|−1/2 exp
(
− t2

2nσ2
cn

b′nBn(t)−1bn −
itσ2

0√
nσcn

tr(An)
)
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= exp
(
gn(t)− 1

2
t2
)
.

whereBn(t) = In
σ2
0
− 2itAn√

nσcn
, rn(t) = it√

nσcn
Bn(t)−1bn and gn(t) = −n2 lnσ2

0− 1
2 ln |Bn(t)|− t2

2nσ2
cn

b′nBn(t)−1bn−
itσ2

0√
nσcn

tr(An) + 1
2 t

2. The derivatives of gn(t) are

g(1)
n (t) =

i√
nσcn

tr
(
AnBn(t)−1

)
− t

nσ2
cn

b′nBn(t)−1bn −
it2

n3/2σ3
cn

b′nBn(t)−1AnBn(t)−1bn −
iσ2

0√
nσcn

tr(An) + t,

g(2)
n (t) = − 2

nσ2
cn

tr
[(
AnBn(t)−1

)2]− 1

nσ2
cn

b′nBn(t)−1bn −
4it

n3/2σ3
cn

b′nBn(t)−1AnBn(t)−1bn

+
4t2

n2σ4
cn

b′nBn(t)−1
(
AnBn(t)−1

)2
bn + 1,

g(3)
n (t) = − 8i

n3/2σ3
cn

tr
[(
AnBn(t)−1

)3]− 6i

n3/2σ3
cn

b′nBn(t)−1AnBn(t)−1bn +
24t

n2σ4
cn

b′nBn(t)−1
(
AnBn(t)−1

)2
bn

+
24it2

n5/2σ5
cn

b′nBn(t)−1
(
AnBn(t)−1

)3
bn,

g(4)
n (t) =

48

n2σ4
cn

tr
[(
AnBn(t)−1

)4]
+

48

n2σ4
cn

b′nBn(t)−1
(
AnBn(t)−1

)2
bn +

192it

n5/2σ5
cn

b′nBn(t)−1
(
AnBn(t)−1

)3
bn

− 192t2

n3σ6
cn

b′nBn(t)−1
(
AnBn(t)−1

)4
bn,

g(k)
n (t) =

ck1i
k

nk/2σkcn
tr
[(
AnBn(t)−1

)k]
+

ck2i
k

nk/2σkcn
b′nBn(t)−1

(
AnBn(t)−1

)k−2
bn

+
ck3i

k+1t

n(k+1)/2σk+1
cn

b′nBn(t)−1
(
AnBn(t)−1

)k−1
bn +

ck4i
k+2t2

n(k+2)/2σk+2
cn

b′nBn(t)−1
(
AnBn(t)−1

)k
bn,

gn(0) = g(1)
n (0) = g(2)

n (0) = 0,

g(3)
n (0) = − 8iσ6

0

n3/2σ3
cn

tr(A3
n)− 6iσ4

0

n3/2σ3
cn

b′nAnbn,

g(k)
n (0) =

ck1σ
2k
0 ik

nk/2σkcn
tr(Akn) +

ck2σ
2(k−1)
0 ik

nk/2σkcn
b′nA

k−2
n bn, for k ≥ 3, (C.9)

where ck1, . . . , ck4 are constants. Let ιn1, . . . , ιnn be An’s eigenvalues, which are real as An is symmetric,

and ιn = max{|ιn1|, . . . , |ιnn|}. As σ2
cn = n−1[2σ4

0 tr(A2
n) + σ2

0b
′
nbn], |b′nAnbn| ≤ ιnb

′
nbn, | 1

σ2
0
− 2itιnj√

nσcn
| ≥ 1

σ2
0
,

|ιnj |/| 1
σ2
0
− 2itιnj√

nσcn
| ≤ ιnσ2

0 and |ιnjt|/| 1
σ2
0
− 2itιnj√

nσcn
| = ( 1

σ4
0ι

2
njt

2 + 4
nσ2

cn

)−1/2 ≤
√
nσcn/2,

|g(4)
n (t)| ≤ 48ι2nσ

8
0

n2σ4
cn

n∑
j=1

ι2nj +
48ι2nσ

6
0

n2σ4
cn

b′nbn +
96ι2nσ

6
0

n2σ4
cn

b′nbn +
48ι2nσ

6
0

n2σ4
cn

b′nbn ≤
192ι2nσ

4
0

nσ2
cn

,

|g(k)
n (t)| ≤ |ck1|ιk−2

n σ2k
0

nk/2σkcn

n∑
j=1

ι2nj +
|ck2|ιk−2

n σ2k−2
0

nk/2σkcn
b′nbn +

|ck3|ιk−2
n σ2k−2

0

2nk/2σkcn
b′nbn +

|ck4|ιk−2
n σ2k−2

0

4nk/2σkcn
b′nbn

≤ ck5(ιnσ
2
0)k−2

n(k−2)/2σk−2
cn

. for k ≥ 3. (C.10)

We first establish a one-term Edgeworth expansion for P(cn/σcn ≤ x) separately and then consider high

order expansions. Let γn(t) = (1 − iκnt3) exp(− 1
2 t

2) be the Fourier transform of the function Φ(1)(x) −
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κnΦ(4)(x), where κn =
4σ6

0

3n3/2σ3
cn

tr(A3
n) +

σ4
0

n3/2σ3
cn

b′nAnbn. By a smoothing inequality in Feller (1970, p. 538),

for all T > 0,

sup
x∈R
|P(cn/σcn ≤ x)− (Φ(x)− κnΦ(3)(x))| ≤ 1

π

∫ T

−T
|ϕn(t)− γn(t)

t
| dt+

24 supx |Φ(1)(x)− κnΦ(4)(x)|
πT

,

(C.11)

where

|ϕn(t)− γn(t)| = exp(−t2/2)| exp(gn(t))− (1− iκnt3)|

= exp(−t2/2)| exp(gn(t))− exp(−iκnt3) + exp(−iκnt3)− (1− iκnt3)|

≤ exp(−t2/2)[| exp(gn(t))− exp(−iκnt3)|+ | exp(−iκnt3)− (1− iκnt3)|].

As

|κn| =
∣∣4σ6

0

∑n
i=1 ι

3
ni + 3σ4

0b
′
nAnbn

3n3/2σ3
cn

∣∣ ≤ ιn∣∣4σ6
0

∑n
i=1 ι

2
ni + 3σ4

0b
′
nbn

3n3/2σ3
cn

∣∣ ≤ ιnσ
2
0

n1/2σcn
,

| exp(−iκnt3) − (1 − iκnt3)| ≤ |iκnt3|2/2 = κ2
nt

6/2 ≤ ι2nσ
4
0t

6/(2nσ2
cn) (Feller 1970, p. 512). By a four-term

Taylor expansion, |gn(t) + iκnt
3| ≤ 8ι2nσ

4
0t

4

nσ2
cn

≤ 1
4 t

2, when |t| ≤
√

2nσcn

8ιnσ2
0

. Then | exp(gn(t)) − exp(−iκnt3)| =

| exp(gn(t) + iκnt
3)− 1| ≤ |gn(t) + iκnt

3| exp(|gn(t) + iκnt
3|) ≤ 8ι2nσ

4
0t

4

nσ2
cn

exp( 1
4 t

2) and

∣∣ϕn(t)− γn(t)

t

∣∣ ≤ ι2nσ
4
0

2nσ2
cn

(16|t|3 exp(−t2/4) + |t|5 exp(−t2/2)), (C.12)

when |t| ≤
√

2nσcn

8ιnσ2
0

.

When |t| >
√

2nσcn

8ιnσ2
0

, noting that Bn(t) has eigenvalues 1
σ2
0
− 2itιnj√

nσcn
, j = 1, . . . , n,

|ϕn(t)| ≤ exp
(
− σ2

0t
2b′nbn

2nσ2
cn + 8ι2nσ

4
0t

2

) n∏
j=1

(
1 +

4t2σ4
0ι

2
nj

nσ2
cn

)−1/4

≤ exp
(
− b′nbn

72ι2nσ
2
0

− 1

4

n∑
j=1

ln
(
(1 +

ι2nj
8ι2n

))
≤ exp

(
− b′nbn

72ι2nσ
2
0

− 1

32ι2n

n∑
j=1

ι2nj +
1

512ι4n

n∑
j=1

ι4nj
)

(ln(1 + x) ≥ x− x2

2
for x ≥ 0)

≤ exp
(
− b′nbn

72ι2nσ
2
0

− 15

512ι2n

n∑
j=1

ι2nj
)

≤ exp
(
−

nσ2
cn

72ι2nσ
4
0

)
. (C.13)

In (C.11), let T = nσ2
cn . By (C.12), the contribution of the integral in (C.11) when |t| ≤

√
2nσcn

8ιnσ2
0

is O(n−1).

The contribution when
√

2nσcn

8ιnσ2
0

< |t| ≤ T tends to zero more rapidly than any power of n by |ϕn(t) −

γn(t)|/|t| ≤ (|ϕn(t)| + |γn(t)|)/|t| and (C.13). Therefore, supx∈R |P(cn/σcn ≤ x) − (Φ(x) − κnΦ(3)(x))| =

O(n−1). Eq. (27) holds by a similar argument and Lemma 6.
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To establish high order expansions, use the Taylor approximation for gn(t) up to and including the

term of degree r. Denote this approximation by t3τnr(t) =
∑r
k=3

g(k)
n (0)
k! tk, where τnr(t) is a polynomial

of degree r − 3. Let pn(t) =
∑r−2
k=1

1
k! [(−it)

3τnr(−it)]k be a polynomial with coefficients pn1, . . . , pnm.

Note that pn1, . . . , pnm are real by (C.9). Let H1(t), . . . ,Hm(t) be hermite polynomials, then ωn(t) =

Φ(1)(t)(1 +
∑m
k=1 pnkHk(t)) has the Fourier transform exp(−t2/2)(1 + pn(it)). For all T > 0,

sup
x∈R

∣∣P(cn/σcn ≤ x)−
∫ x

−∞
ωn(t) dt

∣∣ ≤ 1

π

∫ T

−T

∣∣ϕn(t)− exp(−t2/2)(1 + pn(it))

t

∣∣ dt+
24 supx |ωn(x)|

πT
.

Using the inequality that |eα−1−
∑r−2
k=1 β

k/k!| = |(eα−eβ)+(eβ−1−
∑r−2
k=1 β

k/k!)| ≤ exp(max{|α|, |β|})(|α−

β|+ 1
(r−1)! |β|

r−1), we have

|ϕn(t)− exp(−t2/2)(1 + pn(it))|

=
∣∣exp(−t2/2)

(
exp(gn(t))− 1− pn(it)

)∣∣
≤ exp(−t2/2 + max{|gn(t)|, |t3τnr(t)|})

(
|gn(t)− t3τnr(t)|+

1

(r − 1)!
|t3τnr(t)|r−1

)
.

By (C.10), |gn(t)− t3τnr(t)| ≤ cr+1,5(ιnσ
2
0)r−1

n(r−1)/2σr−1
cn (r+1)!

|t|r+1 ≤ t2/8 and |t3τnr(t)| ≤ t2/8 when t ≤ cn1/2 for some

constant c. Then when t ≤ cn1/2, |gn(t)| ≤ t2/4 and

|ϕn(t)− exp(−t2/2)(1 + pn(it))| ≤ n−(r−1)/2 exp(−t2/4)
(cr+1,5(ιnσ

2
0)r−1

σr−1
cn (r + 1)!

|t|r+1 +
1

(r − 1)!
|t3n1/2τnr(t)|r−1

)
.

Now let T = n(r−1)/2, then supx∈R |P(cn/σcn ≤ x)−
∫ x
−∞ ωn(t) dt| = O(n−(r−1)/2). Note that

∫ x
−∞ ωn(t) dt =

Φ(x)− pn1Φ(1)(x)−Φ(1)(x)
∑m
k=2 pnkHk−1(x), which is a polynomial in n−1/2 with bounded coefficients for

fixed x, by (C.10). Rearranging it according to ascending powers of n−1/2 and dropping the terms involving

powers n−k/2 with k > r − 1 yields the expression in the proposition. �

Proof of Proposition 5. Let An = [HnMnHn − n−1xHn tr1/2(M2
n + M ′nMn)], σ2

an = n−1 E[ε′nAnεn −

σ2
0 tr(An)]2 = 2n−1σ4

0 tr(A2
n), zn = −σ2

0n
−1/2σ−1

an tr(An) = −2−1/2 tr(An) tr−1/2(A2
n) and κn = 4σ6

0n
−3/2σ−3

an tr(A3
n)/3 =

4[2 tr(A2
n)]−3/2 tr(A3

n)/3. The κn does not involve any population parameter. Then

P(In ≤ x) = P(ε′nAnεn ≤ 0)

= P(n−1/2σ−1
an [ε′nAnεn − σ2

0 tr(An)] ≤ zn)

= Φ(zn) + κn(1− z2
n)Φ(1)(zn) +O(n−1),

by Theorem 2. Similarly,

P∗(I∗n ≤ x) = Φ(zn) + κn(1− z2
n)Φ(1)(zn) +OP (n−1).

Then P∗(I∗n ≤ x)− P(In ≤ x) = OP (n−1). �

Proof of Theorem 3. To prove the expansions in (29) and (30), we check that the conditions of Theorem 1

in Mykland (1993) are satisfied. The same decomposition for cn and σ-fields as in the proof of Theorem 1
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are used. By (C.5),
∑n
i=1 E(c4ni/σ

4
cn) = O(n−1). By (C.6), E

∣∣n1/2
[(
σ−2
cn

∑n
i=1 E(c2ni|Fn,i−1)

)
− 1
]∣∣2 = O(1).

Then the integrability conditions for the fourth-order and square variations are satisfied. As cn/σcn has

constant variance 1, it remains to check the central limit condition that(
cn/σcn , n

1/2
(
σ−2
cn

n∑
i=1

c2ni − 1
)
, n1/2

(
σ−2
cn

n∑
i=1

E(c2ni|Fn,i−1)− 1
))

(C.14)

is asymptotically trivariate normal. We may verify that
(
cn/σcn , n

1/2σ−2
cn

∑n
i=1

(
c2ni − E(c2ni|Fn,i−1)

)
,

n1/2
(
σ−2
cn

∑n
i=1 E(c2ni|Fn,i−1) − 1

))
is asymptotically trivariate normal. The cn/σcn is asymptotically nor-

mal by Lemma 4. Now we show that both n1/2
(
σ−2
cn

∑n
i=1 E(c2ni|Fn,i−1) − 1

))
and n1/2σ−2

cn

∑n
i=1

(
c2ni −

E(c2ni|Fn,i−1)
)

are asymptotically normal.

n1/2
(
σ−2
cn

n∑
i=1

E(c2ni|Fn,i−1)− 1
)

= 4σ−2
cn n

−1/2
[
2σ2

0

n−1∑
j=1

j−1∑
k=1

εnjεnk

n∑
i=j+1

an,ijan,ik + σ2
0

n−1∑
j=1

(ε2nj − σ2
0)

n∑
i=j+1

a2
n,ij

+

n−1∑
j=1

εnj

n∑
i=j+1

an,ij(µ3an,ii + σ2
0bni)

]
,

which is a LQ form. The involved matrix in the LQ form is bounded in both row and column sum norm-

s, since
∑n−1
j=1 |

∑n
i=j+1 an,ijan,ik| + |

∑n
i=j+1 a

2
n,ij | ≤

∑n
i=1 |an,ik|

∑n
j=1 |an,ij | + (

∑n
i=1 |an,ij |)2 < ∞ and∑n−1

k=1 |
∑n
i=j+1 an,ijan,ik| + |

∑n
i=k+1 a

2
n,ik| ≤

∑n
i=1 |an,ij |

∑n
k=1 |an,ik| + (

∑n
i=1 |an,ik|)2 < ∞. In addition,

for q = 1 + δ > 1 and 1/p+ 1/q = 1,

1

n− 1

n−1∑
j=1

∣∣∣ n∑
i=j+1

an,ij(µ3an,ii + σ2
0bni)

∣∣∣q ≤ 1

n− 1

n−1∑
j=1

∣∣∣ n∑
i=j+1

|an,ij |1/p|an,ij |1/q(|µ3an,ii|+ σ2
0 |bn,ii|)

∣∣∣q
≤ 1

n− 1

n−1∑
j=1

(
2

n∑
i=j+1

|an,ij |
)q/p n∑

i=j+1

|an,ij |(|µ3an,ii|q + σ2q
0 |bn,ii|q)

≤ c

n− 1

n−1∑
j=1

n∑
i=j+1

|an,ij |(|µ3an,ii|q + σ2q
0 |bn,ii|q) <∞,

where c is a constant. Thus n1/2
(
σ−2
cn

∑n
i=1 E(c2ni|Fn,i−1) − 1

)
is asymptotically normal. Noting that

n1/2σ−2
cn

∑n
i=1

(
c2ni−E(c2ni|Fn,i−1)

)
is a sum of martingale differences, it can be shown to be asymptotically
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For r = 1, 2, 3, n−1
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where h is a constant. For r = 1, 2, 1
n

∑n
i=1 b

r
ni(e

2
4n,i − E e2

4n,i) = oP (1), since

1

n

n∑
i=1

brni(e
2
4n,i − E e2

4n,i) =
1

n

n∑
i=1

i−1∑
j=1

brnia
2
n,ij(ε

2
nj − σ2

0) +
2

n

n∑
i=1

i−1∑
j=1

j−1∑
k=1

brnian,ijan,ikεnjεnk,

where

E
( 1

n

n∑
i=1

i−1∑
j=1

brnia
2
n,ij(ε

2
nj − σ2

0)
)2

=
E |ε2nj − σ2

0 |2

n2

n−1∑
j=1

( n∑
i=j+1

brnia
2
n,ij

)2
= O(n−1)

and

E
( 1

n

n∑
i=1

i−1∑
j=1

j−1∑
k=1

brnian,ijan,ikεnjεnk
)2

=
σ4

0

n2

n−1∑
j=1

j−1∑
k=1

( n∑
i=j+1

brnian,ijan,ik
)2

= O(n−1),
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where each term on the r.h.s. of above equations converges to zero in probability since its variance has

the order O(n−1) as in (C.16). Note that in (C.15), E(e2
2n,i + 2e1n,ie3n,i), E(e1n,ie2n,i) and E(e2n,ie3n,i)

are polynomials of bni’s with bounded constants. Then
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and
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where
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Therefore, (29) holds by Theorem 1 in Mykland (1993). Eq. (30) follows by (2.20) in Mykland (1993).
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