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Abstract

This paper is concerned with the use of the bootstrap for spatial econometric models. We show that the
bootstrap for spatial econometric models can be studied based on linear-quadratic (LQ) forms of distur-
bances. By proving the uniform convergence of the cumulative distribution function for LQ forms to that
of normal distributions, we show that the bootstrap is generally consistent for test statistics that can be
approximated by LQ forms, which include Moran’s I, Cox-type and spatial J-type test statistics. Possi-
ble asymptotic refinements of the bootstrap for spatial econometric models may be studied based on some
asymptotic expansions for LQ forms. We discuss two cases: when the disturbances are normal, we directly
show the existence of Edgeworth expansions for LQ forms and apply the result to show that the bootstrap
for Moran’s I can provide asymptotic refinements; when the disturbances are not normal, we show the
existence of a one-term asymptotic expansion of LQ forms based on martingales, which sheds light on the
second-order correctness of the bootstrap for LQ forms.
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1. Introduction

The bootstrap is a statistical procedure that estimates the distributions of estimators or test statistics
by resampling the data. Its approximations can be at least as good as those from the first-order asymptotic
theory under mild conditions. Thus it can be used as an alternative when evaluating the asymptotic
distributions is difficult. A more appealing feature of the bootstrap is that it is often more accurate in finite
samples than the asymptotic theory, i.e., it can provide asymptotic refinements. The bootstrap is frequently
used to correct the bias of estimators, estimate the critical values for hypothesis tests, construct confidence
intervals, etc. Useful survey papers on the bootstrap include, among others, DiCiccio and Efron (1996),
MacKinnon (2002), Davison et al. (2003), and Horowitz (2001, 2003).

The bootstrap has been discussed and implemented by many researchers for models in spatial economet-

rics. Anselin (1988, 1990) discusses the bootstrap estimation in spatial autoregressive (SAR) models, which
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is implemented by Can (1992). Fingleton (2008) and Fingleton and Le Gallo (2008) use the bootstrap to
test the significance of the moving average parameter in models with spatial moving average disturbances.
Lin et al. (2011) investigate the properties of bootstrapped Moran’s I under heterogeneous and non-normal
disturbances with a Monte Carlo study. Fingleton and Burridge (2010) and Burridge (2012) find that the
bootstrap can essentially remove the size distortion of the spatial J test in Kelejian (2008) in Monte Carlo
studies. Yang (2011) proposes the residual bootstrap for LM tests of spatial dependence. Jin and Lee
(2012) employ the bootstrap to remove the size distortion of Cox-type tests for SAR models with SAR
disturbances (SARAR models for short). Su and Yang (2008) suggest a bootstrap procedure that leads to
a robust estimate of a variance-covariance matrix. Yang (2012) proposes a bootstrap procedure to correct
the bias and variance of quasi-maximum likelihood estimators (QMLE) for SAR models. Monchuk et al.
(2011) compare several bootstrap methods in Monte Carlo studies for constructing confidence intervals in a
spatial error model.

Although there have been many applications of the bootstrap in spatial econometric models including
Monte Carlo studies in the preceding papers, its validity for these models has not been formally justified.
The objective of this paper is to establish the consistency of the bootstrap for several test statistics in
spatial econometric models and provide a preliminary discussion of possible asymptotic refinements. We
shall show that many estimators in spatial econometric models can be approximated by linear-quadratic
(LQ) forms of the disturbances, and test statistics are either approximated by or closely related to LQ
forms, due to the presence of spatial dependence. The bootstrap in spatial econometric models thus can be
studied based on LQ forms in general. Kelejian and Prucha (2001) prove a central limit theorem for LQ
forms using a central limit theorem for martingale difference arrays. We shall show that the convergence
of the cumulative distribution function (CDF) for a LQ form is uniform under the same conditions. Using
this uniform convergence, the bootstrap can generally be shown to be consistent for statistics that can be
approximated by a LQ form. We apply the result to show the consistency of the bootstrap for Moran’s I
and the spatial J-type tests (Kelejian and Piras, 2011).

We shall also discuss possible asymptotic refinements of the bootstrap for spatial econometric models
based on the LQ forms. For non-spatial econometric models, the bootstrap is often considered for the
statistics that are smooth functions of sample averages of independent random vectors, see, e.g., Hall (1997),
or stationary dependent random vectors, see, e.g., Gotze and Hipp (1983, 1994), for which the Edgeworth
expansions are well established. The existed Edgeworth expansions for the random vectors can be used to
prove the consistency and asymptotic refinements of the bootstrap. The framework does not apply to LQ
forms, which cannot be written as simple averages of disturbances or their cross-products. For statistics in
spatial econometric models, we may investigate whether the bootstrap can provide asymptotic refinements
by considering Edgeworth expansions of L.Q forms. Such expansions, however, have not be proved to exist in
the literature. For LQ forms with normal disturbances, we shall show the existence of Edgeworth expansions
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and apply the result to show that the bootstrap can provide asymptotic refinements for Moran’s I; for LQ
forms with non-normal disturbances, we verify an asymptotic expansion of L(Q forms based on martingales
(Mykland, 1993). The Edgeworth expansion for a LQ form is established by using a smoothing inequality
that bounds the gap between two functions with the related Fourier transforms. The special feature of the
square matrix involved in a LQ form for spatial econometric models, i.e., the boundedness in both row and
column sum norms, can be used to obtain the order of the bound. The asymptotic expansion based on
martingales is not in a pointwise topology but sheds light on the bootstrap. It implies the second-order
correctness of the bootstrap for LQ forms in the sense of the convergence in Mykland (1993).!

The rest of the paper is organized as follows: Section 2 demonstrates a close relationship between LQ
forms and estimators and test statistics in spatial econometric models; Section 3 first shows the uniform
convergence of the CDF for LQ forms and then applies the result to show the bootstrap is consistent for
Moran’s I and spatial J-type tests; Section 4 establishes the Edgeworth expansion of a LQ form with
normal disturbances, which is applied to show the second-order correctness of the bootstrap for Moran’s I,
and establishes the asymptotic expansion in Mykland (1993) for LQ forms with non-normal disturbances;

Section 5 concludes. Lemmas and proofs are collected in the appendices.

2. Statistics in Spatial Econometrics and LQ Forms

In this section, we show that several estimators for spatial econometric models can be approximated by
LQ forms of disturbances, and many test statistics can be approximated by or relate closely to LQ forms.
As a result, we may study the bootstrap for spatial econometric models based on LQ forms. As the SARAR
model is a popular and general spatial model, which contains both the spatial lag (SAR) model and spatial
error (SE) model as special cases, our discussion will mainly focus on this model. A SARAR model is
specified as

Yn = )\Wnyn + Xnﬁ + Un, Up = pMnun + €n, €n = (Enla ey 6nn>/a (1)

where n is the sample size, y,, is an n-dimensional vector of observations on the dependent variable, X, is an
n X k; matrix of exogenous variables, W,, and M, are n x n spatial weights matrices with zero diagonals, €,;’s
are i.i.d. with mean zero and variance o2, and 8 = (\, p, ', 02) = (7', 02)" is a vector of parameters. Let 6

be the true parameter vector, S, (\) = I, — AW,, and R, (p) = I,, — pM,, with I,, being the n-dimensional

IFor L.Q forms with non-normal disturbances, directly investigating Edgeworth expansions can be hard. Gétze et al. (2007)
establishes a one term Edgeworth expansion for a quadratic form. Their proof is based on a symmetrization inequality and
the differential inequality method. The quadratic matrix in Gotze et al. (2007) has some special feature not shared by the
square matrix in the LQ form here. With a square matrix bounded in both row and column sum norms in the quadratic form,
the expansion established using similar methods may not generate a remainder term of a desirable order. In addition, the

generalization to a LQ form is not straightforward.



identity matrix. Denote S,, = S, (Xo) and R,, = R,(po) for short. The SARAR model nests the SAR and
SE models. The SAR model is (1) with i.i.d. disturbances, i.e., p = 0, and the SE model is (1) without the
spatially lagged term of the dependent variable, i.e., A = 0. The spatial Durbin model has an additional
term (+W,,X,,¢) on the r.h.s. of the equation for y, of the SAR model. As W, X, can be taken as an
exogenous variable matrix, with some additional identification consideration in some cases, the analysis for
a spatial Durbin model is similar to that for a SAR model.

For estimators of the SARAR model, the derivatives of the corresponding criterion functions evaluated
at the true parameter vector are often LQ forms of the disturbances, rather than just linear forms, due to
the presence of spatial dependence. As a result, these estimators can be approximated by a LQ form. Lee
(2004) has proved the consistency and asymptotic normality of the QMLE for a SAR model without SAR
disturbances. The analysis can be extended to the SARAR model (1) as in Jin and Lee (2012), from which
we have

V(0 — 00) = —(iEW)ljﬁaLgf“ +op(1), )

where 6,, is the QMLE and L, (0) denotes the log likelihood function of the model. Every element of the

1 90Ln(b0)
00

vector NG is linear in the disturbances or of the LQ form

(enAnen — g tr(An) + ben) /v/n, (3)

where A,, is an n-dimensional square matrix and b, is an n-dimensional vector. Thus every element of

V/n(0, — 0y) can be approximated asymptotically by a linear combination of LQ forms, which is still a LQ
form with the same €,. For the generalized method of moments (GMM) estimator, from Lee (2001, 2007),

Vi =) = = (B 280 a0, (5 202 000)) (5 X00) o g, () + 02 (1),

where 4, is the GMM estimator of v, a,, is a matrix with full column rank greater than or equal to (k, +2),
and gn(7) = (€,(7)D1n€n(7),- - - €, () Dinnen (), €,(7)Qn) /1 With €, () = Ru(p)[Sn(Nyn — Xn8], Din’s
being n-dimensional square matrices with zero traces and ), being a matrix of instrumental variables
constructed as functions of X,,, W,, and M,, in a two-stage least squares (2SLS) approach. Every element
of v/ngn(v) is a quadratic or linear form of the disturbances, then every element of /n(%, — v) can
be approximated by a LQ form of the disturbances. The generalized spatial 2SLS (GS2SLS) approach in
Kelejian and Prucha (1998) first estimates (X, 8’)" using only linear moments, then derives estimates of p
and o2 based on quadratic moments using the residuals from the first step, and finally updates the estimate
of (A, 8') by a G2SLS taking into account the covariance structure. As (A, 8')’ is estimated using only linear
moments, its estimator can be approximated by a linear form of the disturbances, but the estimator of p is
approximated by a LQ form because quadratic moments are used.

The estimators discussed above can be used to implement hypothesis tests such as the classical Wald,
likelihood ratio and Lagrangian multiplier (LM) tests in the likelihood framework, or by the Wald test,
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the distance test, and the gradient test in the GMM framework. These asymptotically equivalent tests are
based on the asymptotic normality of the estimators. As a result, they can be studied based on LQ forms.
In addition to the classical hypothesis tests, Moran’s I test (Moran, 1950; Cliff and Ord, 1973, 1981) is a
popular test for spatial dependence, and tests for non-nested hypotheses, such as the spatial J-type tests
(Kelejian, 2008; Kelejian and Piras, 2011) and Cox-type tests (Jin and Lee, 2012), have been proposed for
testing the selection of various spatial weights matrices in spatial models.

The Moran [ statistic is
n & Mpé,
I Myl, € én

where [,, is an n-dimensional vector of ones and €, is the residual vector from the least squares estimation.

The test is based on the asymptotic normality of the standardized test statistic by deducting the mean and
dividing by the standard deviation. Burridge (1980) shows that for the SE model with normal disturbances

or the spatial moving average model
Yn = n5+una Un :pMn€n+€n: €n NN(0702In)7

the LM test statistic is proportional to the Moran I statistic, which is

" R
n € Myé,

T Va2t MM,)  Ehén

(4)

n

Let H, = I, — X, (X! X,)"1X/. Under the null hypothesis of no spatial dependence, Eq. (4) becomes

B n e H, M, Hye,
" w(MZ+ MIM,) € Huen
n e H,M, H,e, — o3 tr(M,H,) n tr(M, H,)
B Vitr(M2 + M/ M,) (n — kz)ap V(M2 + M M,) n—ks (5)
n e H,M, Hye, (e’anen —(n— kz)ag)
(M2 + MM, (n — kp)o2e, Hyep '

Under some regularity assumptions, the last two terms on the r.h.s. of Eq. (5) have the order O(n=/2),
thus the LM or Moran [ statistic can be approximated by a quadratic form of the disturbances. When
the null hypothesis is the SARAR model with normal disturbances, (4) and (5) can still be used to test
for spatial dependence. Kelejian and Prucha (2001) propose a generalized Moran’s I test for which the
test statistic equals a quadratic form of some regression residuals divided by a normalizing factor. Their
regularity conditions guarantee that the test statistic can be approximated by a LQ form.

The spatial J-type tests for testing one spatial econometric model against another one are based on
augmenting the null model by using a predictor from the alternative model. The augmented model is
estimated by the 2SLS in Kelejian (2008) or Kelejian and Piras (2011) and then they test whether the
coefficient of the predictor is statistically different from zero or not. Due to the 2SLS estimation, the test
statistic is only a linear form of the disturbances plus a term that converges to zero in probability. But a
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linear form is just a special case of the more general LQ form, so the test statistic can also be studied using
LQ forms. The more efficient GMM estimation with both linear and quadratic moments for the augmented
model may significantly improve the power of the spatial J-type tests (Jin and Lee, 2012). The test statistics
with the GMM estimation are approximated by LQ forms.

Jin and Lee (2012) derive the Cox-type specification tests for SARAR models. The Cox-type tests
are based on the log likelihood ratios for the null and alternative models with a proper adjustment for the
asymptotically nonzero mean. While the first order asymptotic expansion of estimators can be approximated
by LQ forms, the adjusted log likelihood ratio itself is a LQ form at given parameters. As a result, the Cox
test statistic, equal to the adjusted log likelihood ratio divided by its standard error, is the sum of a LQ
form and a remainder term where the remainder converges to zero in probability.

Our study focuses on the bootstrap for test statistics which can be approximated by LQ forms, including

Moran’s I and spatial J-type test statistics.

3. Consistency of the Bootstrap

In this section, we first present a general result on the consistency of the bootstrap for statistics that
may be approximated by LQ forms. Then we apply the result to the Moran I statistic in Eq. (5) and J-type
test statistics for SARAR models.

Consider a statistic t,, for a spatial econometric model which is asymptotically normal with mean zero.
The t,, would involve spatial weights matrices, exogenous variables and dependent variables. The dependent
variables in t¢,, can be replaced by their reduced forms as functions of disturbances €, = (€n1,...,€nn)’,
exogenous variables and the true parameter vector 8y. The t,, may also involve the estimator 0,, of 6y and
the estimator ¢, of other moment parameter vector ¢y for €,;. To compute a bootstrapped version of t,,
a proper bootstrap procedure needs to be considered. The spatially dependent variable usually cannot be
resampled directly, because doing so would destroy the inherent dependence structure. Instead, the residual
bootstrap can be used as we usually assume that the disturbances €,;’s are i.i.d.. We may first derive a
consistent estimator of parameters in a spatial econometric model and compute the residual vector é,. The
€, may not have a zero mean, so we deduct its empirical mean from the vector to obtain €, = (I,, — %lnl;)én?
Next, sample with replacement n times from the elements of €, to obtain a vector .3 Then a pseudo data
vector y; on the dependent variable can be computed by using the reduced form with the parameter én

and disturbances €. For example, for the SARAR model (1), we have y; = Sil(j\n)(XnﬁAn + R (pn)es)-

n

2Freedman (1981) shows the necessity of recentering for regression models. For the SARAR model (1), if X,, contains Iy,
corresponding to an intercept term in the model, then the residuals from the quasi-maximum likelihood estimation have mean

zero and there is no need to recenter.
3That is, generate the bootstrap error terms from the empirical distribution function of the recentered residuals.
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Estimating 6 using vy yields éfl and a residual vector €. The bootstrapped version of ¢,,, ¢}, is the statistic
obtained from replacing €,, 6y, 0,, and ¢, in t, by, respectively, €}, én, HA;‘L and ¢, where ' is a vector of
sample moments of € that correspond to the moment parameters in gp.

Let 02, ug and py be, respectively, the second, third and four moments of the zero-mean i.i.d. disturbances
€ni’s, Ay, = [an,i;] be an n x n nonstochastic matrix, b, = (bp1,...,bnn) be an n-dimensional nonstochastic
vector, and ¢, = n~Y2(e) Ane, — o3 tr(Ay) + be,) be a LQ form with mean zero and variance o2 =
n1 [206‘ tr(A2) + 020, by, + Z:L:l ((p4 — 303‘)(1%’“» + 2p3an7iibm)]. We assume that t,, can be approximated
by ¢, /0., such that d,, = t, —c, /0., converges to zero in probability. Let ¢ = n~1/2 (ef; Aper—or?tr(An)+
bj,€;,) with variance 02 = n=1 [2074 tr(A2) + 0720, by + 21y ((uzn —3071)ay i+ 243,an,iibn;) | conditional

: ¥2 _ olzz w1 _ -1
on the bootstrap sampling process, where ¢* = n='€ é&,, pi, = S & and py, = n Yl El

Define dy, =ty — ¢}, /0% . We assume the following conditions about c,.
Assumption 1. The e,;’s in €, = (€n1, ..., €nn)" are i.i.d. (0,03) and E |e,;|* 3+ < oo for some § > 0.

Assumption 2. The sequence of symmetric matrices {A,} are bounded in both row and column sum norm-

s,* and elements of the vectors {b,} satisfy sup, n™* > 1 |bn:[23H) < o0.
Assumption 3. The sequence {Jgn} s bounded away from zero.

The A, and b, are functions of spatial weights matrices and exogenous variables. As spatial weights
matrices are often assumed to be bounded in both row and column sum norms and the elements of exogenous
variables are assumed to be bounded constants (Kelejian and Prucha, 1998; Lee, 2004), it is reasonable to
impose Assumption 2. Kelejian and Prucha (2001) have proved the asymptotic normality of ¢, /0., under
Assumptions 1-3. Under the same conditions, we can have the uniform convergence of the CDF for ¢, /o,
to that for a standard normal variable as subsequently shown. As in Kelejian and Prucha (2001), we write
¢n, a sum of martingale differences, then theorems in Heyde and Brown (1970) and Haeusler (1988) on the
departure of ¢, /0., from the standard normal distribution are applicable. Let ®(z) be the CDF for a
standard normal random variable, P* and E* be, respectively, the probability distribution and expectation
induced by the bootstrap sampling process, and let K, and K} be constants such that for any n,

sup Z|anm\<Ka, sup Z\amj|<Ka, and — Z\b 204 < | for —1 < <é.

1<j<n i—1

Theorem 1. Under Assumptions 1-3,

sup | P(cn/oc, <) — @(z)| <7, (6)
zeR

sup | P*(cp/oc, < @) — ()] <7y, (7)
e

4As e Anen = €, (An + Al))en /2, it is w.l.o.g. to assume the symmetry of A,.
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sup | P* (CZ/UZ,,L +d; < x) — P(cn/acn +d, < x)| <rp+P(dn| > 1) + 78 +P(|d| > 1) + 21/277_1/27?“
T€R
(8)

sup|P*((cj Jos +di)er < a) —P((cn/0c, + dn)en < @)| <1+ P(|dn| > 1) + 155 + P(|d};| > 7)
Tz€R
(9)

+ 227712, - sup|@(/en) — B(z/e})],
z€R

where T, 1S any positive term depending only on n, e, is a positive nonstochastic term depending on n,
0o and moment parameters of en;, T = Kog, - T0/ (3720 —6/(3+26) ((Ka + 1) (K,Ele2;, — o372 +
22420 [, (E e *H29)2 + Ky B e0if7+20) + 419 (04K (s — o) + 405 K2 + 03 K2 (13K + 04 K) (Ko + 1) +
2|ps|od K2 (|ps| Ko + USKI,))(HS)ﬂ)l/(SH&) with K being a constant depending only on 6, r} is a term
obtained from replacing the population moment parameters of €,; in r, with the corresponding sample mo-

ments of €;,, and e}, is a term obtained from replacing 0y and population moment parameters of €,; in e,

by, respectively, 0,, and corresponding sample moments of €,,.

The Lh.s. of (6) is the Kolmogorov-Smirnov distance between the CDF's of two random variables. The
inequality gives a rate of convergence, O(n~=%/3%20)) of the CDF of ¢, /0., to that of a standard normal
random variable. The larger is ¢, i.e., the higher moments of €,; assumed to exist, the faster is the conver-
gence. The convergence rate approaches O(n~'/2), the rate for a sample average of i.i.d. random variables,
as d becomes larger. A similar result for the bootstrapped version of ¢, /0., is given in (7). The result in (8)
is shown by using (6) and (7). To prove the consistency of the bootstrapped ¢,, we may show that the r.h.s.
of (8) converges to zero in probability. This type of convergence with respect to the Kolmogorov-Smirnov
distance implies the asymptotic consistency of confidence intervals. If we can show that the sample moments
of ey, converge in probability to the relevant population moments of ¢,;, then the continuous mapping the-
orem implies that 7% is of order Op(n~9%3%29) The remainder term d,, is often of order Op(n~1/2), thus
we may let 7, = O(n~%) for some 0 < o < 1/2. It only remains to show that P*(|d}| > 7,,) converges to
zero in probability. For asymptotically normal statistics with non-unit variances, e.g., various estimators,
we may rescale terms in (8) to obtain (9), which can be more convenient for the proof of consistency. Now
we apply the results in Theorem 1 to show the consistency of bootstrapped Moran’s I and spatial J-type
test statistics for SARAR models.

3.1. Moran’s I

To show the consistency of the bootstrap for Moran’s I in Eq. (5), we write [, in the form on the Lh.s.
of (9). Note that the variance of €, H, M, Hye, is o§ tr(H,M,H, (M, + M})) when €, ~ N(0,031,), we

may let

¢n =n"V2 (e} Hy My Hyen, — 0f tr(M,H,)), (10)
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o2 =n"'ogtr[H, M, H,(M, + M))], (11)
n  /tr[H,M,H,(M, + M})]
n—ky  \/tr(M2+ M/ M,)

dp =1,/en —cn/oe,- (13)

; (12)

En =

*
Cp?

Let I, be the bootstrapped I,,. The I’, and the corresponding ¢, o , e} and d; are derived as described

earlier.

Proposition 1. Under Hy and Assumptions I1-1} in Appendiz A.1, the Moran I statistic in Eq. (5)
satisfies supyep | P* (I < x) — P(L, < z)| = op(1).

The above proposition is the case where €, ~ N(0,021,), which guarantees that I,, in (5) is asymptot-

ically standard normal. When the i.i.d. disturbances are not normal, I, is still asymptotically normal but
with a non-unit variance in general, since the variance of €, H,, M, Hye€,, is (pa — 304) > (H, M, Hy )% +
og tr[H, M, H,(M, + M!)]. To make the test statistic robust to the distribution of the disturbances, we

consider the following statistic
1 = EndnMnHnen

" \/ﬁ&cn
where 62 = n""(fian —3&3)2?_1(H M, H,)% +n~16} tr[H, M, H, (M, + M))] with fiz, =n~"1> " &

(14)

and figp, =n"1 ZZ 1€ ét.. The I, is asymptotically standard normal. We use (8) to show the consistency of

the bootstrap for I/,. Now let

¢ =n" V2 (e Hy My Hye, — 0 tr(M, H,)), (15)

ol =n""(pa —300) > (Hn M, Hy)3 + n”~" of tr[Hy My, Hy (M, + M},)], (16)
i=1

d, =1, —c,/oe,. (17)

Denote the bootstrapped I/, by I'*. Correspondingly, we have ¢, 0*3 and d;.

C

Proposition 2. Under Hy and Assumptions I11-13 and 1}’ in Appendiz A.1, sup,cp | P* (I < z)—P(I
x)| = op(1).

3.2. Spatial J-type Tests

In this subsection, we show the consistency of the bootstrapped spatial J-type tests for SARAR models
(Kelejian and Piras, 2011). Consider the problem of testing one SARAR model against another one:

HO : Yn = )\1W1nyn + Xlnﬁl + Uin, Uin = lelnuln + €1n, €1n = (eln,la ceey 6ln,n)/) (18)

Hi: o yn = XWonyn + XonBo + uzpn,  Usp = paMopuon + €25, €20 = (€201, €2n.0) (19)



where €1, ;s are i.i.d. (0,0%) and €z, ;’s are i.i.d. (0,03). Other terms in the above models, with subscripts
indicating different models, have similar meanings as those for the model (1). For ¢ = 1,2, let 0; =
(Nis piy B,02) ) Sin(Ni) = Ly — \iWin, Rin(p:i) = I, — piM;y,. The true parameter vector for the model (18)
is #19. The idea of the J-type tests is to augment the null model using a predictor g, for the dependent
variable from the alternative model and test whether the coefficient of the predictor is significantly different

from zero. In specific, the augmented model is

Rin(p1)yn = M Rin(p1)Winyn + Rin(p1) X1n01 + @R15(01)Un + €n, (20)

Note that a spatial Cochrane-Orcutt transformation has been used for the efficiency of the predictor ¢,.
Given an estimator 0s,, for the alternative model, a predictor of y,, can be S\QnWQnyn +X2n32n from the r.h.s.
of the equation for y, in (19) or 85! (A2n)X2n B2, from the reduced form.” In Kelejian and Piras (2011),
a GS2SLS estimator p; is plugged in (20) and g, is also computed using the GS2SLS estimator, then (20)
is estimated by the 2SLS. Alternatively, we can use the QMLE to compute ¢, and then estimate p; jointly
with A1, 81 and « in (20) by the GMM. Under the null hypothesis, each estimator of « is asymptotically
normal and the test is based on such a distribution. We first investigate the case with the estimation method
in Kelejian and Piras (2011), and then study the case with the alternative estimation method.

The spatial 2SLS estimation of a SARAR model (Kelejian and Prucha, 1998), (18) or (19), involves sever-
al steps: v; = (i, 3})’ is first estimated by the 2SLS, then the residuals are used to estimate & = (p;, 0?)" by
a GMM with quadratic moments of the form E(e},, D;; n€in) = o2 tr(D;j.n), where D;; ,, is an n-dimensional
square matrix and o2, is the true second moment when the ith SARAR model generates the data, and finally
the estimates of \; and 3; are updated by the 2SLS estimation of the Cochrane-Orcutt transformed spatial
model, for ¢ = 1,2. Kelejian and Prucha (1998) use the matrices I,,, M;, and M/ M;, for their quadratic
moments in the second step. Let Zi, = (Winyn, Xin), Pa, = An(A!A,)"TA! for any full rank matrix
A, with row dimension n, T;, be the instruments for the first step estimation, %;, be the first step 2SLS
estimator of ;, ém be the estimator of &; in the second step, Z;, be the instruments for the final step and 4,
be the estimator of 7; from the final step.® With these notations, we have ¥;,, = (Z..Pr,, Zm)*lZ{nPTmyn,
the objective function of the second step in the spatial 2SLS is ¢/, (&:; ¥in)gn (i; Vin), Where gn(&i;Fin) =
n e, (pis Fin)€in(pis Fin) — 102, €6, (pis Fin) My, Min€in (pi; Yin) — 07 tr(M}, M;n), €4 (i3 Yin) Min€in (pi; Fin )]
with €in (pis Yin) = Rin(pi)[Sin(Nin)yn—XinBin], and Yin = [Z},, R}, (pin) Pz, Rin(pin) Zin) ~* Z}, R}, (pin) Pz, Rin (Pin)Yn-

For the estimation of (20), the instruments A,, can be from both models, so they can be generated from

5The analyses for the two predictors are similar. In the following part, we only focus on the predictor S\QnWQnyn + inﬁgn

for simplicity.
6The Y, can be generated from W;, and X;,, say the linear independent columns of X;,, WinX;, and WiZnXm, and

Zin can be generated from Wj,,, M;, and X;,, say the linear independent columns of X;,,, W, Xin, WZ?nXm, M;pX;n and

M2 X;p.
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Xin, Xon, Win, Wayn, My, and Ms,,. By the Frisch-Waugh-Lovell theorem on partitioned regressions,

~ ~ ~ ~ ~ 11 ~ N ~
Qp = [(PAann(pln)yn)/(In - PVn(ﬁln))PAann(pln)yn] (PAann(pln)yn)/(In - PVn,(ﬁln))Rln(pln)yn

= [0 R, (P10) P, (In = Py, (1)) Pan Rin(P10) 9]~ G Ry (P1n) Pa, (In — Py, (51,)) Rin (1n) Ry €1n,
(21)

where V,,(p1n) = Pa, Rin(p1n) Z1n. As Rln(ﬁln)anl =TI, + (p1o— pAln)Mlannl, the spatial J test statistic

Jin = é‘n/&dn =ap [Q%Rlln(ﬁln)PAn (In - PVn(ﬁm))PAann(ﬁln)gn]1/2/&1n7 (22)

where 63, = n=1e], é1, with é,, = Rln(ﬁln)[Sln(Xln)yn —X1n31n], is asymptotically standard normal under

the null hypothesis and the assumption that n=tA,, Ry, (p1,)9, converges to a non-zero limit in probability
along with other regularity conditions. The assumption on 4, is on the whole term n=*A, Ry, (p15)3n, but
remains implicit on the specific behavior of 49, under the null hypothesis. As we would like to study the
consistency of the bootstrapped spatial J tests, there is a need to investigate the remainder term of the
spatial J test statistic after being approximated by a linear form of the disturbances. This can be done
by using the pseudo-true values. The alternative model may have different functional forms or variables
from those for the null model, thus the estimator for the alternative model generally would not converge
to the true parameter value of the null model. But we can often find a sequence of non-stochastic vec-
tors, i.e., pseudo-true values, such that the difference between the estimator and the pseudo-true value
converges to zero in probability. As the spatial 2SLS involves three steps, we have a pseudo-true value

in each step. In the first step, as ¥in, = (Z),,Pr,, Zin) ' Z., Pr,, yn, the pseudo-true value 7;,, 1 can be

Yin1 = (EZ, Pr,, EZi) Y EZ! Pr, Ey,.” As shown in Lemma 9, O Jin1) = Op(1). Then in
step 2, the pseudo-true value f_m,l can be f_m,l = argming, nYE g, (& Fin1) E gn(&i; Jin,1)- In the last step,
the pseudo-true value ¥ip, 1 i8 Vin,1 = [(Rin E Zin)' Pz,, Rin E Zin) "' (Rin E Zin)' P=,, Rin E yn, where R;, de-
notes Rin(pin,1) for short. Let 6% = 07074, 1 E(Z5,) R, Pa, (In — Py, ) Pa, Rin E(Z2n)Y2n,1] " and @, =
01_0260%"%"71 E(Z4,) Ry, Pa,, (In, — Py, )ern, with V;, = Pa_ Ry, E Zy,,. Then as shown in the proof of Proposi-
tion 3, J1n, = @, /04, +0p(1). Although Jy, is approximated by a linear form of the disturbances, the boot-
strap for Jy,, can be proved to be consistent using a LQ form.® Corresponding to the bootstrapped data vec-
tor y,, 0 let 55, = (25, Pr., Z5,) " 25, Pr,, iy, with Z5, = (Winyy, Xin), £, = argming, g7 (&i:97,)95 (€ 95,),
where g7, (55 97,) = 17 b (013 90 €6 (013 Fin) = 10F €40 (01375 Miy Min€l (i3 75) — o7 tr(Mj, Min,),

€5 (i3 ) Min€s, (piz 5] With €6, (pi 75,) = Rin(pi)[Sin (A5, )y — Xin 35, ], and

v, = [(Rin(p5,)25,) Pa, Rin(p5,) Z5 ] Y (Rin (p5,) Z5,) Pz, Rin(p5,)y. Then the bootstrapped spatial J test

=n

"For generality, we use the term pseudo-true value for both i = 1 and ¢ = 2. Note that Y1n,1 = Y10-
8 An alternative is to use the Mallows metric as in regression models. See Freedman (1981).

9Here yX = Sn *(A1n)[X1nB1n + anl (P1n )€}, ], where €], is an n-dimensional vector of random samples from the elements

of (In, — lnl}, /n)é1n, with €1, being the residual vector from the GS2SLS estimation of the model (18).
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statistic is
Ti =05 /6%. = a4[0n Ry, (p7,)Pa, (In = Pys (s ) Pa, Run (01,951 /67, (23)

1

where 3, = 25,35, 61 = 17 61, (103 A1) e1n (P1ni 1) Vil (P1n) = Pa, Rin(pin) Z1,, and

&:1 = [g: ,17L(pM|1('rL)PAn (In - PV,:‘ (ﬁ’{n))PAann(ﬁTn)?;]ilg; lln(ﬁTn)PAn (ITL - PV;(ﬁIn))Rln(ﬁTn)Rl_nl (ﬁln)eﬁlcn'

Proposition 3. Under Hy and the assumptions in Appendiz A.2, sup,cg |P*(J7, < x) — P(Jin, < 2)| =

Op(l).

Consider now the alternative estimation method of the augmented model (20). Let 2, = (34,,,53,)" be
the QMLE of the model (19) with 6, 1 being the pseudo-true value under Hy. For the estimation of (20),
we can use both linear moments and quadratic moments for the GMM. Let D1, ..., D,,, be n-dimensional
square matrices with zero traces for the quadratic moments and A,, be the instrumental matrix used in the
2SLS estimation approach. The D;,’s can be constructed from Wy,, My,, Wa, and Ms,,. The moment
vector is gn (¥; 42n) = 17 (€, (V3 F2n) Din€n (¥5 92n); - - - €,(13 320) Dimn€n (¥ 52n), €, (43 F2n) A ), where ¢ =
(M1, p1, 81, @) and €, (¢¥;525) = Rin(p1)[S10(AM)Yn — X101 — O[(.).\gnWQHyn +X2n52n)]. The true parameter
vector of ¥ is 1 = (A0, P10, 810, 0)’. A general objective function of the GMM is g/, (¥; Y2n ) anal, gn (¥; Jon),
where {a,} is a sequence of full rank matrices that converges to a constant matrix ag. By the generalized
Cauchy-Schwarz inequality, the optimal weighting matrix is the variance-covariance (VC) matrix 2, of
n'/ 29,.(10;72). For the feasible optimal GMM, a first step consistent estimator by, can be derived from
minimizing ¢, (¥; ¥2n)gn (¥; Y2, ), then an estimator ¥ can be the minimizer of gg(@b;ﬁgn)fl;lgn(i/);&gn),
where €, is the matrix obtained by replacing the 1y and other moment parameters of €;,; in Q, by,
respectively, 1, and the corresponding sample moments of the first-step residuals. Under some regularity
conditions, van is consistent for 1y and n'/ 2(1[)" — 1)) is asymptotically normal with limiting VC matrix
limy, 00 [E G?, (1005 72) Q2 P E G (Y03 72)] 1, where G, (¥;772) = %}é’f%). Then we may let the spatial J test
statistic be

Jon = 02l /el (Gl (Vs F20) 2 G (n H2n)) L] 2, (24)

where ey, is a vector with length equal to that of 1), whose last element is 1 and other elements are zero.
As shown in Section 2, Jy,, can be approximated by a LQ form as every element of g, (1p;72) is a linear or
quadratic form of e;,,. With the bootstrapped data vector y*,'0 let 3, be the QMLE of the model (19),
the moment vector for the GMM estimation of (20) be g (v;44,) = 1~ (€% (1; 44, ) Din€’ (W 450)s - - 5

€5 (103 53,) Dinn €y (V3 43,), €6 (3 93,) )’ with €($:95,) = Rin(p1)[S1n(M)yl — X1nf1 — (A5, Wanys +

10Here we may let y = S{l(xln)[Xlan + anl (P1n)e€l,,), where O1n = (xln,ﬁm,ﬁin,&fn)’ is the QMLE of the model
(18), and €7,, is an n-dimensional vector of random samples from the elements of (I, — lnl], /n)é1n, With é1, being the residual

vector from the QML estimation of the model (18).
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Xgn@‘n)], z[};; and 1/;;; be the first-step and second-step estimators in the feasible optimal GMM approach
respectively, G2 (¢; v2) = %&W, and Q;; be the matrix obtained by replacing the estimators in O by the

corresponding ones with y. Then the bootstrapped Ja,, is
T =2l n (€ (G (U A3 ) 0 G (D5 55,)) ey /2. (25)

Proposition 4. Under Hy and the assumptions in Appendiz A.3, sup,cp | P*(J3, < x) — P(Jon < )| =
Op(l).

4. Asymptotic Refinements

The Edgeworth expansion has been well established for a smooth function of sample averages of inde-
pendent random vectors and/or stationary dependent random vectors. It provides a useful tool to prove
that the bootstrap may provide asymptotic refinements. The LQ forms for spatial econometric models
involve spatial weights matrices and cannot be written as simple sample averages of disturbances or their
cross-products. If we would like to investigate possible asymptotic refinements of the bootstrap in spatial
econometric models using some expansions, we need to justify the validity for such expansions first. When
the disturbances in a LQ form are normally distributed, Edgeworth expansions can be established without
much difficulty. But when the disturbances are not normal, directly investigating possible expansions can be
hard. An alternative approach is to decompose a LQ form into the sum of martingale differences and then
study the expansions for martingales. Mykland (1993) establishes an asymptotic expansion for martingales,
but the expansions are not in a pointwise topology. Below we discuss the cases of normal and non-normal

disturbances separately.

4.1. Normal Disturbances

When the disturbances in a LQ form ¢, /0., = n~'/2 (€, Apen, — 03 tr(Ay) + b€, /0c, are ii.d. normal,
we can easily derive its characteristic function. By a smoothing inequality in Feller (1970), the difference
between two functions has an upper bound generated from the Fourier transforms relating to these two
functions. The inequality is used to establish the Berry-Esseen bound for the error in the approximation
of the normal distribution or the Edgeworth expansion to the true distribution for a sample mean of i.i.d.
disturbances. It can also be used to establish the Edgeworth expansion of a LQ form. Let f (k)(x) be the
kth order derivative of a function f(z). We can use the boundedness in both row and column sun norms of

the matrix A, to bound the derivatives of the characteristic function for a LQ form.
Theorem 2. Under Assumptions 2 and 3, when e, ~ N(0,021,),

sup |P(cn/oe, <) —[®(x)+ kn(1 —22)@D (2)]] = O(n™Y), (26)
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sup |P*(c, /o7, < x) = [®(x) + (1 = 2*) @M (2)]] = Op(n7), (27)

z€R
where K, = n"320 340 tr(A3) /3 + ogb, Anbn] = O(n=12) with ol = n"'200tr(A2) + ogblbn] and
K =n"32g 3[40*6 tr(A3)/3 + 0320, Anb,] = Op(n~Y/2) with 032 = n™'[2074 tr(A2) + 072b,b,], and for
r > 3, there exist real polynomials Pn3(x),. .., Pu-(x) with bounded coefficients such that
sup|P(cp /0, < 2) — ®(z) — V(2 Zn—“ D2P,i(z)| = O(n=—1/2), (28)
z€R

Egs. (26) and (27) can be used to show that the bootstrap can provide asymptotic refinements for some
statistics that can be approximated by a LQ form. Eq. (28) presents a general high order expansion for
the CDF of a LQ form. Note that k,, has a relatively simple form. Instead of bootstrapping test statistics,
we may correct the bias distortion for test statistics that can be approximated by a LQ form.'! The above
theorem can be applied to show that the bootstrap for Moran’s I is more accurate than the first-order

asymptotic theory.

Proposition 5. Under Hy and Assumptions I1-1} in Appendiz A.1, the Moran I statistic in Eq. (5)
satisfies P*(I* < z) — P(I, < 2) = Op(n~1).

4.2. Non-normal Disturbances

For LQ forms with non-normal disturbances, a theorem on asymptotic expansions for martingales in
Mykland (1993) can be applied to establish an expansion, which the author calls the Edgeworth expansion
for martingales. The conditions needed are mainly imposed on the variation measures associated with
martingales, e.g., the optional kth-order variation, which is defined as the sum of the kth powers of the
martingale differences. One condition is the central limit theorem which relates to the optional second-order
variations. The ¢, /0., can be decomposed as the sum of martingale differences that are quadratic in the
disturbances. We need the existence of E |e,;|* %) for some § > 0 to show the asymptotic normality of
¢n /0, , which is based a central limit theorem for martingales. For the central limit theorem relating to the
optional second-order variations, higher moments for €,; are required to exist. Correspondingly, a stronger

condition on b,, is also assumed.
Assumption 1°. The €,;’s in €, = (€n1,- -, €nn) are ii.d. (0,062) and E |e,;|20F9) < oo for some § > 0.

Assumption 2°. The sequence of symmetric matrices { A} are bounded in both row and column sum norms

and the elements of the vectors {b,} satisfy sup, n=* S 1 |bn:[*3F9) < o0.

I Robinson and Rossi (2010) have considered a finite sample correction of Moran’s T test for a pure SAR model. They have
not shown the validity of their expansion for the CDF of Moran’s I test statistic, which is in terms of the CDF for a chi-square

distribution.
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Theorem 3. Under Assumptions 1°, 2° and 3, we have

+oo +oo
[ @ dra@ = [ b do) + g P EIG0) + 20,0 )] o), (29)

where F,,(z) = P(cn/oc, < ), Y is the normal random variable that ¢y, /0., converges to, and expressions
for ¥o(Y) and ¢p(Y) are given in (C.17)-(C.20), uniformly on a set £ of functions h which are twice
differentiable, with h, hY and h® wuniformly bounded, and with {h(g),h € (} being equicontinuous a.e.
Lebesgue. Denote the convergence in (29) by oa(n=/?) (Mykland, 1993), then

Fo(x) = @(x) + én_l/z (950 (@) + 2050 () = [Wo(@) + 20 (2)]a) 81 (2) + 03 (n /). (30)

As pointed out by Mykland (1993), the expansion generally does not hold when h is an indicator function
of an interval, so it is a “smoothed” expansion. Note that ¢,(z) and 1, (x) are linear in z, then wé”(m) +
2@&1(,1) (z) = [Yo(x) + 20y (z)]x = (1 —2?)[ (()1)(17) +2w1(01)(x)]. In the special case that €,;’s are i.i.d. normal, we
can verify that %n*1/2[w£1)(x) + 21/);(31)(3:) — [Wo(x) + 2¢p(@)]x] = (1 — 22) limy, s 00 Kn, thus (30) has similar

terms as the usual one-term Edgeworth expansion (26).

5. Conclusion

In this paper, we consider the use of the bootstrap in spatial econometric models. We show that the
bootstrap for estimators and test statistics in spatial econometric models can be studied based on LQ forms.
We have established the uniform convergence of the CDF for a LQ form to that of the standard normal
random variable. Based on this result, we show that the bootstrap is consistent for Moran’s I and spatial
J-type test statistics. As possible asymptotic refinements for the bootstrap are usually shown by using some
asymptotic expansions, we discuss expansions for LQ forms: for normal disturbances, we have established
the Edgeworth expansions for LQ forms and applied the result to show the second-order correctness of the
bootstrap for Moran’s I; for non-normal disturbances, we have established an asymptotic expansion based
on martingales.

There are some extensions which can be of interest for future research. Some asymptotic chi-square tests
in spatial econometrics, e.g., hypothesis tests with multiple constraints, are constructed from vectors of LQ
forms. The current uniform convergence result, which is only about a single LQ form, does not cover vectors
of LQ forms. It is of interest to establish the uniform convergence result for vectors of LQ forms so that the
bootstrap can be shown to be consistent for asymptotic chi-square tests. It also remains to show high order

expansions of a vector of LQ forms for asymptotic refinements of the bootstrap.
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Appendix A. Assumptions

Appendiz A.1. Assumptions for Moran’s I

Assumption I1. The sequence of matrices {M,} have zero diagonals and are bounded in both row and

column sum norms.

Assumption I2. The sequence of full rank matrices {X,,} have uniformly bounded constant elements, and

lim,, oo %X,’an exists and is nonsingular.

Assumption I3. The sequence {(2n)7'[2(us — 308) i (Ho My Hy,)2 + o tr((M,, + M),)?)]} is bounded

away from zero.
Assumption I4. The disturbance vector €, ~ N(0,021,).

Assumption 14°. The €,;’s in €, = (€n1,-- -, €nn) are i.i.d. and E€5, < co.

The variance of n!/?2

n~Ytr[H, M, H,(M, + M!)] = (2n) "' tr[(M,, + M/)?] + o(1) by Lemma 1. When the disturbances are not

e, H, M, H,e, is guaranteed to be bounded away from zero in Assumption I3, as

assumed to be normal, I/, generally involves the estimated fourth moment of €,;. To prove the consistency
of the bootstrapped I/, using Theorem 1, we need to know the rate of convergence of the estimated fourth

moment to the true one, thus a strong condition on €,; is imposed in Assumption 14’.

Appendiz A.2. Assumptions for the Spatial J Tests: Jiy,

Assumption J1. The €1, ;’s are i.i.d. (0,0%)) and the moment E(e},, ;) exists.

Assumption J2. The matrices Xy, and X, have full ranks and uniformly bounded constants. The limits

lim,, 00 %X{nXln and lim,, o %XénXgn exist and are mnonsingular.
Assumption J3. Matrices S1,, and Ry, are nonsingular.

Assumption J4. The sequences of matrices {Win}, {My,}, {R;L} and {Sy,}} are bounded in both row

and column sum norms. The {Wi,} and {My,} have zero diagonals.

Assumption J5. The n_lT’lnTln, n_lE’lnEln’ ’I’L_lTlln(Wlnanlenﬁlo,Xln) and n_lEﬁann(WmeanmBm,Xln)

converge to full rank matrices.

Assumption J6. The minimum eigenvalue of the matrix

n 20'%0 tr(Mlan_J) U%O tr(R/l:LlM]/.anan_nl)
1
ﬁ tI‘(M{ann) 20—%0 tr(M{anan_nl) J%O tr(R/l:le{%LanRl_nl)
0 ofo tr[(Min + M{, ) MinRy,]  ofy te(RE, M, M7, Ry,)

is bounded away from zero, |\1| < 1, |p1| <1 and 0 < 0% < ¢ for some ¢ > 0.
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Assumption J7. Then= 1Y% Yo,, n~ 1=, o, n‘lT’Qn(WgnS’fanlnﬁm,Xgn) and n—lagnR%(WgnS;anlnﬁm,in)

converge to full rank matrices.

Assumption J8. Foranyn > 0, there exists k > 0 such that, when ||é2—Ean 1| > 1, n7HE ¢, (€2;F2n.1) E gn (€25 F2n1) —
E ¢! (£2n.1;92n.1) E gn(E2n15Y2n.1)] > K for all large enough n. The &, is in the interior of the compact

parameter space of &o.
Assumption J9. Then='Al A, and n‘lA’ann(Wgnanlenﬁlo, Xon)¥an,1 converge to full rank matrices.

Assumptions J1-J6 are similar to those in Kelejian and Prucha (1998). Assumption J7 is for the es-
timators 2, and 4a,, similar to Assumption J5 for 41, and 41,. Assumption J8 states the identification
uniqueness condition for &, ;. The condition for the estimation of the augmented model (20), Assump-

tion J9, is stated in terms of the pseudo-true value o, 1.

Appendiz A.3. Assumptions for the Spatial J Tests: Jap,

Let Li1,(01) be the log likelihood function of the model (18), Ls,(f2) be the log likelihood function
of the model (19), and @ml = argmax L;, (0;;010) with L;,,(0;;610) = E Ly (0;) under Hy, for i = 1,2.
Maximizing L;, (0;) and Ly, (0;;61) for given 3; and o? yields functions L;,(¢;) and Ly (¢; 1) respectively,
where ¢; = (i, ;)

Assumption J10. The €1, ;’s are i.i.d. (0,0%) and the moment E(f, ;) exists.

Assumption J11. The matrices X1, and X, have full ranks and uniformly bounded constants. The limits

lim,, o0 %X{nXm and lim,,_, o %XénXgn exist and are nonsingular.
Assumption J12. Matrices Sy, and Ry, are nonsingular.

Assumption J13. The sequences of matrices {Wy,}, {Mi,}, {R7IY, {S51}, {Wan} and {Ma,} are bound-
ed in both row and column sum norms. The {Wi,}, {M1,}, {Wan} and {Ma,} have zero diagonals.

Assumption J14. Each sequence of matrices {Sy,H (M)}, {R,1(p1)}, {So, (M)} and {R5,} (p2)} is bounded
in either row or column sum norm uniformly in the compact parameter space. The Mg, p1o, 5\2”71 and pan 1

are in the interiors of their parameter spaces.

Assumption J15. The limits lim,, o %X{HR’ln(pl)Rln(pl)Xln and lim,, _, o %Xén tn(P2)Ran(p2) Xan ex-
ist and are nonsingular for any p1 and ps in their respective parameter spaces. The smallest eigenvalues of
R, (p1)Rin(p1) and RY, (p2)Ran(p2) are bounded away from zero uniformly on their respective parameter

spaces.
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Assumption J16. For the identification of the model (18), either (i) lim,_ o = [In 0%, S, Ry Ry St —
ln|6fn,a(¢1)51_n1(Al)Rl_,Ll(pl)R';ll (pl)Sﬁl()\l)H exists and is monzero for any ¢1 # ¢19, where 5%,”1((;51) =
% Ry 1S1 L8, (M) R (1) Ran (01) S1 (M) ST R, or (i) Ty (Q1aXanBr0, X1n) (QinX1nBr0, X10)
exists and is nonsingular, and lim,, o %[ln |0%05fn1Rf,L1R’1;151;1|—1n |t3%717(1()\1()7 pl)anlRf,}(pl)R’;ll (pl)S{:LlH

exists and is nonzero for any p1 # p1o, where Q1 = Wlnanl. For the model (19), for n > 0, there exists

k > 0 such that, when ||¢2 — ¢an.1|| > 1, nil(ign(dfagml; 010) — E2n71(¢2; 910)) > Kk for any large enough n.

. . . 1 82 Lin(¢103010) : 1 8*Lan($2n,1;010) . .
Assumption J17. The limits lim,,_ T 06i0d and lim,, o T Pea0d, exist and are nonsin-

gular.

Assumption J18. The limit of n=' tr[R},,' Sy, " Shn R RonS2n Sy, Ry, or

n_l(Xlnﬁlo)’SﬁlSén éannRgnSQnanlean exists and is non-zero.

Assumption J19. Either (i) lim, oo n~ A/ R1p(p1)Th, where Ty = (Wi S5t X 1010, Xins Azn1i Wan St X 10810+
Xgnﬁznyl), has full rank k., + 2 for each possible p1 in its parameter space, and the moment equations
tr[R'ljllR’ln(pl)Pilen(pl)anl] =0, fori=1,...,m, have the unique solution at p1o, or (ii) lim, o n " Al R1,(p1) X1n
has full rank ks, for each possible p1 in its parameter space, and the moment equations

tr[ RS (S (M) — adan i Wa R (p1) Pim Rin (p1) (S1n (A1) — @Xan 1 Wan ) ST R = 0, fori=1,...,m,

have the unique solution at the true parameter values.

Assumptions J10-J18 are directly from Jin and Lee (2012) with the exception of Assumption J10. A
strong condition is needed in Assumption J10 as explained in Appendix A.1 for Assumption 14’. Assump-
tion J19 is the identification uniqueness condition of the GMM estimation for the augmented model (20),

which resembles a condition for the GMM estimation of high order SARAR models in Lee and Liu (2010).

Appendix B. Lemmas

Appendiz B.1. Elementary Lemmas

Lemmas 1-4 can be found in, e.g., Lin and Lee (2010).

Lemma 1. Suppose that n x n matrices {A,} are bounded in both row and column sum norms. Elements
of n X k matrices {X,,} are uniformly bounded and lim,,_,, nle;LXn erists and is nonsingular. Let H,, =
I, — X, (X X,,)"1X!. Then {H,} are bounded in both row and column sum norms and tr(H,A,) =
tr(A,) + O(1).

Lemma 2. Suppose that A,, = [ay, ;] and B,, = [by ;] are n X n matrices and €,;’s in €, = (€1, ..., €nn)
are i.i.d. with mean zero and variance og. Then,
(1) E(en - €, Anen) = E(€2,)(an11,- s annn), and
(2) E(e),Aney - €, Bnen) = [E(€k,) — 303] Doy aniibn i + 0§ tr(Ay,) tr(By,) + 0§ tr[A, (B, + BL)).
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Lemma 3. Suppose that n x n matrices {A,} are bounded in both row and column sum norms, elements of
the n x k matrices {Cy,} are uniformly bounded, and €,;’s in €, = (€n1,---,€nn)’ are independent (0,02,).
The sequences {02,} and {E(eX,)} are bounded. Then €, A€, = Op(n), E(e, Anen) = O(n), n= e, Ape, —
E(e/,Anen)] = op(1) and n*/2C! Ae, = Op(1).

Lemma 4. Suppose that {A,} is a sequence of symmetric n x n matrices with row and column sum norms
bounded and b, = (by1,...,bnn)" is an n-dimensional column vector such that sup,, n~! Z?zl |bri]2T™ < oo
for some n; > 0. Furthermore, suppose that €,1,- - ,€ny are mutually independent with zero means and
the moments E(|€,;|*T2) for some ng > 0 exist and are uniformly bounded for all n and i. Let aén be the
variance of Q. where Q, = €, Apey + bl e — tr(A,%,) with B, being a diagonal matriz with E€2,’s on its

diagonal. Assume that n*10(22n is bounded away from zero. Then %7; 4, N(0,1).

Lemmas 5-8 are for the SARAR model (1), where €,;’s in €, = (€x1,- - -, €nn)’ are i.i.d. with mean zero,
variance o3, third moment p3 and finite fourth moment j4, and ¢, = Rn([)n)[Sn(jxn)yn — Xan} with 0,
being n'/2-consistent, i.e., n'/2(6, — 0y) = Op(1). The €, y* and 67 are derived as described in Section 3.

Let || - || be the Euclidean norm of a vector.

Lemma 5. Let Py, = [pin,i;] be n X n matrices which are bounded in row sum norms, forl =1,...,s. If
sup,, ; Blen;|* < oo, then n™ 370 Iy 3251 |Pin.ijens| = Op(1).

Proof. For s = 1, the result is immediate. So consider s > 1. For s > 1, there exists a finite r such that
% + % = 1. Holder’s inequality implies that
n
1

n

1 1 1

§ \pzmyllem|<§ 1Pim.i517 |Pim.is 17 lens | < 1> (1m.i 7)1 1D (pim g | leng )]
Jj=1 j=1 j=1

j=1
n S
1 1 *
<cr Z|pln zg||€n]| cr Z Z|pln ij ‘fng| s
=1 1=
where ¢ = sup;_; ... 4 ||Pinl|oc- It follows that

n

s n
H Z ‘pln,ij||€nj| S C% [Z Z |pln ij ‘6n3|

I=1j=1 j=1 i=1
Hence,
HZ [Pinijllens]) < e ZZ |Pn,is] SupEIGn [* < scltr SupEIEnJIS = s¢ SupE\engl O(1).
1=1j=1 =1 j=1
The result of stochastic boundedness follows from Markov’s inequality. O

Lemma 6. For any integer r, if Ele,i|” < oo, E*€lf = Eel, + op(1), n™'Y 1 &, = Ee’, + op(1),
E* |er,|" = E|em'|r—|—0p(1) and n™t 3" |énil” = Eleni|" +op(1). IfE€X; < 0o, n'/2[E* el —Eel,] = Op(1)
and n*/?n=tY0 er. —Eel] = Op(1).
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Proof. Let J, = I, — %lnl;}. As yp, = S, 1 X, B0 + R, Len),

= Jn (Rn + (Po - ﬁn)Mn) (Snyn - XnﬁO + (>\0 - 5\n)vvnyn + Xn(BO - Bn))
Il en

= €n n ln + ()‘0 - 5\n)(t]n}%n + (Po - ﬁn)JnMn)Wnsngnﬁo (Bl)

+ (Mo = M) (JaRn + (p0 = pn) T M) WS Ry Y en + (00 — pn) Jn My Ry e

Write € = €, + Z;zl Cin,jPnj + Z§=1 Con,j@nj€n, where pn; = [pnji] is an n-dimensional vector with
bounded constant elements, Qn; = [qnj,il] is an n X n matrix with bounded row and column sum norms,
and (1p,; and (ap,;’s are equal to I €,/n, Ao — ;\n, P0 — Pn, elements of By — Bn or their products. Then
Cinj = Op(n™Y?) and (o j = Op(n~1/2). The €7 can be expanded by the multinomial theorem, which
states that (z1+--+zm)" =32, ¢ (klrkm)mlfl ...xkm where (klrkm) is a multinomial coefficient and
the summation is taken over all sequences of nonnegative integer indices k; through k,, such that their sum
is r. Then we have an expansion form for n=' Y7 e —n=t " | €. where each term in the expansion has
the product form 74,75, with 7%, being products of (1,,; and (2, ;s and Ty, not involving (i, ; and (ap ;’s.
The Ty, is either bounded or stochastically bounded by Lemma 5. It follows that E* €} = Ee!. 4+ op(1)
by the law of large numbers and n'/2[E* €7 — E€”,] = Op(1) by Chebyshev’s inequality. Other results are

similarly derived. u

Lemma 7. Let P, = [pin,i;] be n X n matrices with bounded row sum norms for | = 1,...,s, then

P (' 300 TTiey 2oy Prnij€h 1 > m) = Op(1) for n >0, if Eeni|* < oo.
Proof. The proof is similar to that for Lemma 5 except for the application of Lemma 6. O

Lemma 8. For n > 0 and an integer v, P*([n=1 3" & — E* €| > n) = op(1) if E|eni|” < 0o and

i=1"ni

P*(||0% — 0,|] > k) = op(1) for k > 0, and P*(n*|n=t S0, &7 —E* | > n) = op(1) for 0 < a < 1/2 if

i=1 "ni ni

E|eni|?" < 0o and P*(n®||6% — 6,]| > k) = op(1) for k> 0.

Proof. As y* = S (M) (XnfBn + Ry (pn)er),

n

én = (Bu(pn) + (n = pr) M) (Sn(An)yi = XnBn + (o = X)Wy, + X (Bn — B7)
= €+ O = A0) (R (pn) + (P = 5) M) W S (An) X B
+ (Rn(pn) X + (pn = ) Mn X0) (B = B7)
+ (A = XN (Ba(pn) + (b = ) Ma)Wa S (A Ry (B )er, + (B — B3 Mo R, ()€
Write € = € + Z;Zl Cin,jPnj + Z§:1 Can,j@nj€l, where pn; = [pnji] is an n-dimensional vector with

bounded constant elements, Qy; = [gn;.i) is an n X n matrix with bounded row and column sum norms, and
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Cin,; and (op ;'s are equal to An — 5\;, Pn — pr,, elements of Bn — B,*l or their products. Now the argument is

similar to that for Lemma 6 except for the application of Lemma 7. O

Appendiz B.2. Lemmas for the Spatial J Tests: Ji,

Lemma 9. n'/2(31,, — v10) = Op(1) and n'/?(52n, — Fon.1) = Op(1).

Proof. Noting that ¥, = [2 2], Yo (L1, Vin) T 2], Zin) 7P 2 20 Y in (2, Vi) T 20y, where n ™Y, Z;, =
n~'Y E Zi, +op(1) = Op(1) and n= /27!, (y, — Ey,) = Op(1) for i = 1,2, the result follows. O

Lemma 10. n'/2(£y, — £10) = Op(1) and n'/?(E2n — E2n1) = Op(1).

Proof. It has been shown in Kelejian and Prucha (1998) that éln — &0 = op(1). By the mean value

theorem,
392(51717:7171) 2 . agflrz(élnvﬁln) . 8gn(gln7:y1n) oy
0= Tgn(flnﬂ’ln) = T(gn(flo;%n) + T(fln — £10)),
where éln is between éln and £19. Then nl/2 (éln*flo) _ (89;(2157;;‘/170 é)gn(gléi;‘nn) ) -1 ag;(g¥;;117L) n1/29n (510; ;Yln)

Noting that g,(£1;71) is linear in 0% and quadratic in p; and 71, we can write p1, = (f1n — p10) + P10

and J1, = (F1n — Y10) + Y10, and expand relevant terms in %ﬁ”). Then it is easy to see that
1

000 (EniT1n) — Donlbinimo) 4 o (1). In addition, 22(8u0mo) — g 20ebimo) o (1) by Chebyshev’s inequal-
1 1

1 1

ity. Thus, ag"(glé;’im") =E ag"(gzwm) +o0p(1) = Op(1). Furthermore, n'/2g,, (£10;51n) = 129 (&10;710) +
agn(g’ly(?"/l())nl/Q(’?ln —710) + 5(F1n — 710)/762‘(]57(?31;;10)”1/2(’3’1n —710) = Op(1), as n'/?g,(£10;710) = Op(1)
by Chebyshev’s inequality and n'/2(§1,, — v19) = Op(1). Thus, n'/2(&1, — &10) = Op(1).

As gon(€2;72) is quadratic in o, it is easy to see that g2, (€2;%2n) — E g2n(§2; Y2n,1) = op(1) uniformly
in the parameter space of &>, by showing that gon(€2;¥2n) — g20(§2;F2n,1) = op(1) and gon(€2;Y2n,1) —
E 921 (€2;92n,1) = op(1) uniformly in the parameter space of &;. In addition, E ¢5,,(£2;92n.1) E 92n. (€25 F2n.1)
is uniformly equicontinuous. Then the identification uniqueness assumption implies that &, — £a, = 0 p(1).

With this result, it can be proved that n'/2 (égn —&9n.1) = Op(1) in a way similar to the proof for the result
on éln. O

Lemma 11. n'/2(31, — v10) = Op(1) and n*/? (32, — Yan.1) = Op(1).

Proof. Write Jin = [ 21, R}y, (Din)Zin (£ EinZin) ™ 5 B Rin(Bin) Zin] ™' 5 2t Rl (i) Zin (555, Zin) ™ 5 Zh Rin (Din )Y
Since n Y=}, Rin(pin) Zin = n'Zl, RinZin+op(1) = n 12, Ry E Zin+op(1) = Op(1) and n*1/2Egn(Rm(pAm)yn—

RinByn) = nY2Z, Riy(yn —Eyn) + 10 i Minynn/?(pin.1 — pin) = Op(1) for i = 1,2, the result follows.
U

Lemma 12. Fori=1,2,7>0and 0 < a < 3, P*(n®(|35, — inl| > n) = 0p(1).
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Proof. Since;ﬁn:[nzgkn’r ( T;n’rl ) 11T;nZz*n] 1717,Z’L*7LT ( T;nrin)_I%T;ny:’WhereP*(Hn_l’r'Im( z?kn_

E*Z: )| > n) = op(1) and P*(||n®= /27X, (v — E*y)|| > n) = op(1) by Chebyshev’s inequality and Lem-

ma 6, the result follows. O
Lemma 13. Fori=1,2 andn >0, P*(||&:, — &inl| > n) = op(1).

Proof. Note that G;n(Pinﬁn) = Rin(pi)[sin(j‘;‘kn)y; - znﬁmL] =€, (pu%n) + Rzn(pz)[(j‘m - an)Wny:; +
|I?

g (&6 750112 = [1973(&5 Fin) 12| > 1) = 0p(1) for n > 0, where w; denotes
the parameter space of &;, as R;n(p;) is linear in p;. Since €;n(pi; Fin,1) = Rm(pl)[Sm(S\ml)yn — Xian,l]
and €, (pi;¥in) = Rin(pi)[Sin(Nin)yi — XinBin), SUP¢, e, || B 9 (&35 Fin) — Egn(&i;Yina)l| = op(1) by

1E* g (& Fin) |1 = 1| Egn(&is ina)II?] = op(1), since

XZH(BZTL zn)] thenP (Sup§7€W7

the mean value theorem. As a result, supg c.,
SUP¢, e, || B gn(&is Yin1)|| = Op(1).

If||& — Enll > 00 |6 — Einnl] > 11& — Enll — ||€n — Enal| > n/2 with probability 1 — o(1). Then given
n > 0, there exists a x > 0, such that ||&; —&:,|| > 7 implies that || E* g% (&; ¥in)| |2 — || B* 95 (i in)|? > K

with probability 1 — o(1). Then for 1, > 0,

P(P*([|&, = &inll > ) > m)

< P(P*( |E" g (& :n7%n)||2 —||E*g (gin,1;7m)||2 > k) > 771) +o(1)

< PP (I E* g5 (& Vo) 17 = 1195 Ei Ain ) 17 + 1195 Gz V)11 = 11 E* g (Eims Fan)|* > £) > ) + 0(1)
< P(P*(H B g5 (€0 Am)1% = 1195 3im) 12 + 1195 Eimts i) = 1 B* g (Eimai Fin) |12 > 5) > m1) + 0(1)
< P(P(IE* g5 (€5 an) 17 = 1195 G Hin )17 + 1195 Eimo1; 5in) [P = 11 E* g5y (Eim,13 ¥in) |1 = 5) > m1) + (1)
< P(P*( sup 2([[1gn (&5 FimII* = 1B g5, (& Fan) 17| > £) > m)) + 0(1).

The g (& Yin) is a 3x1 vector with each element being of the form Ini (&5 %im) =n~t [e;;(pi; Fin)Dn€r, (pi; Yin)—
o7 tr(D,,)], where D, is an nxn matrix. By Chebyshev’s inequality, P(P* (supg, ¢, 9 s Fin)—E" g5, (§i3 Yin)| >
k) > ) = P(k2 E*(supg, e, 95 (&i5 Yin) — E g:j(&;’ym)DQ >11) = o(1) by Lemma 6. Then

P(P* (supg, coo, (|1197: (&5 9in) — E* g5 (&:9in)l1?] = &) > m) = o(1) and P(P* (supg,ee, 2(|lg5 (&3 Fin)|I* —
1B g5(&s3 %in)12] = K) > m)) = o(1). Thus P(P*(|[€5, = &nll > n) > m) = o(1). 0

Lemma 14. Fori=1,2,7>0and 0 < a < %, P*(n®[|45, — Ainl| > n) = op(1).

Proof. Since ’?in - [Z Rin(pln)P:mRzn(pzn)Zzn} 1Z/ R/ (ﬁzn>P~ Rzn(ﬁzn)?/n and

yE = [Z5 R, (%) Pe,, Rin(95,) 251 Z5 R, (p%,) Pz, Rin (5%,)y%, we only need to show that

P* (0" [Zin Rin(03,) Zi — ZinRin(pin) Zin|| > n) = op(1) and P*(n*~1||Ein Rin (03,)Y5, — ZinRin (Din)Yinl| >

n) = op(1). Write n ™12, Rin(95,) Z 5 —ZinRin(Pin) Zin] = 0 ZinRin (pin)(Z], — Zin)+n 1 2 Min 27, (Pin—

Pt))s where Zin = Win Sy, (X1nB10+ Ry, €1n), Xin] and Z5, = [Win 3, (Mn) (X1nB1a + Rey (Prn)eln), Xin].

Since n 7 i, Rin (pin)Win St Ryt ein = 7 Ein RinWin St Ryt e1n+n " Ein My Wi SRy €10 (Din—Pint ) =
22



op(1), P*(|[n ' EinRin(pin) WinSt,t (Nin) Rt (pin)€5n|| > 1) = op(1) by first using Chebyshev’s inequality
and then using the mean value theorem, and P* (Hn_l:mRm(pm)Wl [Sln ()\m)Xlnﬁln — Xlnﬁmm >

*

n) = op(1) by the mean value theorem, we have P*(||[n"'E, Rin (pin) (2], — Zin)|| > 1) = 0p(1). Similarly,

P*(Hnilgian(Z;n — Zin)|| > 77) =op(1), and P*(ﬂ“%HEmRm(ﬁfn)yi‘n - EmRm(ﬁm)ymH > 1) = op(1)

by a similar argument with adjustments of orders. Thus the result in the lemma holds. U

Appendiz B.3. Lemmas for the Spatial J Tests: Jo,

Lemma 15. n'/2(fy,, — 619) = Op(1) and n*/?(f2, — O2,.1) = Op(1).

Proof. See Jin and Lee (2012). O
0%Loy (02n)  0*Lan(Ban16 . ; _
Lemma 16. ﬁ| 80226592 ) _ 28é22('39’§ 10) H = Op(1), where O3, is between Oay, and Oz, 1.
Proof. We prove the result by showing that (i) ’1/2H i 5922"33,2") i %?;ggi"l) || = Op(1) and (ii) ’1/2’|“%;7E99§]L1)
y
E “829’;7(;02,2"'1) H = Op(1). To prove (i), apply the mean value theorem to each term in the second order deriva-

Oan 1)| Results for other terms can be derived

tive. Specifically, we investigate n‘1/2| o Lg,;\ge% _ E &Ll
2

A2
similarly. The Lo, (62) is equal to

1
Lan(02) = —g In(2703)+1n | Son (A2) |+1n [ Ry (p2))| ~552 [S2n (A2)yn—XonB2] Ry, (p2) Ran (p2)[S2n (A2) yn—Xon fa).
2

By the mean value theorem,

L(62L2n(é2n) _ 62L2n(§2n,1)
NANRDE N2

2 ~ .
) = By, + dTBQn\/ﬁ(an — p2n) + Ban,
2n

where By, = —2n~! tr[(WQnS;nl ()'\27,,))3}111/2(5\2” — Aan), Ban = n~ Yyl Wi, M5 Ron(pon)Wanyn and Bs, =
(2n64,) Yyl W3, Rb.. (p2n) Ron (pan) Wanynn'/?(63, — 3, with 6y, being between 6y, and s, 1. By the uni-
form boundedness of Sgnl()\g) in the parameter space, By, = Op(1). Note that Bs, = Bay. 1+ Ban,2(f2n1 —
pon), where Ba, 1 = n=ly, W} M} RonWany, = Op(1) and Bay o = n=ty, Wi M} Mo, Wany, = Op(1),
then 265,2 Bo,n'/?(pay, — pon) = Op(1). Similarly, Bs, = Op(1). Hence (i) holds. (ii) follows from Cheby-
chev’s inequality. O

Lemma 17. Forn >0, P*(||63, — 6a2,|| > 1) = 0p(1).

Proof. Let Loy (¢2;610) = maxg, ,2 Loy (62;610) and Egn(¢2;é1n,a) = maxg, ,3 E* L3, (62), where éln,a =
(>\1n> p1n7 ﬂlnv E* 6ln z) then

Loy (62:020) = 5 [I0(27) + 1] = 5 1063, (92) + IS (Aa) |+ 1n | Rau(p2)].

Lon(62:1n.0) = =5 I(2m) +1] = 5 032 (62) + In[Sau(A)| + I | Ren (p2),
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where
1 1
U2n(¢2) U%O tr (R/lnl Sinlsén ()‘Q)Rén (p2)R2n (p2)S2n<)‘2)Sln Rln )
1 _ _
+ E(Xlnﬁlo)lsinlsén()‘Q)Rén(p2)H2n(pQ)R2n(p2)52n(A2)Slan1n6107

N 1, . . 1. 1. 1% 1/
Fon(2) = E(E e )t (R (A1) STt (in) St (A2) Rby, (p2) Ran(p2) S2n (A2) St (Atn) R1,) (P1n))

+ E(Xlnﬁln)'sﬁl(/\m)Sén(Az)R'zn(Pz)Hzn(P2)Rzn(ﬂz)szn(/\z)sfnl(Aln)Xlnﬂlm

with 3, (¢2) being bounded away from zero uniformly in the parameter space ¢o and Ha,(p2) = I, —
Ray(p2) Xaon|[ X5, R, (p2) Ran(p2) Xa2n] 71 X1, RY,, (p2) being bounded in both row and column sum norms u-
niformly in ps (see the proof of Proposition 3 in Jin and Lee (2012)). By the mean value theorem,

. _ — %2 _ =2
%[i2n(¢2;91n,a> — Lon(¢2;610)] = _%‘7271(@) 5 O%(@),

Oan

where G3,, is between 63, (¢2) and 732 (¢2), and

F5n(d2) — 53, (2)
%(E* €1n . —og) tr(RY, (Pln)Sﬁl(ﬁln)sén()\2)Rlzn(P2)R2n(P2)52n()\2)5fn1()'\m)anl(/)ln))
+ = (Xlnﬁln) S (Mn)Sh, (A2) Rb,, (p2) Han (p2) Ran(p2) S2n(A2) STt (Ain) X1n (Bin — Bio)

in

20’n 1. —1/% 1y 1y .
+ ,nl tI‘(R, 1(p1n)Sin1(pln)Sén(/\2)Rl2n(p2)R2’ﬂ(p2)52n()‘2)Sln1()‘ln)Rlnl(pln)Mlani(pln))(pln - plO)

262 ) . P L .
+ i tr(R' 2 (P1n) ST (P1n) S5 (A2) Ry, (p2) Ran (p2) Son (A2) St (A ) Win St (A1) R, (1n)) (Atn — Ato)

2 . . . ..
+ ﬁ(Xlnﬁln)/s’i:zl(Aln)sén(/\Q)RIQn(p2)H2n(p2)R2n(p2)SQn()‘2)Sl_n1(Aln)Wlnsl_nl(Aln)Xlnﬂln()‘ln - A1),

with 41, = (Atn, p1ns Bin, 03,)" being between 6,9 and 61, ,. By Lemma 6, SUD g,y |50 (02) — 05, (92)| =
op(1). Then SUDP g, c ooy In=t Loy (¢2; éln,a) — Lon(2;610)]| = op(1).

If ||¢2 = G2nll > m, |62 = G2nll = [|d2 — Gonl| = [|d2n — 2n|| > n/2 with probability 1 — o(1). Note
that
1,- . . _ N 1, e . .
E(L2n(¢2n; 91n,a) - L2n(¢2; 91n,a)) = E(LG(ﬁbzn; 91n,a) - L2n(¢2n; 910))

+ %(EZW,(Q_SZW,,I; 010) — Lan(¢2;610)) —

1 _
ﬁ (LG(¢27 91n a) Loy, (<Z52; 910))
1 .
- (Lan(d2n,1:010) — Lon(d2n; 610)),
given ) > 0, there exists a k > 0, such that ||¢’2*<52n\| > 7 implies that n=! (Egn (¢2n; élnya)*ign((ﬁg; 91na)) >

k with probability 1 — o(1). Then for 7, > 0,

P(P*(|[¢3, — danll > n) > m)

P(P ( - (E2n<¢2n7 éln,a) - EQn((b;ny éln,a)) > H) > 771) + 0(1)

P(P ( ! (IQ”((%QTL; éln,a) - En((b?ﬂ) + L;n(ésn) - EQn(¢;n7 éln,a)) Z 5) > 771) + 0(1)
P

(P (2n~! ;up |L3,(62) — Lon(¢2: 01p,0)| = k) >m) +o(1),
2€p2

INIA

IA
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where
 Gan(P2) — 350 (¢2)
2052((%52) 7

L (L3(02) = Ean(i1,)) =

with 632 (¢2) being between 532 (¢2) and 532 (¢p2), and

G3n(d2) — Oan(d2) = EelnR/ Y(B1n) St (A1n) Shy (A2) Ry (p2) Han (p2) Ran (p2) S2n (A2) 1, (Arn) R, (1n) €l
E* 61‘3”

— tr[RY, (1) S5 (Ain) S, (A2) Ry (p2) Ran (p2) S2n (A2) S, (A1) Ry, (B1n)]

+ E(Xlnﬂln),‘gi:zl(/\UL)Sén(AQ)R/Zn(pQ)HZn(pQ)RQTL(pQ)SZ7L(>\2)Sl_n1(Aln)Rl_nl (P1n)€ln-

The 52 ()~ 52 (6) is equal to a L.Q form plus = (B €12.,) tr (B (710) 51 (V1) S (Aa) Ry (92) [Hlan (p2)—
In}Rgn(pg)SQn()\g)an (Aln)an (pln)) Since Ran(p2) is linear in po, So,(A2) is linear in Ay and Hay,(p2) is
bounded in both row and column sum norms uniformly in the parameter space of p2, Chebyshev’s inequality
implies that n P*(supy,c,,, 1552 (d2) — 752 (¢2)| > n) for n > 0 is bounded by a term depending only on O,
E 2

1In,s»

Ee;? ; and Ee}y ;, which has the order Op(1) by Lemma 6. Then P*(supy,c,, [63a(¢2) — 052 (d2)] >
1) = op(1). Tt has been shown that supy, ¢, |55 (¢2) — 73, (¢2)| = op(1) with 63,(¢2) being bounded away
from zero uniformly in ¢o, then P*(||¢3, — dan|| > 1) = 0p(1). Now the mean value theorem and the formu-
las of B3, and 532 as functions of ¢4, can be used to show that we also have P*(||35, — Banl| > 1) = op(1)

and P*(||537 — 63, > n) = op(1). U

27 % 0 * ~ .
Lemma 18. For n > 0, P*(n7!| 2 gg;a(g?") g2 g;;d(g?") | > n) = op(1), where 63, is between 63, and
2
O

2 7 % 0 * 2

Proof. The result is proved by showing that (i) P*(n™!| 2 gj;a(gz") -2 gg;ag?" | > n) = op(1) and (ii)
—1 62L*n(é n) *E* L*n(é n)

P (n~!] 692239;2 — 06,00, :

| > 17) = op(1). Asin the proof of Lemma 16, use the mean value theorem

82L;n(9~2n) _ 82L;n(92n) |

for each term in the second order derivative to prove (i). Here we only investigate n 1 | 25 B3z
2

Results for other terms are similarly derived. By the mean value theorem,

n ON3 ON3

* 2 [~k . *
=B, + dTgBQn(Pzn — pan) + B3,

2n

where B, = =20~ tr((Wan S5, (A5,))°) (A3 — Aan), B = n=lys Wh, My, Rop(9%,)Wanys, and B3, =
(a3 Yy Wi R, (p%,) Ran (95, ) Wany (632 — 62,) with 63, being between 63, and f,. By Lemma 17
and the uniform boundedness of S5, ()\2) ( “(|1Bf, > m) > 7]2) = O(n7!) for p; > 0 and 7y > 0.
Let B3, , = n~lyx n Wa, My, Ron(pon)Wanyy, and B3, 5 = nly W Mb, Moy Wanyl. Then P*(|B§n71 —
E* B3, 1| > n) = op(1) and P*(| B3, , — E* B3, 5| > n) = op(1). Since B3, = B3, | + B3, 2(f2n — p5,);

P* (263> B3y (50 — 2n)| > 1) = op(1). Similarly, P*(|B5,| > n) = op(1). Therefore, P* (L[ 2Lialia)
3Lgn7/\(292")| >1n) = op(1). (ii) is proved by using Chebyshev’s inequality and Lemma 6. O
2
—1 * 82L*n(5 n) 82L n(é n,l) —
Lemma 19. n HE 6022892 —-E 8202692 H =op(1).
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Proof. The lemma is proved by using the mean value theorem and Lemma 6. O
Lemma 20. Forn >0 and 0 < a < 3, P* (9|05, — O2,|| > n) = op(1).

Proof. By the mean value theorem,

S 102L%, (65,)\ ! AL}, (62,)
agr _ @ n) = 2n\Y2n a—1 2n n B.2
(80 = b2n) ( n 06,00, ) = 06, (B-2)
where é;n is between 9§n and 0y,. Then
. 10%L5,(65,) 1 ., 92L3, (fan)
P*(n|l0x — < P* - 2n\"2n/) ZE* 2n n
(1105 = O2all > 1) < P =50 50, ~ 2 & 50,08, 1| > 7)
. . 102L3, (65,) L3, (020)
P a 77’” _ E TL
P 105 = Oanll > 11055 56, — 5 " 50,00 E

Using (B.2), the result follows from Lemmas 6, 18-19 and Chebyshev’s inequality. (]

Lemma 21. n'/2(¢,—to) % N(0,%) andn'/?(h,—bo) % N(0,limys o0 [E Gl (100:72)25 " E G (803 72)] 1),
where ¥ = limy 00 [E G}, (¢0;72) E G (t0;72)] 7 E G, (t0: 72) 0 E G (03 72) [E G, (Y05 72) B G (103 7v2)]

Proof. Asy, = 53, (Xinf10+ Ry, €1n); Egn(¥372n,1) = 07 (01, () Din L1 () + 07 tr[Th, () D1 T2n (4)],

o DL () Din L1 () + 070 tr[Th,, (V) Do L ()], T4 (¥) A)’ with Tin () = Run(p1)[WinSt,, X1nBro(Ao—
M)+ X1 (81—B10) = (A2n,1 War St} X1n 810+ X2nBon,1 ) (a—ap)] and Tap, (v¥) = Rip(p1)[S1n (M) —aan, 1 Way ] S1, R
Since €y, (1;y2) is linear in 1, it is straightforward to verify that ||g,(¢;52n) — E g5 (¢; J2n,1)|| converges to
zero uniformly in the parameter space of ¢ by the mean value theorem. The E g,,(9);¥2,1) has a similar
form to that of E g, (A1, p1,051,0;72), i.e., the expected value of the moment conditions for the SARAR
model (18), then Assumption J19 ensures that E g, (¢;32n,1) = 0 has a unique solution at g, according
to Lee and Liu (2010). As E g,(1;%2n,1) is quadratic in 1, it is equicontinuous in 3. It follows from the
uniform convergence and identification uniqueness condition that ¢, — 19 = op(1) (White, 1994). For the

distribution of v,,, applying the the mean value theorem to the first order condition yields

G;z(’lzjnv’wn)gn(/&na’an) =0= G;(¢n772n)[gn(¢0772n) + Gn('lzjna'y2n)('lzjn - %)]a

where 1/~)n is between vy and 1),,. Then
\/ﬁ('(/v)n - 1pO) = _[G;L(QLny 72n)Gn(1/~)na 'ﬁ/Qn)]_lGn(’J)n; ;)'/Qn)\/ﬁgn(wm '7271)

As ¥, — hg = Op(n~1/2), by writing 1, in Gy (¢n; F2n) as (¥n — tho) + o and expanding Gy, (¥n; F2n ), We
have G (n; H2n) = Gn(tho; 2n) + Op(n~1/2), where G (to;52n) = Gn(t0;72) = E Gn(tho;72) + op(1) by
Chebyshev’s inequality. Noting that elements of \/ng,(1o;¥2n) are either linear or quadratic in €y, the
distribution of %,, follows from Lemma 4.

By Lemmas 2 and 6, 2, —Q,, = Op(n~'/2). Following the argument for Proposition 1 in Lee (2007), we
have 1/3,z — 19 = op(1). The distribution of ﬁn again follows from the expansion of the first order condition.
O
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Lemma 22. Forn >0 and 0 < a < 1/2, P*(n®|[¢x —n|| > n) = 0p(1) and P*(n®|[x —b,|| > 1) = op(1).

Proof. By an argument similar to that for Lemma 13, we have P*(||¢ — b, || > n) = op(1) and P*(||¢F —
Un|| > 1) = op(1). Then by an argument similar to that for Lemma 20, we have P*(n®|[¢pF — ¢, || > 1) =
op(1) and P*(n?|[¢}, — dull > n) = op(1). 0

Appendix C. Proofs

Proof of Theorem 1. As in Kelejian and Prucha (2001), write ¢, as ¢, = Zle Cpni With

i—1

—1/2 2 2
cni =n"Y (an,ii(em‘ —05) + 2€p; g Onij€nj + bniﬁm>-
=1

Obviously, E |¢i| < 0o. Consider the o-fields %0 = {@,Q}, P = 0(€n1y- - -5 €ni), 1 < i < n, where  is the
sample space. Then {¢n;, Fni, 1 < i < n,n > 1} forms a martingale difference array and 02 = >"7" | E(c2)),
where
i1
E(cp;) =n"" (ai,n‘(/ﬂl —05) + 40 Z ap i+ b3ioh + 2M3an,iibm‘>-
j=1

By a theorem in Heyde and Brown (1970), if there is a constant § with 0 < § < 1 such that
E |cni % < oo, (C.1)

then there exists a finite constant K depending only on 8, such that!'?

1+5) }1/(3+25)

sup | P(en < o¢, ) — O(2)] < K{O‘;?_% (ZE leni| 720 + E‘ (Z E(ciﬂﬁn,i,l)) —o?
v i=1 i=1

(C.2)
Thus if
L 226 (2425 _
HILH;O o, Z;E\cm| 0, (C.3)
n 146
Jim B <a;fZE(c3n\ﬁm_1)) - 1’ —0, (C.4)
=1

P(cn < 0., x) converges uniformly to ®(z) and a bound on the rate of convergence is given by (C.2). Now

we check that (C.1), (C.3) and (C.4) hold. Let ¢ =2+2§ for 0 <6 <1 and 1/p+1/q = 1. By the triangle

I2Note that the result in Heyde and Brown (1970) is on a fixed square integrable martingale difference sequence with

0 < 6 <1, but the result also applies to a triangular array of martingale differences with § > 1 (Haeusler, 1988).
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and Holder’s inequalities,

n n i—1
q
> Elewd? <n 2B Y (lanal Planal /€% = 03] + 3 ln.il"/2lanis | ewsllens| + [busllen)

i=1 i=1 j=1
n % i—1
= n=i/2 EZ(Z |a7l7ij| + 1) (|an ”||€m 00|q + Z 2q|an z]||€m|q|€nj|q + bl ] €nil? )
i=1 j=1 J=1

20K, + 1)U (Ka Bl = o3| + 20K (E lensl")? + Ky Bleni]?).
(C.5)

Thus (C.1) holds. As o2 = > " EcZ;, (C.5) implies that ¢? is bounded. Then Eq. (C.3) holds by

Assumption 3.

1+0
E|(o *QZE A Fni1) 1]

= Uc_nQ(Hé) E‘Z<E(Cii|yn,i71) - Eciz)
i=1

1446

n 2\ (14+9)/2
< o 20D (B Y (B(Ri | Fair) — B2

n i—1 n i—1j—1
= 41+5n—1—6gc—n2(1+6) (E (03 Z Z aiyij( i 00 + 200 Z Z Qnij ik €njEnk
=1 j=1 i=1 j=1k=1
n izt 2\ (1+8)/2
+ Z Z(Msami + Ugbni)an,ij€nj> )
i=1 j=1
n—1 n 9 n—15—1
L ) <a§(u4 —of) Z( Z aiij) + 408 Z ( Z U ijn, Zk)
G=1 i=jt1 j=1 k=1 i=j+1
n—1 n n (14+48)/2
+ 02 Z( Z (H3an,i + oébm)%m) + 2uz08 Z( Z a? zy) ( Z (3@, i + 0’8%0%,@))
Jj=1 i=j+1 j=1 i=j+1 i=j+1
n—1j5—1 n
< 4140 —1=0,-2(148) (naéKé(M —0p) + 405 K2 Z Z Z an,ijl|an,ix]
§=1 k=1i=j+1
n—1 n n
#0830 3 (unstnl +oulonsh) 3 (nstns] +lons)
J=li=j+1 i=j+1
146)/2
2tz 53 s+ o)
Jj=1li=j+1
< A0, BN (GG K (= o) + A0V KG + OB KR (4 K + oK) (K 4 1)
+ 203 0B K3 (|| Ko + 02,)) T2, (C.6)
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Thus Eq. (C.4) holds. Using (C.2), (C.5) and (C.6), we have
sup | P(e, < o, ) — ®(x)]
S KO,;LQ(1+5)/(3+25)n7§/(3+25) ((Ka + 1)1+25 (Ka E |6727/L' _ O_g 2426 + 22+25Ka(E |€ni|2+26)2 + Kb E |€ni|2+26)
+ 4 (03 K (s — 08) + 406K + 00 K (13K o + 00 Ky) (Ko + 1)

145)/2\ 1/(3+29)
o+ 2lpaaf o K3 s | Ko + 03 1)) %)

=Tp,
i.e., (6) holds. Similarly, (7) holds. Since
P(cn/oc, + dn <) — ®(z) < Plep/oc, + dn < 3,|dn| < 1) — ®(2) + P(|dy| > 70)
< [Plen/oc, ST+ T0) — ®(x 4+ 7)] + [®(x + 70) — B(2)] 4+ P(|dn| > ),
and similarly
P (cn/e, +dn < ) = B(x) > [Plen/o0, < 70) — B(x — 7)) ~ [B(x) ~ Bz — 7,)] ~ P(|dy| > 73)
we have

sup|P(cp/0c, +dn < x) — B(a)|

z€R

< max{supHP(cn/acn <z4+7) — P+ Tn)H + sup[®(z + 7,) — P(2)] + P(|dn| > ),
zER z€R

(C.7)
ilelgﬂP(Cn/Ucn <@ —7n) = Bz — 7)) + igg[q’(x) — Oz — )] + P(|dn| > Tn)}
<o+ 27) Y270, + P(ldn| > ).
Similarly,
8161%|P* (c;/azn +d; < x) — @(z)| <rr+ (277)*1/27% + P (|| > ). (C.8)
Thus,

sup|P(cn/acn +d, < :c) — P*(c;/ar:n +d; < :17)|
zeR

< 3161§|P(cn/acn +d, < x) — O(2)| + Zlé%P* (cp/os +diy <) —®(a)|
=rn +P(|dn| > 1) + 75 + PH(|d5| > 1) 4+ 2207V 27,
i.e., (8) holds. Since
P*((c;/os +dn)en < x) —P((cn/oc, + dn)en < )
= (P*(c;/os +din <z/e) — P(z/e))) — (Plcn/0c, +dn < x/en) — P(z/ey)) + (P(x/e)) — B(x/en)),
(9) holds by (C.7) and (C.8). O
Proof of Proposition 1. We use (9) in Theorem 1 to prove the result. From (10)—(13),

o3¢ Hyentr(M,H,) — €, H,M, H, e €l Hpen — (n — ky)od]
o2l Hyenn/H, M, H, (M, + M) '
29

dy, =




By Lemmas 1 and 3, tr(M, H,) = tr(M,) + O(1) = O(1), n='/2[¢/, H,M,,H¢,, — 0 tr(M,,H,)] = Op(1),
n~Y2[e! Hye, — (n—ky)od] = Op(1) and n=" tr[H, M, H, (M, + M!)] = n= tr(M2 4+ M M,,) +o(1) = O(1)

is bounded away from zero by Assumption I3, then d, = Op(n~'/2). Let 7, = n~1/%

As e, = €},
= O(n=9%/G+29)) and r} = Op(n=%/G+29) by Lemma 6 if we let 6 = 1/2, it remains to show that

P*(|d;§| > 71,) = op(1).
P*(|dy| > 1)
* * 1 */ * *2 * 1 */ * *2
<P <|dn| > T, —len Hper — (n— ko] < Hn> +P <ﬁ|€n Hpel — (n—ky)or®| > nn)
n

_ P*( e Hyy My, Hy €5 | | tr(M, H,)| )
T og2(2Eeo — wy) o (Ho (Mo, + M) H M,) \/tr (M, + M}, H, M,)

+ P (f|e;; Haes, = (n = k2)oi2] > i)
n
k2 E* |eX H, M, H,e*|?
2
ot (5202 = 1) 0 (Mo Ho (Mo + M), ) (7 = | (Mo o) | 66~ (o (Mo, + My H, M) )

<
(B et — 3024 S0 (Hy)2 + 2(n — ky)or?
* n2k2

200, if Ky, =n"3/8,

where E* €5 H, M, Hyet|? = (E* x4 — 3024 S0 | (H, M, H,,)2 + o5 tr?(H, M,,) + o tr(H, M, H,,(M,, +
M})). Thus the result follows. O
Proof of Proposition 2. From (15)—(17),

(0c, — ¢, € HyMyHye,, — 03 tr(M, H,)] N ol tr(M, H,)

Vno., 6, Vné.,
By Lemma 6, n'/2(62 — 02 ) = Op(1); by Lemma 3, n=Y2[¢} H, M, Hy€, — o} tr(M, H,)] = Op(1); by
Lemma 1, tr(M,H,) = tr(M,) + O(1) = O(1). Then d,, = Op(n=/?). Let 7, = kn~Y/* with x > 0. Tt
remains to show that P*(|d%| > 7,) = op(1) by (8) in Theorem 1. The d is

!
dp =1, —cp/oe, =

dy =10 — ot = o™ a)[H%UHU— 0 tr(MyHn)] 072 D({YH)
By Lemma 8, P*(n1/4|?7’c*j —032| > n) = op(1) for n > 0. By Chebyshev’s inequality, P*(n*/4n~te* H, M, H, e —
o2 tr(M,H,)| > k) < K 2n'/2E* |n716*/HnMane:iL — 02 tr(M, H,)|? = op(1). Then P*(|d}| > 7,) =
op(1). O
Proof of Proposition 3. We first show the following results: (i) n=Y2A! [R1,(p1n)Z1n — Rin E Z1,) =
Op(1), (it) n ™2 AL [Rin (prin) ZanVon—Rin E ZopFan 1] = Op(1), (iil) P*(|[n " AL [R1n(p},,) 21— Rin (p1n) B* Z7,]]] >
1) = op(1), and (iv) P*(|[ne~ A, [Run(P) Z8 5 — Rin(Prn) B Zinanlll > 1) = 0p(1), for 0 < a < 1/2
and n > 0. (i) holds since n=Y2A/ [Rin(p1n) Zin—Rin E Z1,] = nV2A! R1, [ Z1n—E Z1p) 40~ AL My, Z1ant/? (pro—
pin) = Op(1). Similar to (i), n_l/zA;l[Rln(,éln)Zgn — RinEZ5,) = Op(1). Then by Lemma 11, (i-
i) holds. (iii) holds since n® *A! [Rin(p%,) 25, — Rin(p1n) E* Z5,] = n 1Al Ry, (p1n)[ 25, — E* Z7,] +
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n LA Min Z3, (prn—pin), where P([[n 1AL Rip(p1n) (21, —E" Z1,]l| > 1) = op(1) and P*(||n* " A}, My, 25, —
E* Z:, ]Il > n) = op(1) by first applying Chebyshev’s inequality and then the mean value theorem. (iv) holds

by an argument similar to that for (iii) and Lemma 14. By (i) and (i), n='62 =n"'62 + Op(n~'/?) and
26, =n'?a, + Op(n~=Y?). Thus, Ji, = a, /G4, + Op(n~1/?). Let

G52 = 6130 B 23, R, (p10) Pa, (In = Py (5, Pa, Rin(p1n) E* Z3,900] 71 and

&Y = 612572 A B 25 Rl (1) Pa, (In — Pz (51, €ins where Vi (pra) = Pa, Rin(pin) B* Zi,,. Then by

(iii) and (iv), P*(n®|J5f,, — n1/264;';/53n| >n) =op(1) for 0 < a < 1/2 and n > 0. The result now follows
from Lemma 6 and Theorem 1. ]

Proof of Proposition 4. By the mean value theorem,
Gy (s 52n) 20 g (i H2m) = 0 = Gl (Vs 20 ) (9 (Y03 F2m) + G (s F2n) (8 — 0))],
where zzn is between ¢ and '(/AJn Then
Vit — o) = =[G (n; 520) 2 G (s F2)] ™ G (P 520 )2 Vg (03 -
Let

en = —€ey [E Gy (Y03 72)2, " E G (10;72)] " E G (105 72)2, ' Vign (vo; 72),
oo = ey [EG), (1ho;72), " E G (o3 72)] ey

As in the proof of Lemma 21, Q,, — Q,, = Op(n~'/?) and Gn(’LZJn;’.).’Qn) = EG,(%0;72) + Op(n~1/?), then
Jon — n/0e, = Op(n~'/2). In Eq. (8), let 7, = mn~'/* for some 7, > 0, then it remains to show that

P(n'/4|J5, — ¢ /ok | > m2) = op(1) for 1o > 0 by Theorem 1, where

C:L = —62/, [E* G;;/(’l/;n, 'YQn)QT_Ll E* G:L('(/A}ny ;7./2n)]_1 E* G;kz(/‘&nv VQH)Qr_Ll\/ﬁg:L(QZJny ;7./2n)7
022 = € [E* G2 (3 H2n ) 0V EF Gl (s H2n)] ey

As Q, is quadratic in the parameters, it can be verified that P*(n'/4(|Q* — Q,|| > 1) = op(1) for n > 0.
Since G, (1);72) is linear in ¢ and quadratic in va, P*(n'/4[|G% (4VF;45,) — E* G (Un; F2n)|| > 1) = 0p(1)
for 17 > 0, by showing that P*(n'/4(|Gy, ({5 55,) — G (i F2n)l| > ) = 0p(1) and P*(n/4||G; (s F2n) —
E* Gy, (hni H2n)l| > n) = op(1). Thus, P(n'/4]J5, — ¢ /0% | > ns) = op(1), m
Proof of Theorem 2. The characteristic function of ¢, /o, is

+o0

. n 1 it
on(t) = Eexplite,/oc,) = / (2m02) /2 exp(f@e;en + —¢y) dey

o 0 Cn

:/+°°(27T02)n/2exp(_1(e — (1)) Bu(t)(en — 7 (t))—|—17‘ (1) B (£)rn (1) — itod
—oo 0 R " n n n 9 ™ n n \/ﬁacn

tr(Ay))

tr(Ay)) de,

2 ito?
B (1) by — —=

no?, Vnoe,
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1,
= n(t) — =17).
exp(gn(t) — 51%)
where B, (t) = (If—’é—j%i: ,ra(t) = \/Tfttrcn B, (t)"1b, and g, (t) = —ZInod—31In|B,(t)|— 27“,2 b, By (t) " b, —
., 2
\/Z%ZO' tr(A,) + $t>. The derivatives of g, (t) are
g (1) = (A Ba() ) = — b B () b — — b B ()" A Ba(t) b — —0 t2(A,) + ¢
n no., nn no_gn ntn n 3/2 3 n fa'cn )
2 _\2 _ 4 _ _
92 (1) = oz w[(AnBa(® )] - mQ o2 InBn() bn = g7 b Bu()” An B (6) b
4% —1 -1
J’_Wb:an(t) (A, Bn(t) ) by + 1,
G(1) = —— 5 G [(AuBa(t)™)] = — 4 Bo(t) " A Ba(t) b, . b’ LA, B, (1))
9n ( - n3/203 I'[( nPn ] TL3/2O'3 n n() () ( nDn ) n
24it? 3
e Bu(t) " (AuBa () ) b,
48 N4 48 _ ) 192it _ 113
gﬁkt):mtr[mnm(t) o) HW%B,L@) YA, B, (t)™") b, + s — b, B, (t) " (A By (1)) by,
192t2 _ _\4
Wb;Bn(t) 1(ATLB7L(t) 1) b’ru
&
k Ck1? 1\ k Ckzl _ _1\k—2
9P =~ w[(AnBa(® )]+ e, Ba(t) 7 (A Ba() )b
-1 k4242
Cp3t" Tt _1 k-1 Cral" 7t 1 _1\k
+W%B ()" (AnBn(t)™1) bn+W%B ()" (AnBn(t) 1) b,
9n(0) = g5 (0) = g2 (0) = 0,
8io8 610,
(3) — _ 0 3y 0 g/
9n (0) - ’/7,3/20'3 r( n) 77«3/20'2 bnAnbna
2k k 2(k—1) -k
(k) Ck10g v ky , Ck200 VL, g2
9,7 (0) = 72T tr(AY) + e b, A" by, for k > 3, (C.9)
where cg1,...,cpq are constants. Let ty1,...,tn, be A,’s eigenvalues, which are real as A, is symmetric,
and 1, = max{|tn1],. ., [tnn|}. As 02 =07t [208 tr(AZ) + 0Fb)bal, [V, Anbal < tabybn, | — Tmeti| > L,
0 Cn 0
[inil/1 72 = Tet| < tnog and |unstl/ |3 — FH2| = (Gras + o) /7 < Vo, /2,
48L o8 482 58 96L o8 48L20'6 1922 g8
4 0 n~0 0 n“0 n~0
|97(L)(t)| < el 2 1Ln] + n2o] bl by, —|— b’b ey by,b, < W7
n = n n
k-2, 2k ™ k-2, 2k—2 k—2 2k—2 k—2 2k—2
(k) |cra|en 08 |cka|tn 05 / |cks|tn 00 / |ckalt, "o /
lgn” (0)] < nk/ 20k g + nk/ 2ok bnbn + onk/2 gk bnbn + Ank/2 gk br,br
Cn =1 Oc, Oc, Oc,
crs(Lnod)k=2

We first establish a one-term Edgeworth expansion for P(c, /0., < x) separately and then consider high

order expansions. Let v,(t) = (1 — ik, t*) exp(—3t?) be the Fourier transform of the function ®™)(z) —

32



rn®@) (), where &, = _dog tr(A3) + %b’ A,by,. By a smoothing inequality in Feller (1970, p. 538),

3n3/2a'g’n n
for all T > 0,

1 [T on(t) — vt 24 D (z) — £, W
sup|P Cn/o-c” < x) (q;(@ _ an)(?,)(mm < 7/ |<P ( ) . Y ( )|dt+ Supw| (33) K ($)|
-T

z€R - T T ’
(C.11)
where
[on(t) ~ 0 (1) = exp(~1/2)] exp(ga(t)) — (1 it
= exp(—t?/2)| exp(gn(t)) — exp(—iknt?) + exp(—iknt®) — (1 — ir,t?)]
< exp(—t2/2)[| exp(gn(t)) — exp(—iknt®)| + | exp(—irnt®) — (1 — irnt®)]].
As

408 370 thi + 3006, Anbn | <

|| | |4‘78 > i tni +304b,bn | < n0p
Kn| = L
" 3n3/203 - 3n3/203

2. °
n'/20,,

|exp(—iknt?) — (1 — iknt?)| < |irnt®?/2 = k215/2 < 1204t5/(2n0? ) (Feller 1970, p. 512). By a four-term

0'

Taylor expansion, |g,(t) + ik, t3] < &i: $t%, when [t] < ma"" Then | exp(gn,(t)) — exp(—ik,t3)| =

| exp(gn(t) + irint®) — 1] < [gn(t) + irnt®| exp(|gn(t) + irnt’]) < Sil%exp( t?) and
n(t) —n(t L2O'
| (®) : ®) < o 2 (16|t|3exp( t2/4) + |t|° exp(—t?/2)), (C.12)
when [t| < ‘/827"03".
Ln 0 ]
When [t]| > \/27”02” , noting that B, (t) has eigenvalues % - %, i=1,...,n,
0 Ten
a2t b, d ogis 1
(1)) < :
e ()|_exp( 2n 02 +8L2 at2 1;[ n02 )

Cn

SeXp( 220 2_*Zm H )

b, b 9 x?
< exp(—72L%g§ — 32L% 2 Lnj 512L4 anj (In(l4+=z)>z— 5 for z > 0)

bub &y
< xp(~7ai207 ~ 5127 2109

2
no;
w202 03). (C.13)

< exp(—

n (C.11), let T'=no?2 . By (C.12), the contribution of the integral in (C.11) when [¢| < ma“" is O(n71).

The contribution when g‘;%" < |t| < T tends to zero more rapidly than any power of n by lon(t) —

YO/t < ([n(®)] + [ (®)])/]t] and (C.13). Therefore, sup, e |P(cn/oc, < @) — (®(z) — £, 23 (2))] =
O(n™1). Eq. (27) holds by a similar argument and Lemma 6.
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To establish high order expansions, use the Taylor approximation for g,(t) up to and including the
term of degree r. Denote this approximation by t37,,(t) = > _5 % 9u Ok where Tnr(t) is & polynomial
of degree r — 3. Let p,(t) = ;;? Hl(=it)37(—it)]* be a polynomlal with coefficients pp1, ..., Pum.
Note that pn1,...,pnm are real by (C.9). Let Hy(t),...,H,(t) be hermite polynomials, then w,(t) =
W (#)(1 + Y0, purHi(t)) has the Fourier transform exp(—t2/2)(1 + p,(it)). For all T > 0,

T T _ 42 .
sup|P(cy /00, < ) _/ wa(t) dt| < 1/ |<Pn(t) exp(—t*/2)(1 + pn(it)) |dt + 24sup, \Wn($)|.
zER — 00 ™ J_T t 7T

Using the inequality that |e*—1—"7_3 8% /k!| = |(e®—eP)+(ef —1—=327_2 B¥ /k!)| < exp(max{|al, |8]})(ja—
Bl + 7“_11)! |8]"1), we have

[ (t) — exp(=2/2)(1 + pu(it))]
= |exp(—1%/2) (exp(gn(t)) — 1 — pa(it))|

< exp(—t/2 + max{|gn(t)], [ 7ur (£)[}) (|90 () = 37 ()] + |37 (8)] ).

1

2\r—1
By (C.10), |gn(t) — t370r ()] < ﬁmﬂ < 12/8 and [t37,,,(t)] < t2/8 when t < cn'/? for some

constant ¢. Then when t < en'/?, |g,(t)| < t2/4 and

‘ r— Cr1,5 (o)™ T,
(1) — exp(—£2/2)(1 + pa(i1))] <m0/ exp(—2 /(B nO0)yper L pgagiveg ),

ot r 4 1)) (r—1)!
Now let T' = n("=1/2 then sup, g | P(cn/0c, < @)= [*__ wn(t)dt| = O(n=""1/2). Note that [*__ w,(t)dt =
®(z) — pr1 @M (2) — @M (2) 7", purHi—1(z), which is a polynomial in n~!/2 with bounded coefficients for
fixed z, by (C.10). Rearranging it according to ascending powers of n~'/2 and dropping the terms involving
powers n~*/2 with k > r — 1 yields the expression in the proposition. O

Proof of Proposition 5. Let A, = [H,M,H,, —n~'aH, tr'/?(M2 + M M,)], 02 = n"'E[e, Ane, —

a

odtr(A,)]2 = 2n"tod tr(A2), z, = —odn~ Y20 L tr(A,) = 2712 tr(A,) tr~Y2(A2) and k,, = dofn 3203 tr(A3)/3 =

4[2tr(A2)]73/2tr(A3)/3. The &, does not involve any population parameter. Then

P(L, <) =P(e,Ane, <0)
=P(n 20, e, Anen — 03 tr(A,)] < 22)
= ®(2n) + fin(1 — 22)0W(2,) + O(n ),

by Theorem 2. Similarly,

P*(I* < ) = B(2,) + k(1 — 22)0W (2,,) + Op(n~1).

n

Then P*(I <) — P(I,, <) = Op(n~1). O

Proof of Theorem 3. To prove the expansions in (29) and (30), we check that the conditions of Theorem 1

in Mykland (1993) are satisfied. The same decomposition for ¢, and o-fields as in the proof of Theorem 1
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are used. By (C.5), >1" E(ch; /o2 ) = O(n™'). By (C.6), E[n'/2[(022 >0 | E(c2)|Fnio1)) — 1] |2 =0(1).
Then the integrability conditions for the fourth-order and square variations are satisfied. As ¢, /0., has

constant variance 1, it remains to check the central limit condition that

(cnfoe, n**( 220 ),n' (0.2 E( | Fnia) — 1)) (C.14)
=1

is asymptotically trivariate normal. We may verify that (c,/o.,,n*/?02 3" (2, — E(c2;|Fni-1)),

nt/2(o72 3" | E(2;|Fn,i—1) — 1)) is asymptotically trivariate normal. The ¢, /o, is asymptotically nor-
mal by Lemma 4. Now we show that both n'/2(c_2 3" | E(c2,|Fni—1) — 1)) and n'/20 23" (2, —

Cn

E(cZ;|-F,i-1)) are asymptotically normal.

n—15—1
1 2 72 -1 2 2
/ ZE m|Jﬂl 1)*1)*40 n~Y 20’0 E E €nj€nk E an”anszrUO E nj a'o E an”
Jj=1k=1 i=j+1 i=j+1
2b
+‘ €ny n,ij (H3am i + 05bni) |,

i=j+1
which is a LQ form. The involved matrix in the LQ form is bounded in both row and column sum norm-
. -1
s, since Y070 [ D0 Gnijanik] 1200 00 an il < S0y lanik] 2270 lan,il + (i |an,i])? < oo and
S |y Gnignik] + | g1 62 ] € 0y [an.ii) Yhey ikl + (X lan.ik])? < 0o. In addition,
forg=14+d>1and 1/p+1/qg=1,

1 n—1 n .
n—1 Z‘ Z i (130055 + Ugbm)

q
= n—1 Z‘ Z |Cln ”| /p|a’" ZJ|1/q(|/’[’3a/n 7,z| + 00|bn ”|)
= Jj=1i=j+1
1 n—1 n ) n

“n—1 2(2 Z |a’”vij|)q 3 Z |an,ij|(|ﬂ3an,ii|q +00q|bn u| )

j=1 i=j+1 i—j+1

n

= il T+ 05 bni] 7) < oo,

Jj=1i=j+1

where ¢ is a constant. Thus n'/2(o;2 3" | E(c2;|#,,—1) — 1) is asymptotically normal. Noting that

1/2 —2

nt 2o 23" (2, —E(c2;|Fn,i—1)) is a sum of martingale differences, it can be shown to be asymptotically

normal by a central limit theorem for martingales. Let

Zn 1/2(07” ( nzlgﬂl 1))

_1/2 (a’n n( €ni /1“4) + 2a, ”b7”( :U’S) (b2 - 20()an zz)(egn' - 0(2)) - 20’3(],”’2'7;()”1'6“2'

i-1 i-1
2
+ 4lan, ii(€h; — 1) + bi(en, — o) — Ugan,iieni] Z n,ij€nj + Aer; — U%)(Z an,ijenj) )
j=1 j=1
As (Z;;ll (nij€ni)? = Z; 11 a? e+ 22 i 1 Qn,ijOn,ik€njEnk, for some ¢ > 2 and 1/p+1/¢ =1,

Jznil? < 0792 lan il + Ranil? +1+ 2030

|P
ap, ,4%

P 8 (|anul” + 1+ 05 |anial”) Y an,s]
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+ 4”(2 i [P+ + 27

i—1j—
j=1k=

+ (1bns*? + Dlen; — o517 + bienil? + (|,

€ni UO|Q(Z |an, w|‘6nj|2q +

—2¢ \\1
Then o275 ",

i—1 j—
j=1k=

E[E(|20i|?Fn,i-1)] =

Let e1y,,; = a? —M4)+2an,iibn,ii(€ii—ﬂs

n,it (67”

2 2 2 _ 2 2
1) + bnii(€5; — 0G) — 05an ii€nil, €sni = 4(€q; — 05
2
€2n,i€4n,i + €3n,i€3, ;) and

n

Y (Bl Fuic) - E(z))

i=1 %

-

((642171,1'

S|

1

1
anssllanal )] [iet
1

o(1). Next we show that > .
)+ (b2, —202a2 ”)(62 —03)—20%a1,iibni€ni, €2n,i = 4an ii(e

i—1
) and €an,i = Zj:l Qn,ij€ng-

—E ein,i) E(egn,i + 26171,1'6371’1') + (ein,i

= pal? bl = ol

i—1

— 3|+ bl = 0517+ l€nsl®] D lanisllens|?

j=1

1
i e el )
1

= (E(zizl«% i-1) = E(Zgw)) )-

op(1
ni

Then z,; = n71/2(€1n,i +

4 2
-E e4n,i> E e3n,i

+ 2e4n,i E(erniezn,i) +2(edn s — E€in ) Elezn,iesn,i)).
(C.15)
For r =1,2,3, n=t 31" | b e4n.; = op(1), since
1 n 9 2 n—1 n
E(*szz'eéln,i) - Z An,ij nz
n i=1 j=1 z—j+1
2 n—1 n n
S Z |an zy‘bn1 Z |an,ij‘) (016)
7j=1 z_j+1 1=5+1
<= Zb Z |anijl) = O(n™1),
n =
where h is a constant. For r =1,2, £ 3" b7 (e, ;, — Eej, ;) = op(1), since
n i—1 9 n i—1j5—1
. Z bnz e4n i Ee?ln z = Z Z bnz n zj - UO + - n Z bZZan ijn,ik€njCnk;
=1 j5=1 i=1 j=1 k=1
where
1 n i—1 ) E|€ O'0|2 n—1 n B
bnia’n zg _0(2))) 72 Z bnz TL’L] O(n 1)
=1 j=1 j=1 i=j5+1
and
1 n i—1j—1 2 0_471 151 n
E(* Z Z b;ian,ijan,ikenjfnk: = (2) Z Z bnlan ijGn, zkr) = O(n_l)a
n =1 j=1 k=1 n j=1k=1 i=j+1
as in (C.16). Similarly, n=! 7" byi(ed, ; — Eel, ;) = op(1) and n=' 37 (e4,; — Eel, ;) = op(1), since

they can be decomposed as

n n

1
bni(ein,i - Eein,i) = E Z
=1

i—1

3
E bnian,ij (an
Jj=1

3 n
3)+ﬁ;

7—

1j5-1
2 2
E E bniy, ;i0n,ik€pj€nk
k=1

=1 j=1k=
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i—1j—
Jj=1

=1k=

n

3
+5;

n

1 6 i—1j—1k—1
bear a2 €2 bt b i e
niln,ijQn iknjCnk + n niGn,ijn,ikAn,il€njEnk€nl,
1 1=1 k=11=1

=1 j=1k=

and

1
E Z(ein,i —E ein,i)
=1

1 n i—1 1 n i—1j5—1
_ § § 4 4 § : 2 2 2 4
= ﬁ an,ij (enj + n Ay, l]a’” Zken] €nk + 40’" ,iJ n zke’”]enk + Gan Ky an lk( nJ Enk — aO))
i=1 j=1 i=1 j=1 k=1

nzl]lkl

12 2 2 2 2 2
a, K Qn,ikQn il € i EnkEnl + ap 2]an ikQn, il€nj€nkEnl + an zjan ik Qo 1l€n] 5nk6nl)

n J J

i=1 j=1k=1I= 1

n i—1j-1k-11-1

24
+ ; E § E E § Gn,ij On,ik An,il Gim,n€nj€Enk€nl€m, n,

i=1 j=1k=1I=1 m=1

where each term on the r.h.s. of above equations converges to zero in probability since its variance has
the order O(n™') as in (C.16). Note that in (C.15), E(e3, ; + 2€1n,i€3n.i), E(e1n,i€2n.:) and E(ezn iesn,i)
are polynomials of b,;’s with bounded constants. Then Z?_l (E(22;|Zn,i-1) — E(22;)) = op(1). Under
the assumption that the limit of Y1 | E(22;) exists, n'/26,2 3" | (2, — E(c2;|Fni—1)) is asymptotically
normal by Corollary 3.1 in Hall and Heyde (1980). Then (C.14) is asymptotically trivariate normal by the

Cramér-Wold device. Since o, ?E(c}) = 1, we can take

Po(@) = tp(w) = @ lim o7 n/? E(cn S (s~ E(| T 1))) (C.17)
i=1
and
Pp(x) = l‘nll_{I;Oo' 1,1/2 E( o2 ZE(Cii|ﬁn,i,1) — 1)), (C.18)
where
o lnt/? E(Cn Z(Cfn - E(Cii‘ymi—l)))
i=1
= 073711/2 Z E(E(cii\ﬁm_l))
' B » (C.19)
- Z |:a n,is E nz GO) + 8“3 Z an K¥ + :u3bm + 1200[( Ha — Ué)an,ii + ,u3bni] Z ai,ij
i=1 j=1 j=1
+ 3(pa — Uo)an ub + 3an iibni E[GM( 0(2))2]}
and
o2 E (en (072 Y B(eki| Fai1) = 1))

i=1
n

= oo B (en Y (B Fniar) — B(2) )

i=1
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n n i—1
=0 °n'E [(Z[an,ii(efw — 02) 4 bpi€ni] + 2 Z Z amjemenj)
1

i= i=1 j=1
n 1—1j5—1 n i—1 n i—1
<80(2) Z Z Z i On,ik€nj€nk + 405 Z Z afmj (612” —og) +4 Z(Msan,u‘ + 05 bni) Z an,ijeng‘)]
i=1 j=1 k=1 i=1 j=1 i=1 j=1
n 1—1
=a. 7! {4 > [Ugai,ij [an,j5(11a = 00) + p3bng] + Gnij (430, + 00 bni) (30,55 + Ugbnj)}
i=1j—=1
n i—17-—1
+ 160’8 Z Z Z anijan,ikan’jk} . (C.QO)
i=1 j=1 k=1

Therefore, (29) holds by Theorem 1 in Mykland (1993). Eq. (30) follows by (2.20) in Mykland (1993).
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