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Abstract 

Social Security Disability Insurance (SSDI) beneficiaries receive a cash benefit and become 

eligible for health insurance from Medicare two years after their enrollment. Disabled workers 

who leave the labor force typically lose health insurance from their employers, and they face 

significant medical expenditure risk as a result of their disability. Therefore, access to Medicare 

makes SSDI an especially attractive alternative to remaining employed for workers with 

disabilities. My research is the first to analyze the importance of medical expenditure risk and 

Medicare in analysis of SSDI, and it addresses the following questions: (1) How does access to 

Medicare via SSDI enrollment affect the incentive to leave employment and to apply for SSDI? 

(2) What are the welfare effects of access to Medicare via SSDI? (3) How will SSDI policy 

reforms that change access to Medicare affect labor supply, welfare, and the financial stability of 

SSDI? To answer these questions, I specify a life-cycle model of labor supply, consumption, and 

SSDI application decisions. The model incorporates a stochastic process for out-of-pocket 

medical expenditure as well as the institutional features of Medicare. I estimate the model using 

data from the Panel Study of Income Dynamics, using the method of Indirect Inference. 

Counterfactual simulations indicate that availability of Medicare coverage via SSDI enrollment 

reduces the employment rate of men at ages 23 to 62 by 0.7 percentage points (from 87.7% to 

87.0%). Medicare coverage via SSDI improves social welfare even after accounting for the 

higher taxes required to finance the additional enrollees who are induced to apply. Finally, I find 

that increasing the Medicare waiting period for SSDI enrollees is a relatively efficient way to 

reduce the SSDI budget deficit without sacrificing much of social welfare, compared to other 

alternatives such as making SSDI screening criteria more stringent.  
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1. Introduction  

 Social Security Disability Insurance (SSDI) is a major source of income for disabled 

workers in the U.S. as well as a major component of Federal government expenditure. Over the 

last four decades, the number of SSDI recipients has increased from 3 million to 10.6 million, 

and spending for SSDI rose from $18 billion (in 2010 dollars) in 1970 to $129 billion in 2011. 

Almost 5% of the working age population is currently enrolled in SSDI, and SSDI cash 

payments accounted for 7.3% of non-defense spending of the U.S. federal government in 2010 

(Autor and Duggan, 2011). The number of SSDI beneficiaries is rising so rapidly that the SSDI 

program will soon be unable to pay full benefits without an increase in the payroll tax that 

finances the program (Autor and Duggan, 2006).
1
   

 An important issue that has not been addressed in economic analyses of SSDI is the role 

of the Medicare coverage provided through SSDI. Since 1973, SSDI recipients have been 

eligible for health insurance from Medicare two years after enrollment.
2
 The two-year Medicare 

waiting period is intended to reduce fiscal burden by providing health insurance benefits only to 

those who are not likely to recover from their disability within a short period of time. Access to 

health insurance from Medicare may be of considerable value to individuals who expect to be 

out of the labor force and therefore lack access to employer-provided health insurance, but who 

face significant medical expenditure risk. Medicaid, an alternative source of public health 

insurance, is generally available only to disabled workers who are quite poor, so it is not a good 

substitute for Medicare for the typical disabled worker. Other sources of health insurance such as 

COBRA
3
 and state risk pools are often quite expensive. In 2009, average Medicare spending per 

SSDI recipient was $10,500, more than 80% of the average SSDI cash benefit. (Dahl and 

                                                 

1
 The 2012 Social Security Trustees’ report estimates that the SSDI trust fund will be depleted by 2016. Incoming 

revenue from the SSDI portion of the payroll tax (currently 0.9% of covered earnings for employees) was sufficient 

to pay only 64% of the SSDI cash payments in 2011.  
2
 Medicare coverage includes hospital insurance that helps pay bills for inpatient hospital stays, insurance for office 

visits, and prescription drug plans.  
3
 The Consolidated Omnibus Budget Reconciliation Act (COBRA) of 1985 allows individuals separated from their 

employers to continue coverage under the employer-provided health insurance plan. Qualified individuals pay the 

entire premium. The COBRA coverage lasts 18 months in general, but can be extended up to an additional 11 

months for disabled workers. 
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Myerson, 2010).
4
 In 2010, SSDI recipients accounted for 18% of all Medicare beneficiaries and 

19% of Medicare spending (CMS, 2011). 

In this paper, I address the following questions: (1) How does access to Medicare via 

SSDI enrollment affect the incentive to leave employment and apply for SSDI? (2) What are the 

welfare effects of access to Medicare via SSDI? (3) How would SSDI policy reforms that change 

access to Medicare affect labor supply, welfare, and the financial stability of SSDI? The answers 

to these questions have important implications for understanding the role of Medicare in analysis 

of SSDI and how to optimally reform the SSDI program.  

To answer these questions, I develop and estimate a life-cycle model of labor supply, 

consumption, and SSDI application decisions. In the model, individuals face a stochastic process 

for out of pocket medical expenditure, with a mean and variance that depend on type of health 

insurance coverage, severity of disability, and age. The model incorporates key institutional 

features of Medicare, such as the two-year waiting period following enrollment in SSDI. The 

model also incorporates other standard features of life cycle labor supply models, including 

persistent wage shocks. I estimate the model using data on a sample of men from the Panel Study 

of Income Dynamics (PSID). The key parameters of the model are structurally estimated via the 

method of Indirect Inference by minimizing the distance between the life-cycle data profiles 

observed in the PSID (employment, SSDI enrollment, and consumption expenditure) and the 

simulated life-cycle profiles generated from my model. The estimated model provides a very 

good fit to most key features of the data, such as the low labor force participation rate and the 

high SSDI enrollment among the severely disabled. The parameter estimates indicate that 

disability is associated with high disutility of work, low marginal utility of consumption, low 

wages, and high and variable medical expenditure. I also estimate that the probability that an 

application for SSDI benefits is accepted is increasing in the severity of disability, but is 

significantly lower than 1 even for the severely disabled.  

The estimated model is used to perform counterfactual simulations to analyze the effects 

of access to Medicare provided through SSDI enrollment. The main findings of this paper are as 

                                                 

4
 Average Medicare spending per capita for the elderly beneficiaries (ages 65 and older) was $9849 in 2009.  
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follows. First, I find that the provision of Medicare benefits through SSDI has a substantial 

impact on SSDI application and labor supply decisions. The simulation results indicate that such 

provision reduces the employment rate of men at ages 23 to 62 by about 0.7 percentage points 

(from 87.7% to 87.0%) and increases the average SSDI application rate by about 0.5 percentage 

points per six-month period (from 3.6% to 4.1%, a 13% increase) compared to a counterfactual 

world in which Medicare is not available to SSDI beneficiaries. I also find that the employment 

and SSDI application responses are more elastic for the moderately disabled than for the severely 

disabled because moderately disabled workers are closest to the margin of indifference between 

SSDI application and working. Second, my results indicate that the provision of Medicare 

coverage to SSDI beneficiaries improves ex ante welfare of the population as a whole even after 

accounting for the higher taxes required to finance the additional enrollees induced to apply. I 

find that individuals would be willing to pay up to 0.5% of lifetime consumption to retain 

Medicare coverage through SSDI. This is because individuals who face disability risk, but do not 

know whether or when they will become disabled, value the availability of health insurance 

(Medicare coverage) in addition to the income insurance (cash payments) feature of SSDI. 

Medicare coverage accounts for almost half of the total welfare gain from the SSDI program. An 

important implication of these findings is that policy options to reduce the financial imbalance of 

the SSDI program should include changes in Medicare availability as well as changes in SSDI 

benefits and eligibility. For example, if the goal of a policy maker is to eliminate the SSDI 

budget deficit even at the cost of reduced ex ante social welfare, my simulation results indicate 

that reducing the value of the insurance coverage provided by Medicare (by increasing the 

Medicare waiting period) is a less costly approach compared to other options such as increasing 

the stringency of SSDI screening. My estimates indicate that the SSDI program rejects about 

20% of applications from severely disabled workers, and a further increase in the rejection rate 

would impose a significant reduction in the value of SSDI, compared to a delay in Medicare 

eligibility.  

My analysis is most closely related to that of Low and Pistaferri (2011). In their model, 

the key trade-off faced by workers is the loss of earnings and risk of rejection when applying for 

SSDI versus the prospect of a cash benefit if the application is accepted. My model incorporates 

this feature and adds another key tradeoff faced by potential SSDI applicants: because an SSDI 
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applicant must leave employment to apply, employer-provided health insurance is sacrificed 

along with earnings. The benefit of applying for SSDI includes the possibility of Medicare 

coverage as well as the prospect of a cash benefit. This is a favorable trade for individuals who 

are severely disabled, since the disutility of work is very high for them. But, the prospect of 

Medicare coverage may attract low-productivity non-disabled or moderately disabled applicants 

as well, just as the prospect of the cash benefit is attractive to such workers.  

My work is also related to reduced-form studies on the work disincentive effects of SSDI. 

This literature estimates the treatment effect of SSDI on employment (Parsons, 1980; Bound, 

1989; Autor and Duggan, 2003; Chen and van der Klaauw, 2008; von Watcher et al. 2011; 

Maestas et al.,2012; French and Song, 2012). Because of their reduced-form nature, these studies 

cannot separately identify the employment effects of the cash benefit and Medicare benefit 

features of SSDI. Moreover, the reduced-form approach of these studies limits their ability to 

address the effects of policy reforms, which is my focus. Finally, my research is related to the 

effect of health insurance on labor supply. Among much research in this literature, my work is 

closely related to that of Blau and Gilleskie (2006, 2008) and French and Jones (2011). These 

studies model the labor supply and Social Security retirement benefit claiming decisions of older 

workers and study the effect of health insurance (e.g., employer-provided health insurance, 

retiree health insurance, changing Medicare eligibility age) on the retirement decision. However, 

they do not focus on health insurance benefits in the context of SSDI. 

The remainder of the paper is structured as follows. Section 2 presents the life-cycle 

model. The data used to estimate the model are described in Section 3. Section 4 discusses the 

identification strategy and the estimation results. In section 5, I discuss the labor supply and 

welfare effects of early access to Medicare through SSDI enrollment. In Section 6, I analyze a 

version of the model without health insurance and medical expenditure and perform a sensitivity 

analysis. Section 7 concludes.   

2. Model 

A. Individual Problem 



 

5 

 

I specify a model where individuals choose how much to consume, whether to participate 

in the labor force, and whether to apply for SSDI each period so as to maximize the expected 

present discounted value (EPDV) of remaining lifetime utility. These decisions require 

evaluating the benefits and costs of leaving employment to apply for SSDI. The focus of my 

research is to investigate the effects of access to Medicare through SSDI, so the model features 

health insurance available through SSDI enrollment or employment, as well as the distribution of 

out-of-pocket medical expenditure that individuals face. The model also incorporates other 

public programs, because they can reduce the opportunity cost of applying for SSDI by 

providing temporary income or health insurance coverage during the application period. The 

model is in discrete time and the length of a period is six months.
5
   

Individual i’s decision problem at time t takes the following form:  

(1) 
1

1
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1
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where 
itc is consumption expenditure net of out-of-pocket medical expenditure, 

itP is a binary 

variable equal to one if employed, App

itDI is a binary indicator equal to one if applying for SSDI, 

L is a categorical indicator of disability status, β is the time discount rate, and ( , , )iss t L is the 

probability of being alive in period s conditional on  disability status in period s-1. 
itL =0 if the 

agent does not have any disability, 
itL =1 if he has a moderate disability, and 

itL =2 if he has a 

severe disability.
6
  

Individuals enter the labor force at age 23. If a worker was employed in t-1, employment 

is a choice variable in period t as long as his job is not destroyed at the beginning of period t. The 

job is destroyed (i.e., he is laid off) with probability 
1  each period. If a person was not employed 

in period t-1 or is laid off at the beginning of period t, he receives a job offer with probability
2 . 

                                                 

5
 Low and Pistaferri (2011) use a quarter while Benitez-Silva et al. (2011) and Bound et al. (2010) use a year as the 

unit of time. I choose a 6-month period as the time unit because there is a 5-month waiting period for the SSDI 

application at the onset of disability and I can reduce computational burden compared to a quarterly time unit. My 

notation is mainly the same as in Low and Pistaferri (2011) to facilitate comparison.   
6
 Disability status follows an exogenous first-order Markov process that depends only on a quadratic in age. 
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If he does not receive a job offer, employment is not an option in period t. An individual can 

apply for SSDI in period t only if he was not employed in t-1, chooses not to work in period t, 

and meets a work history requirement.
7
 The non-employment requirement when applying for 

SSDI implies that the labor market frictions influence SSDI application behavior because a lack 

of employment opportunities would provide an incentive to apply for SSDI (Black, Daniel, and 

Sanders, 2002). In the model, working is not an option if the individual is enrolled in SSDI.
8
 

Individuals must retire by age T
R
 , which I assume to be age 65. I impose this assumption 

because Medicare is available to everyone at age 65, and workers are eligible to apply for SSDI 

until the full retirement age (FRA).
9
  The date of death is uncertain, and the last age to which an 

individual can survive is T. T is assumed to be age 90. It is important to model uncertainty in the 

date of death because mortality risk is quite high for the severely disabled. There is no bequest 

motive. Shocks are realized at the beginning of each period before the period’s choices are made. 

The period  budget constraint before retirement is:
10

 

(2) 1 1
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where 
itA is assets, R is the gross interest rate, 

itw is the hourly wage, h is hours of work if 

employed (set at 1000 hours per six month period), DI

itE is an indicator variable for receiving a 

cash benefit from SSDI, and 
itDI is the monetary value of the SSDI cash benefit, determined as a 

function of past earnings history. There is a liquidity constraint, 0 itA t  , which prevents 

workers from borrowing against uncertain future income. The model incorporates two income-

tested welfare programs: (i) Supplemental Nutritional Assistance Program (SNAP, formerly 

known as Food Stamps) and (ii) Supplemental Security Income (SSI), a welfare program for the 

elderly and the disabled. 
itSSI is the SSI benefit, and 

itSN is the SNAP benefit (treated as 

                                                 

7
 In general, eligibility requires having worked at least 5 of the last 10 years before the onset of disability. 

8
 In reality, SSDI beneficiaries can earn up to $1010 per month, but most SSDI beneficiaries do not work. 

9
 The FRA was 65 for people born before 1938. The FRA gradually increases for those born in 1938 and after, until 

it reaches 67 for people born after 1959.  
10

 The specification of the budget constraint follows Low and Pistaferri (2011) with the addition of out-of-pocket 

medical expenditure, the minimum consumption floor, and spousal income.  
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equivalent to cash). 
itUI is unemployment insurance (UI) benefit payments.

11
 As stated above, it 

is important to incorporate UI and SNAP because they can bridge the income gap between the 

onset of disability and the receipt of SSDI benefits (Rutledge, 2011; Low and Pistaferri, 2011). 

In effect, the UI and SNAP benefits reduce the cost of being out of labor force while applying for 

SSDI. 
itM

 
is out-of-pocket medical care expenditure. It is a random variable drawn from a 

distribution that is conditional on the type of health insurance, age, and disability status. The 

choice of health insurance type and the out-of-pocket medical expenditure process are described 

in detail below.  

 It is possible that cash on hand (after-tax income plus assets net of medical expenditure) 

can become negative due to a large medical expenditure shock. In this case, the individual is 

eligible for Medicaid (public health insurance for the poor). Rather than modeling Medicaid 

directly, which is difficult given the complexity of the program, I assume that there is a 

consumption floor, 0C  . If the agent’s cash on hand for a given employment and SSDI 

application decision is below the consumption floor, the government provides cash to make up 

the difference. C  is set at the maximum level of the SNAP benefit payments. I explain the 

details of how enrollment and benefits for means-tested programs are determined in Section A of 

the Appendix. The variable itsp is income from the spouse. I treat income contributed to the 

household by the wife as determined by an exogenous stochastic process.
12

 The variable
it is the 

sum of income and payroll taxes, the details of which are described in Section B of the 

Appendix.   

B. SSDI screening process 

                                                 

11
 The benefit level is set at 80% of the previous earnings. Laid-off workers are assumed to be eligible for UI for one 

period following the layoff.  
12

 The wife may provide health insurance to her husband if she chooses to work. Thus, I may overestimate the value 

of access to Medicare coverage through SSDI for married household heads. However, the wife’s labor supply 

response following the husband’s disability onset (so called the added worker effect) observed in recent studies 

using U.S data is negligible (Gallipoli and Turner, 2012). Thus, I conjecture that the size of overestimation would be 

small. Also, Blau and Gilleskie (2006) estimate a model of married couples in which they make decisions jointly, 

but the effects of health insurance on labor supply were similar when they estimate a similar model without 

modeling the spouse’s decisions (Blau and Gilleskie, 2008).   
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In the model, SSDI applications made in period t are approved or disapproved at the end 

of the period. If approved, the applicant begins to receive the benefit in period t+1. If the 

application is denied, the applicant can work in period t+1 if he receives a job offer at the 

beginning of t+1. The criteria for approval of an application by the SSA are known in general, 

but from the applicant’s perspective approval is uncertain because true disability status is not 

perfectly observable to SSA examiners.
13

  In the model, I approximate the screening process 

using a simple approach. I characterize the acceptance probability as a linear function of age with 

parameters that depend on disability status:
14

 

  0 0(3) Pr 1| 1, , ,  0,  1,  2DI App L L

it it itE DI L t t L         

Once enrolled in SSDI, the beneficiary is reassessed at random intervals, reflecting the so 

called Continuing Disability Review (CDR). The probability of reassessment is given by P
CDR

, a 

constant, in the model. The probability that a beneficiary will remain eligible for SSDI benefits 

conditional on reassessment is also determined by equation (3). The parameters of equation (3), 

together with P
CDR

, determine the efficiency of the SSDI program in enrolling its intended 

recipients while screening out the less-severely disabled. The details of eligibility rules for SSDI 

application and the benefit formula are described in Section C of the Appendix.
15

  

C. Out-of-pocket Medical Expenditure 

I assume that out-of-pocket medical expenditure depends on health insurance type, 

disability status, age, and the previous period’s medical expenditure shock. I allow two types of 

health insurance: employer-provided health insurance and Medicare. An individual is assumed to 

                                                 

13
 The criterion for SSDI eligibility is “inability to engage in any substantial gainful activity by reason of any 

medically determinable physical or mental impairment, which can be expected to result in death, or which has 

lasted, or can be expected to last, for a continuous period of at least 12 months (SSA, 2012).” 
14

 Chen and van der Klauuw (2008) provide indirect evidence that the acceptance probabilities can be well 

represented by a linear function of age (Figure 2, p.771).  
15

 I do not model the appeal process because of the difficulty of identifying the impact of the various appeals 

mechanisms without access to administrative data. This is not a serious limitation in terms of studying the life-cycle 

behavior to the extent that a rejected applicant can apply again following the reject of the application in the model, 

although reapplication and appeal are not exactly the same. 
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have employer-provided health insurance if he works.
16

 If he has received an SSDI cash benefit 

for more than two years (four periods in the model), he receives health insurance from Medicare. 

Otherwise, he does not have any health insurance coverage until he retires at age 65 and enrolls 

in Medicare. I do not allow individuals to gain coverage by buying coverage from a private 

insurance plan.
17

 These assumptions about health insurance, combined with the assumption of 

exogenous disability status, imply that out-of-pocket medical expenditure is exogenous, 

conditional on employment and SSDI status.
18

 I allow both the mean and variance of out-of-

pocket medical expenditure to depend on health insurance type, disability status, and age.  

Following French and Jones (2011), I specify the out-of-pocket medical expenditure equation as 

follows: 

(4) 
ln ( , , ) ( , , )

it

m

it it it it itM m t HI L HI L t   
 

where 
itHI is a categorical indicator of the health insurance plan type that individual i holds in 

period t (HI none, employer-provided, Medicare), (.)m is a deterministic component, and 

( , , )it itHI L t  is the standard deviation of out-of-pocket medical expenditure.
 19

 
m

it
 
follows a 

stationary AR(1) process: , 1    ,     ,    m m m m m m m

it i it it it m i t itf            2

, ~ (0, ),m

it mN  
     

m

it ~ 2 2

, ,(0, ),      ~ (0, ),      1m

m i f m mN f N   
 

                                                 

16
 I impose this assumption to avoid modeling the choice of jobs with different health insurance coverage. This 

assumption is reasonable because about 80% of the (full-time) employed individuals in my sample have employer-

provided health insurance coverage. My model would underestimate the value of Medicare benefits in SSDI for 

workers without employer-provided health insurance coverage. 
17

 I do not think that this is a very restrictive assumption because the lion’s share of health insurance is determined 

by employment and SSDI receipt or means-tested welfare programs. Only 5% of individuals in my sample directly 

purchased private health insurance. Compared to a model in which individuals have the option to buy private health 

insurance, my model will overestimate the value of SSDI because those who would buy private health insurance, if 

it were available, are more likely to apply for SSDI in the model.  
18

 This assumption is common in the literature, but it could result in misleading inferences to the extent that 

“individuals are willing and able to substitute between medical care and other consumption” (Blau and Gilleskie, 

2008, p. 477). However, most estimates of the price elasticity of demand for medical care are small, generally about 

-0.2 (Liu and Chollet, 2006). The estimates of income elasticity of demand for medical care found in the literature 

are also inelastic, generally less than 0.2 (Ringel et al. 2002). Blau and Gilleskie (2008) estimate a model of 

retirement in which medical expenditure is a choice variable, and they found that the results are quite similar to the 

results of their previous paper (Blau and Gilleskie, 2006) in which medical expenditure is exogenously given.   
19

 I standardize the variance of 
m

it  to be one, so the group-specific variance of out-of-pocket medical expenditure is 

determined by ( , , )it itHI L t . 
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where m

if is the time-invariant person-specific component, m

it is the persistent component, m is 

the degree of persistence, m

it is an innovation to the persistent component, and m

it is the 

transitory component of the medical expenditure shock. I choose this specification because it is 

parsimonious and particularly useful when the sample is classified into several groups (age, types 

of health insurance, and disability status). Furthermore, the sum of a white noise process and an 

AR(1) process has been shown to capture the key features of the log of medical care costs 

(French and Jones, 2004).  Identification of the variances and the AR(1) parameter is discussed 

in Section D of the Appendix.   

 D. Earnings 

I assume that the log hourly wage offer in period t for individual i is: 

(5) '

1 2ln ( 1) ( 2) w w

it it it it X it itw I L I L X            

where X is a vector of observables including age, age squared, and marital status, and 
w

it is a 

persistent productivity shock, assumed to follow a random walk process with innovation g: 

1 ,   w w

it it it itg g    ~ 2(0, )gN  . w

it  is a transitory productivity shock: w

it ~ 2

,(0, )WN  . These 

productivity shocks are independent of disability shocks. For example, a productivity shock 

might be caused by changes in technology or trade policies. A worker who receives a negative 

permanent productivity shock has a low opportunity cost of applying for SSDI even if he is not 

disabled. Details of the specification and identification of the wage (and spouse income) 

processes are in Section E of the Appendix.  

 E. Preferences 

Utility in period t depends on consumption, labor supply and disability status: 

(6) 

2
1

2
1

0

( exp( ( ) ))

( , ; ) ( ( ))
1

it j it it

j

it it it it j it

j

c I L j P

u c P L P I L j
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The functional form is non-separable between consumption and labor market 

participation with coefficient of relative risk aversion γ.   captures the effect of labor market 

participation on the utility from consumption.
 

1 and 2 capture the effects of moderate and 

severe disability on the utility of consumption respectively. 0 1 2,  ,  and    are the additive part 

of the utility cost of labor market participation for the non-disabled, moderately disabled, and 

severely disabled respectively. I allow a flexible specification of preferences where marginal 

utility of consumption and the utility cost of work depend on the degree of disability, so the 

incentive to participate in the labor force or to apply for SSDI is also related to the changes in 

preferences due to disability. 

 G. Model Solution 

The model is solved numerically by backward recursion starting from period T. Between 

ages RT and T, the only choice variable is consumption. Prior to ,RT  the individual chooses 

employment and SSDI application each period in addition to consumption. To solve the model, I 

use an approximation method developed by Keane and Wolpin (1994). The details of the model 

solution are described in Section F of the Appendix.  

3. Data 

A. PSID 

I use the 1986-2009 waves of the Panel Study of Income Dynamics (PSID) to conduct 

my empirical analysis.  The PSID began in 1968 with about 5,000 households and has tracked 

these families and their split-offs until now.
20

 The PSID has several advantages over other 

longitudinal data sets for this study: (1) It includes individuals aged 50 and under, a growing part 

of the SSDI rolls. (2) Recent survey years of the PSID (since 1999) include a thorough set of 

consumption expenditure items, which I use to estimate the model. (3) The PSID has very rich 

information on disability status, labor market activities, and receipt of social insurance and 

welfare over long periods of time.   

                                                 

20
 A split-off family is a person or a group of persons who moved out of the original household due to marriage, 

working in another place, etc.  
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Following Low and Pistaferri (2011), I use a sample of low-educated male heads of 

household aged between 23 and 62 to estimate this model. However, I include individuals over 

age 62 to estimate survival risk, disability transitions, and out-of-pocket medical expenditure. 

Low education is defined as a highest completed grade of 12 or below. The schooling limitation 

is reasonable because SSDI receipt is much more common for low-educated workers due to their 

relatively high incidence of disability, the high risk of a negative permanent productivity shock, 

and the higher probability of acceptance of a SSDI application, relative to college attendees and 

graduates. I exclude the Latino sub-sample, the self-employed, and those with missing 

information on key variables such as education, disability status, and state of residence.
21

   

 Disability status and SSDI receipt  

I create a three-state categorical measure of disability status using the following questions 

in the PSID: (1) “Do you have any physical or nervous condition that limits the type of work or 

the amount of work that you do?” (2) “Does this condition keep you from doing some type of 

work?” (3) “For work you can do, how much does it limit the amount of work you can do?”
22

 A 

person is assigned to the severe disability category if he answers “[can] not [work] at all” to the 

third question or “can do nothing” to the second question. He is assigned to the moderate 

disability category if he answers “yes” to the first question and “somewhat” or “just a little” to 

the third question. Otherwise, he is treated as non-disabled. A common criticism of self-reported 

disability status is that individuals may exaggerate their disability status to justify their SSDI 

enrollment or non-participation in the labor force. However, Benitez-Silva et al. (2004) present 

evidence that self-reported disability status is an unbiased estimate of the implicit disability 

status inferred by the SSA during the SSDI review process. Meyer and Mok (2009) and Low and 

Pistaferri (2011) show that the measure of disability I use here is correlated with objective 

measures of health status (e.g., days of hospital stay).  

                                                 

21
 In the PSID, 2000 Latino households were added in 1990 but they were dropped after 1995, and they were not 

asked about Social Security income type.   
22

 The first question is asked to all respondents. The second question is asked to those who answer “yes” to the first 

one and the answers can be “yes”, “no,” “can do nothing.” The third question is asked to those who answer “yes” or 

“no” to the second question and the answers can be “a lot”, “somewhat”, “just a little”, or “[can] not [work] at all.” 
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Enrollment in SSDI is identified by two questions in the PSID. First, individuals are 

asked about the amount of Social Security payments. Then, they are asked whether the Social 

Security payment is due to disability, retirement, survivor’s benefits, or other reasons (e.g., 

dependent). Using this information, I can identify whether the household head is receiving SSDI 

benefits. Unfortunately, the PSID does not ask about SSDI application.
23

  

 Out-of-pocket medical care expenditure  

The PSID has asked several questions about health insurance and health care costs since 

1999. The items that I use to estimate equation (4) are (a) whether a respondent is covered by 

any health insurance plan, (b) type of health insurance plan, (c) amount of health insurance 

premium paid, and (d) out-of-pocket expenditure for nursing home, hospital bills, doctor visits, 

outpatient surgery, dental bills, prescriptions, and in-home medical care.
 
The PSID asks about 

household-level medical expenditure (including children and other residents in addition to the 

wife), not person-specific. Therefore, I focus on household medical expenditure risk. Also, the 

reference period of the medical care expenditure items in PSID is two years, while the unit of 

time is a six-month period in the model. I estimate the six-month variance and persistence of out-

of-pocket medical expenditure from the variance of the two-year sum of out-of-pocket medical 

expenditure using the variance correction method described in Section G of the Appendix.  

 Consumption expenditure 

Consumption expenditure data are taken from the 2005, 2007, and 2009 survey waves. 

The expenditure categories include food, health care, housing, transportation, education, child 

care, home repairs and maintenance, household furnishing and equipment, clothing and apparel, 

trips and vacations, recreation and entertainment, and telecommunication. Li et al. (2010) find 

that PSID total consumption expenditure is about 1% higher than the Consumption Expenditure 

Survey (CEX) total consumption expenditure for comparable categories. Consumption 

expenditure that I use in the paper includes non-durable goods and service. I do not include 

                                                 

23
 The approach to identify SSDI policy parameters in the absence of SSDI application information is described 

below.  
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durables because they can function like assets and it is difficult to measure the flow of 

consumption services in the durables. 

 B. Sample statistics  

Table 1 reports summary statistics of the sample. 9.4% of sample individuals report 

severe disability, and 10.6% report moderate disability. In general, individuals with severe 

disability are older, less likely to work, work fewer hours, earn less if they work, and are much 

more likely to be enrolled in SSDI than individuals with no disability. 
24

 There is a big difference 

between the moderately disabled and the severely disabled. Individuals with moderate disability 

are about 3.3 times more likely to work and 4 times less likely to be on SSDI than those with 

severe disability. 

4. Estimation results 

I describe three groups of parameters, according to how they are estimated. 

1. The first group of parameters is estimated non-structurally (first-stage estimation). 

They include parameters of (i) the mortality hazard function, (ii) the disability transition 

probabilities, (iii) the log out-of-pocket medical expenditure equation, (iv) the log wage offer 

equation, and (v) the log spouse income equation. These parameters are not jointly estimated 

with the preference and policy parameters, nor jointly across the above five sets of parameters. 

The assumption that justifies this approach is that these processes are exogenously given. An 

important implication of imposing this assumption is that I do not allow individuals to differ in 

some permanent features that are unobserved to a researcher. For example, I rule out an 

endogenous disability transition process, i.e., a risk-loving person who chooses to work in a 

dangerous plant would have a higher probability of becoming severely disabled. This is a 

potentially important limitation imposed for computational feasibility, which I further discuss in 

                                                 

24
 As stated above, I use different survey waves (but the same sample selection rule) for the log consumption 

regression and the log out-of-pocket medical expenditure regression due to data availability. The implicit 

assumption that I make here is that the relationship among key variables is stable over time.  
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the conclusion.
25

 The estimates of the first group of parameters are taken as given in the second 

stage Indirect Inference estimation. 

2. The second group of parameters is set to arbitrary values commonly used in the 

literature. They include (i) the CRRA parameter ( ), (ii) the time discount rate ( ) , (iii) the job 

offer rate ( 1 ), (iv) the gross interest rate ( )R , (v) the maximum benefit level of SNAP ( )SNT and 

SSI ( )SSIT , (vi) the income replacement rate for UI, and (vii) the standard deduction for 

calculating net income (d) and the income threshold ( )y for means-tested welfare programs. (i)-

(iii) are not key parameters of interest, and it is computationally costly to estimate them 

structurally. (iv)-(vii) are observable so I set these parameters to representative observed values. 

The second group of parameters is summarized in Table 2.  

3. The third group of parameters is structurally estimated by Indirect Inference as 

described below. This group includes (i) utility function parameters, (ii) acceptance probabilities 

of SSDI application, (iii) the re-assessment probability of SSDI status, and (iv) the layoff 

probability.    

A. Profiles for exogenous state variables and first stage estimates 

In this subsection, I briefly summarize the profiles for exogenous state variables and the 

first-stage estimation results. (i) Figure 1 plots predicted disability transition rates. It shows that 

the probability of becoming disabled is increasing with age and that disability is highly 

persistent. (ii) Table 3 shows that both the mean and variance of medical expenditure rise with 

age regardless of health insurance type, and those in the no health insurance group have the 

                                                 

25
 There could be various possible biases induced by unobserved heterogeneity, but I think that the most plausible 

case is an upward bias in the effect of access to Medicare via SSDI on labor supply and welfare. If risk aversion 

varies in the population conditional on disability status, then individuals who are risk-loving are more likely to 

become disabled and to incur high medical expenditures as a result of disabilities so they value the Medicare 

provision via SSDI. Thus, they are ex ante more likely not to work in order to apply for SSDI. If a person is risk-

averse, then he would expect to be less likely to be disabled so he would not value the Medicare provision through 

SSDI much and he will continue to be employed. Thus, some of the association between access to Medicare via 

SSDI and labor supply and welfare would be driven by the difference in risk aversion. In this case, my model 

overestimates the effect of access to Medicare via SSDI. However, French and Jones (2011) find a similar effect of 

health insurance on labor supply, regardless of whether they estimate the same model with preference heterogeneity 

or not.  
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highest average medical expenses and standard deviation at any given age.
 
Table 4 reports the 

variances of permanent, persistent, and transitory components of the log medical expenditure 

shock. These variances imply that
 
the majority of the innovation (73%) comes from the non-

transitory component, as French and Jones (2011) also found.
26

 (iii) Table 5 reports estimates of 

the log wage offer equation. In order to account for selection into work, I use Heckman’s two-

step estimation method, with UI generosity and household income transfer as exclusion 

restrictions following Low and Pistaferri (2011). Severe disability reduces the offered wage by 

32 percentage points while moderate disability reduces it by 16 percentage points. Table 6 

reports the estimated variances of the permanent and transitory productivity shocks. The 

estimates are similar to those reported in other papers using the PSID data (Meghir and Pistaferri, 

2004; Low et al., 2010). The other details on the first-stage estimation results are in Section H of 

the Appendix.
27

 

B. Parameters estimated by Indirect Inference  

I use the method of Indirect Inference to estimate the utility function, lay off probability, 

and SSDI policy parameters. Indirect Inference is useful when the likelihood function does not 

have an analytical form, because it does not require evaluation of the likelihood function. This is 

the case for my model, in which I have both continuous and discrete choice variables. Another 

useful property of Indirect Inference is that it does not require a researcher to observe choice 

variables as long as he can observe other variables that are closely governed by the choice 

variables. The PSID does not have data on the SSDI application choice, but it has information on 

SSDI enrollment status. Since SSDI status is primarily determined by previous SSDI application 

choice, I can use information on SSDI status to indirectly infer parameters that determine the 

SSDI application decision. Details of Indirect Inference estimation are described in Section I of 

the Appendix.
 28

  

                                                 

26
 The other parameter estimates of the log out-of-pocket medical expenditure process are reported in Section H of 

the Appendix. 
27

 The predicted conditional probability of death by disability status and age, and the distribution of disability status 

by age are shown in the Figures A1-2 of the Appendix (page 61). 
28

 I choose the estimation method and the set of auxiliary moments following Low and Pistaferri (2011). However, I 

allow more flexible specifications in preferences and SSDI policy parameters.  



 

17 

 

B.1. Auxiliary Moments 

I use four sets of auxiliary moments to estimate the parameters of interest. (1) The SSDI 

enrollment rate by disability status and age group; (2) The composition of SSDI beneficiaries by 

disability status and age group; (3) The employment rate by disability status and age group; (4) 

The coefficient estimates from the log consumption regression. The SSDI enrollment rate and the 

composition of SSDI beneficiaries are used to identify SSDI policy parameters because these 

moments are determined by the acceptance probability (conditional on SSDI application) and the 

SSDI reassessment probability. The employment rate is related to utility costs of working and the 

layoff probability. Finally, the coefficient estimates from the log consumption regression are 

used to identify other preference parameters. I discuss the rationale for the identification of the 

structural parameters in Section J of the Appendix in more detail.  

B.2. Indirect Inference parameter estimates 

Parameter estimates from the Indirect Inference estimation are reported in Table 7. 

Working induces a 31% loss of utility measured in terms of consumption. A moderate disability 

induces a 9.6% loss of utility while a severe disability induces 38.6% loss of utility. I estimate 

that the layoff probability is 9.8% per six-month period. The estimated layoff probability seems 

higher than conventional estimates but the sample is low-educated workers, whose layoff 

probability tends to be relatively high. The signs and magnitudes of the estimated additive utility 

cost of working conditional on disability status are as expected: 1) all signs are negative, and 2) 

severe disability is associated with the highest utility cost of working (-0.79) while no disability 

is associated with the lowest utility cost of working (-0.025).  

The SSDI application acceptance probability increases with age and the severity of 

disability. For those with no disability, I estimate that the acceptance probability is almost zero, 

i.e., the SSDI program successfully screenins out applicants who are capable of work. The 

acceptance probability for moderately disabled workers is virtually constant at 27% at age 23. I 

estimate that the acceptance probability for the severely disabled is 47% at age 23 and rises by 

0.5 percentage points each six-month period, reaching 87% at age 62. The probability of 
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reassessment per six-month period is estimated at 17.3%. This value suggests that a review of 

SSDI status will be performed about every three years on average.
29

    

C. Model Fit 

Table 8 shows the moments matched by Indirect Inference.  Each of the four panels 

corresponds to one set of auxiliary moments. In most cases, the model closely replicates the 

patterns of the observed data moments. The main exception is that the coefficient on the receipt 

of SSDI (for the non-disabled) in the log consumption equation is much larger in absolute value 

in the model (-.30) than in the data (-.03).
30

  A detailed discussion of the model fit is in Section J 

of the Appendix.  

5.  Counterfactual Policy Analysis 

In this section, I use the estimated model to perform counterfactual policy simulations to 

study the effects of access to Medicare through SSDI on behavior and welfare, and the welfare 

implications of alternative approaches to eliminating the financial imbalance of SSDI.
31

 I 

evaluate the implications for welfare and behavior holding the government budget constant 

across the counterfactual policy simulations through the adjustment of a universal lump sum tax 

or transfer.
32

 I measure welfare effects by willingness to pay (WTP) computed as the proportion 

of lifetime consumption an individual would be willing to give up in order to avoid a harmful 

policy change. The formula to compute WTP is described in Section K of the Appendix.  In a 

future draft, standard error estimates for the simulations will be reported, using repeated draws 

from the joint distribution of the Indirect Inference parameter estimates to generate a distribution 

of simulation results.  

                                                 

29
 The frequency of the review seems a little high at first glance. However, given that most reassessments are 

conducted approximately every 3 years, the estimated reassessment probability is reasonable.  
30

 This could stem from the failure of the model to account for sources of consumption support other than SSDI and 

welfare programs, such as part-time work, and income transfer from parents/siblings/relatives. 
31

 The model is simulated for 50,000 hypothetical agents whose distribution of initial state variables is matched to 

the distribution of the same state variables of individuals at age 23 observed in the PSID.  
32

 If a policy change results in a decrease (increase) in government net spending, every household receives (pays) a 

cash transfer of the size required to hold the government budget constant. Low and Pistaferri (2011) imposed 

government budget neutrality through payroll tax rate adjustment, but my approach is different because Medicaid 

and other means-tested welfare programs are not funded by the payroll tax. In Low and Pistaferri (2011), the payroll 

tax income is the sole source of the government expenditure for social insurance and welfare programs. 
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A. Value of Access to Medicare via SSDI  

To isolate the effects of health insurance through Medicare, I simulate a counterfactual 

regime in which SSDI recipients are not eligible for Medicare, and compare the results with 

simulations of the baseline model (i.e. the actual policy regime).  Note that this is an extreme 

case; in reality SSDI recipients might seek other sources of health insurance rather than going 

uninsured as assumed in the counterfactual simulation. Also, note that Medicaid remains 

available in this scenario, in an implicit form via the consumption floor. 

In Table 9, I find that eliminating access to Medicare via SSDI reduces ex ante welfare, 

that is, expected lifetime utility of an individual at age 23 who does not know whether or when 

he will become disabled. Individuals are willing to pay up to 0.5% of their lifetime consumption 

to maintain Medicare coverage through SSDI enrollment (the first row of the second column). 

The reported welfare effect of Medicare eligibility through SSDI seems small at first. But, the 

share of the population on SSDI affected by this policy change is also small (about 5%). The 

magnitude of the welfare effect of Medicare coverage is higher when a higher level of risk 

aversion is assumed (recall that the CRRA is set to 1.5), but the fit of the model becomes 

considerably worse with a higher degree of risk aversion.
 
Also, as noted above, after exhausting 

most of their cash on hand, individuals are eligible for Medicaid. Another way to rationalize the 

modest magnitude of the welfare effect is to look at the cost of financing Medicare benefits for 

SSDI recipients. Workers pay 1.45% of their earnings to fund Medicare, and about one fifth of 

Medicare spending goes to SSDI beneficiaries. This implies that the SSDI share of the Medicare 

payroll tax rate is about 0.3% of earnings. Thus, WTP for access to Medicare via SSDI 

enrollment of 0.5% of lifetime consumption seems reasonable.  

As with any type of health insurance, the value of Medicare benefits provided through 

SSDI comes from two sources: 1) reduced average out-of-pocket medical expenditure and 2) 

reduced volatility of out-of-pocket medical expenditure. In order to evaluate the independent 

contribution of each source to the value of Medicare benefits, I re-compute WTP for Medicare 

benefits in SSDI after setting the variance of out-of-pocket medical expenditure to zero in both 

the baseline and counterfactual specification. I find that WTP for Medicare benefits in SSDI 

drops by about 40% when there is no volatility in the out-of-pocket medical expenditure process. 
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This finding implies that about 60% of the value of Medicare coverage in SSDI comes from 

reduced mean medical expenditure and the other 40% comes from reduced volatility (not shown 

in the table).  

Column (3) of Table 9 shows behavioral responses to elimination of Medicare coverage 

from SSDI. When access to Medicare via SSDI enrollment is eliminated, SSDI application as an 

alternative to remaining employed becomes less attractive. Thus, the average SSDI application 

rate drops from 4.1% to 3.6% per period, and this decline in the SSDI application rate leads to an 

increase in the employment rate. The fraction of the population working increases from 87.0% to 

87.7% (fourth row). What is more interesting is that the behavioral responses are more elastic for 

the moderately disabled than for the severely disabled. The employment rate for the severely 

disabled increases by 0.9 percentage points (from 20.6% to 21.5% per period) while the 

employment rate for the moderately disabled increases by 2.5 percentage points (from 73.7% to 

76.2%). This is because the moderately disabled are closest to the margin of indifference 

between SSDI application and working. This is consistent with my finding that eliminating 

access to Medicare coverage causes the fraction of moderately disabled workers among newly 

accepted SSDI beneficiaries to decrease from 17.8% to 15.8% (last row).  

In order to further understand how medical expenditure risk affects the value of 

Medicare, I conduct additional simulations in which 1) everybody is required to purchase health 

insurance, and 2) employer-provided health insurance is not available. I discuss the welfare 

implications of these policy experiments below. See section L of the Appendix for other results 

from these simulations.  

The first setting is roughly similar to the environment that will exist when the Affordable 

Care Act (ACA) is fully implemented in 2014. In this experiment, an individual without health 

insurance is required to purchase a health insurance plan that provides the same coverage at the 

same cost as the employer-provided health insurance plan in the model (i.e., those without health 

insurance now face the same out-of-pocket medical expenditure distribution as those with 

employer-provided health insurance). In this scenario, SSDI enrollees during the two-year 

waiting period will have access to health insurance through the ACA and then they will be 

covered by Medicare after the waiting period. Thus, SSDI beneficiaries will always have access 
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to health insurance even when Medicare coverage is not available, implying that the value of 

Medicare in SSDI should be smaller than in the baseline specification. Compared to the baseline 

case when individuals are willing to give up 0.5 percent of their lifetime consumption for the 

provision of Medicare coverage via SSDI, willingness to pay declines to about 0.4 percent. The 

welfare effect of Medicare is smaller but still positive because Medicare is much less costly than 

employer-provided health insurance in terms of out-of-pocket medical expenditure to 

individuals.  

The next experiment eliminates employer-provided health insurance (but retains 

Medicare eligibility at age 65). This is an extreme case but it is useful to study the value of 

Medicare in SSDI when uninsured medical expenditure risk becomes larger. Willingness to pay 

increases to 0.73 percent of lifetime consumption. This is because access to health insurance 

prior to age 65 is only possible through enrollment in SSDI. Since Medicare through SSDI is the 

only source of health insurance prior to age 65, the behavioral effects of Medicare coverage in 

SSDI are larger compared to the baseline specification or the alternative specification with 

mandatory health insurance purchase.  

B. Policy reforms aimed at restoring financial stability of the SSDI program 

According to the 2012 Social Security Trustees report, the SSDI trust fund will be 

exhausted by 2016. Once depleted, SSDI will use trust fund income (i.e., payroll taxes plus 

interest) that is supposed to go to Social Security Old-Age Survivor Insurance (OASI). Without 

any reforms to curb soaring SSDI spending, this would increase the financial problem of the 

Social Security program as a whole. Fortunately, SSDI is relatively easier to fix than OASI 

because OASI entry is largely determined by demography while SSDI entry is more sensitive to 

economic incentives. However, a previous SSDI reform in 1983 intended to slow down the 

growth of the SSDI rolls failed because the more stringent screening criteria and reassessment 

process it imposed caused public backlash, leading to repeal of the reform (Burkhauser and Daly, 
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2011).
33

 This historical lesson implies that it is important to design and implement a reform that 

not only reduces the program spending but also minimizes the welfare cost. 

Thus, I explore policy alternatives that equate SSDI spending to payroll tax income (i.e., 

no SSDI budget deficit), and compare the welfare costs of those policy alternatives.
 34

 

Specifically, I consider varying the following SSDI policy parameters: 1) lowering the 

acceptance probability of an SSDI application, 2) increasing the payroll tax rate, 3) reducing the 

SSDI cash benefit, and 4) delaying access to Medicare (i.e., increasing the Medicare waiting 

period).
35

   

Column (1) of Table 10 shows that the SSDI budget deficit can be eliminated through 

either 1) lowering the acceptance probability by 28%, 2) raising the payroll tax rate by 8.1%, 3) 

cutting the SSDI cash benefit by 23%, or 4) increasing the waiting period for Medicare benefits 

by 9 years (from 2 years to 11 years).  

Lowering the SSDI acceptance probability is most successful at reducing the program 

population. It reduces the fraction of SSDI beneficiaries by 12% (from 5.2% to 4.1%).  However, 

this is the most costly policy option in terms of ex ante welfare. The population as a whole is 

willing to pay 0.8% of lifetime consumption to avoid this policy, even accounting for the lower 

tax associated with a smaller program size. About 40% of those who are severely disabled are 

denied SSDI benefits under this policy, compared to about 20% in the baseline. Those who are 

denied SSDI benefits either have to work despite a high work disutility or receive the minimum 

consumption from the government if they do not work and are very poor.  

Increasing the payroll tax rate that funds SSDI (and Medicare for SSDI beneficiaries) is 

an alternative way to restore fiscal stability of the program, but incurs a welfare cost almost as 

                                                 

33
 In 1984, the Congress reversed the previous reform of the SSDI screening process and further liberalized 

acceptance of SSDI applications from those suffering from back/muscle pain and mental illness. Since these 

disabilities have relatively low mortality, the average duration of SSDI spells and the program population have 

increased. 
34

 In the baseline model, SSDI spending is about 30% more than its income from the disability insurance share of 

Social Security payroll tax income. In reality, SSDI spending exceeded its income by a little less than one quarter in 

2011 (SSA, 2012).  
35

 There are other alternatives that can reduce the SSDI budget deficit, such as an increase in the re-assessment 

probability or an increase in the required period of non-employment before applying for SSDI (currently one period 

in the model). I will consider these alternatives in a future draft.  
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high as the previous policy intervention. Increasing the payroll tax raises deadweight loss in the 

labor market and so reduces ex ante welfare of society by 0.7% of lifetime consumption. Row 3 

shows that as the net-of-tax wage rate goes down due to the increased payroll tax burden, slightly 

fewer people choose to work, and more people apply for SSDI.
36

  

The most efficient solutions that eliminate the SSDI budget deficit are the policies that 

cut benefits. In the fourth row of Table 10, I find that a 23% cash benefit cut eliminates the SSDI 

budget deficit at a welfare cost of 0.19% of lifetime consumption. In contrast to reducing the 

acceptance probability, this policy does not prevent severely disabled workers from entering 

SSDI.  Since the SSDI application decision of severely disabled workers is inelastic with respect 

to the level of the SSDI cash benefit (the   elasticity is 0.13), reducing the benefit is less costly in 

terms of welfare compared to making SSDI entry more stringent. WTP to avoid a 23% cash 

benefit cut is only one quarter of the magnitude of WTP to avoid the above two policy 

alternatives.  

Increasing the Medicare waiting period by 9 years (from 2 years to 11 years) is also a less 

costly approach to eliminating the SSDI deficit. WTP to avoid this policy is also small at 0.20% 

because this policy does not block severely disabled workers from entering SSDI  and some 

SSDI beneficiaries who exhaust their savings will be eligible for Medicaid (through the 

minimum consumption floor in the model) during the extended waiting period. According to an 

SSA actuarial study, a disabled worker who is accepted to the SSDI program at age 50, which is 

the average age of new SSDI entrants in 2011, is expected to live an additional 17.6 years 

(Zayatz, 2011). Thus, a 9-year waiting period makes him expect to receive Medicare coverage 

for 6.6 years, equivalent to approximately a 60% decrease in the time eligible for Medicare 

coverage through SSDI. 

Through the policy simulations in this subsection, I show that policies that achieve the 

same fiscal goal can have very different welfare implications. These results have direct relevance 

for the ongoing debate over how to reduce the cost of SSDI. 

C. Value of Medicare to SSDI applicants 

                                                 

36
 This additional payroll tax is only used to fund SSDI and Medicare for SSDI beneficiaries.  
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In this subsection, I explore how welfare and behavior of individuals at relatively high 

risk of applying for SSDI are affected by policy interventions. Given that the majority of workers 

never become severely disabled, it is important to understand behavior and welfare of workers 

who are at relatively high risk of applying for SSDI. To implement this, I treat simulated 

individuals who ever applied for SSDI in the baseline specification as individuals who are at 

high risk of applying for SSDI. If a person applying for SSDI at age 40 in the baseline 

specification chooses not to apply for SSDI at age 40 in a counterfactual policy simulation, I can 

attribute this change solely to the changed SSDI policy because there is no other change in the 

model.   

Table 11 reports changes in welfare, employment rates, and the proportion of SSDI 

recipients in the “high-risk” group.
37

 As expected, the welfare and behavioral responses to a 

policy change are larger for this group. The first row shows that the possibility of eligibility for 

Medicare via SSDI enrollment increases the EPDV of lifetime welfare by 1.7%. This welfare 

gain for individuals at high risk of applying for SSDI is about twice as large as the welfare gain 

for the total population (see the last row).  

6. Alternative Specifications 

A. No health insurance and medical expenditure process 

I argued above that ignoring medical expenditure and health insurance would result in 

underestimating the value of SSDI. In this subsection, I eliminate medical expenditure and health 

insurance and re-estimate the model to study this issue. The results reported in Table 12 show 

that WTP for SSDI coverage drops from 1.1% to 0.7% of lifetime consumption when health 

insurance and medical expenditure are eliminated.
38

 Columns (1) and (2) of the first and second 

rows reveal that fewer workers apply for SSDI and eventually enroll in SSDI in this scenario. 

This in turn leads to a modest increase in the fraction of individuals employed.  

                                                 

37
 In this exercise, I use expected present discount value (EPDV) of lifetime welfare in the first period (before any 

shocks are realized) instead of WTP because I analyze a subset of the total population. 
38

 The parameter estimates behind these simulations are shown in Section M of the Appendix. 
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Since this version of the model is similar to that of Low and Pistaferri (2011), I 

implement an additional simulation to see whether I can reproduce their results. Specifically, I 

simulate the effects of a 10% increase in SSDI cash benefits, using the model estimated without 

incorporating health insurance and medical expenditure. Low and Pistaferri (2011) show that a 

10% rise in SSDI cash payments worsens ex ante welfare of society as a whole by about 0.13% 

of their lifetime consumption (p.30). But, I find that the same 10% increase improves welfare by 

0.05%. Although the sign is different, the quantitative difference is small. Also, my finding is 

consistent with Meyer and Mok (2008) who find that the current SSDI cash benefit is lower than 

the optimal level.   

B. Robustness of results to changes in calibrated parameters   

In this subsection, I report the results from a robustness analysis in which the model is re-

estimated using alternative values of parameters that were not estimated. The results are 

summarized in Table 12. First, I consider changes in the degree of risk aversion, which 

determines the value of insurance. Column (4) of the third and fourth rows shows that the WTP 

for Medicare benefits in SSDI and behavior are quite sensitive to changes in the CRRA 

parameter γ. WTP changes from 0.1% of lifetime consumption to 1.6% when I increase the value 

of  from 1 to 2. However, as noted above, the overall model fit becomes much worse when 

using these values. Second, I consider changes in the consumption floor. If the government 

provides more generous consumption support, a worker will value Medicare coverage in SSDI 

less. The results are consistent with this intuition, but the welfare effects are small in quantitative 

terms. WTP for Medicare coverage via SSDI drops by 0.04 percent when I raise the consumption 

floor from the baseline value of $3,000 to $4,000 per six-month period. Finally, I consider 

changes in the time discount rate. I find that WTP goes up by 0.3 percent when people become 

more patient (  =1.0), while WTP drops by 0.2 percent when they become more impatient ( 

=0.95).
39

   

7. Concluding Remarks  

                                                 

39
 Lockwood (2012) also shows that the demand for insurance increases when people become more patient.  
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Using a life-cycle model of SSDI application, labor supply, and consumption decisions 

that incorporates the distribution of out-of-pocket medical expenditure and the institutional 

features of Medicare, I have highlighted the importance of Medicare in economic analysis of 

SSDI. I show that Medicare coverage via SSDI enrollment, which accounts for about one fifth of 

total Medicare spending, induces workers to leave the labor force to apply for SSDI. I also show 

that access to Medicare coverage via SSDI improves social welfare, accounting for close to half 

of the total welfare gain from cash and Medicare benefits through SSDI. Thus, ignoring the 

Medicare benefit available through SSDI leads to underestimation of the value of SSDI. The 

findings of this paper imply that policymakers should incorporate Medicare when considering 

how optimally to reform the SSDI program.  

The approach used in this paper is also useful to understand how a change in the health 

insurance market, e.g., the Affordable Care Act (ACA), would affect the incentive to leave 

employment and to apply for SSDI. The mandatory health insurance purchase clause of the ACA 

makes health insurance coverage available independent of employment, and thus eliminates a 

disincentive to apply for SSDI benefits by those who fear the loss of health insurance coverage 

during the two-year Medicare waiting period after being accepted into the SSDI program. 

However, the finding of my study shows that the ACA reduces the value of health insurance 

benefits available through SSDI. This implies that the ACA may discourage SSDI applications 

by individuals who are most likely to be affected by the Act.
 40

 

There are limitations of my study that should be addressed in future research. First, I 

assume that individuals retire at age 65. By relaxing this assumption and additionally modeling 

the OASI claiming decision, future research should study the role of Medicare benefits provided 

through SSDI in the retirement decision.
41

 Jointly modeling SSDI application and OASI 

claiming decisions is important for understanding the implications of future Medicare reforms 

                                                 

40
 This is consistent with the finding of Coe et al. (2012). They show that states adopting policies that expand health 

care access are associated with lower SSDI application rates (after controlling for state- and year- fixed effects).  
41

 In the current model, workers before age 65 cannot receive the OASI benefits. In reality, some of older workers 

apply for SSDI before age 65 as an alternative pathway to retirement and receiving full OASI benefits. Duggan et al. 

(2007) find that increasing the OASI benefit’s full retirement age from 65 to 67 and increasing the penalty for 

claiming benefits at the early retirement age of 62 led to an additional 0.6% of men and 0.9% of women between the 

ages of 45 and 64 receiving SSDI benefits in 2005. 
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(such as changing Medicare eligibility from age 65 to 67 or increasing the Medicare payroll tax 

rate) for SSDI application and retirement decisions and welfare of both disabled and older 

workers. This is a key policy issue because Medicare is in serious financial trouble as well.
42

 

Second, I do not allow for unobserved permanent preference heterogeneity in the model. It is 

possible that individuals with different preference types for leisure or risk aversion may make 

different decisions (e.g., selection into applying for SSDI by an individual with a relatively high 

disutility of work, or a higher probability of becoming disabled by a risk-loving worker). To 

address potential biases due to unobserved heterogeneity, future work should incorporate an 

approach such as that of van der Klaauw and Wolpin (2008), which allows individuals to differ 

by a finite number of discrete preference types.  

 

  

                                                 

42
 A 2012 Medicare trustees report predicts that the Medicare trust fund will be exhausted by 2024.  



 

28 

 

References 

1. Autor, David, and Mark Duggan. 2003. “The Rise in the Disability Rolls and the Decline 

in Unemployment.” Quarterly Journal of Economics, 118(1): 157-206. 

2. Autor, David, and Mark Duggan. 2006. “The Growth in the Social Security Disability 

Rolls: A Fiscal Crisis Unfolding.” Journal of Economic Perspectives, 20(3): 71-96. 

3. Autor, David, and Mark Duggan. 2011. “Supporting Work: A Proposal for Modernizing 

the U.S. Disability Insurance System.” Center for American Progress and the Hamilton 

Project.  

4. Benitez-Silva, Hugo, Moshe Buchinsky, Hiu Man Chan, Sofia Cheidvasser, and John 

Rust. 2004. “How Large Is the Bias in Self-Reported Disability?” Journal of Applied 

Econometrics, 19(6): 649-670. 

5. Benitez-Silva, Hugo, Moshe Buchinsky and Rust, John. 2011. “Induced Entry Effects of 

a $1 for $2 Offset in SSDI Benefits.” Working Paper.  

6. Black, Dan, Kermit Daniel and Seth Sanders. 2002. “The Impact of Economic Conditions 

on Participation in Disability Programs: Evidence from the Coal Boom and Bust.” 

American Economic Review, 92(1): 27-50. 

7. Blau, David M. and Donna B. Gilleskie. 2006. “Health Insurance and Retirement of 

Married Couples” Journal of Applied Econometrics, 21: 935-953. 

8. Blau, David M. and Donna B. Gilleskie. 2008. “The Role of Retiree Health Insurance in 

The Employment Behavior of Older Men.” International Economic Review, 49(2): 475-

514. 

9. Bound, John. 1989. “The Health and Earnings of Rejected Disability Insurance 

Applicants.” American Economic Review, 92(1): 27-50. 

10. Bound, John, Todd Stinebrickner and Timothy Waidmann. 2010. “Health, Economics 

Resources and the Work Decisions of Older Men.” Journal of Econometrics. 106-129. 

11. Burkhauser, Richard V. and Mary C. Daly. 2011. The Declining Work and Welfare of 

People with Disabilities: What Went Wrong and a Strategy for Change. Washington, DC, 

American Enterprise Institute Press. 



 

29 

 

12. Chen, Susan and Wilbert H. van der Klaauw. 2008. "The Work Disincentive Effects of 

the Disability Insurance Program in the 1990s," Journal of Econometrics, 142(2): 757-

784. 

13. Center for Medicare and Medicaid Servces. 2010. “The 2010 Actuarial Report on the 

Financial Outlook for Medicaid.”   

Available at <https://www.cms.gov/ActuarialStudies/03_MedicaidReport.asp> 

14. Center for Medicare and Medicaid Servces. 2011. “The 2010 Medicare and Medicaid 

Statistical Supplement.”  

Available at <http://www.cms.hhs.gov/ MedicareMedicaidStatSupp>. 

15. Chetty, R. 2008. “Moral Hazard vs. Liquidity and Optimal Unemployment Insurance.” 

Journal of Political Economy, 116(2): 173-234. 

16. Coe, Norma B., Kelly Haverstick, Alicia H. Munnell and Anthony Webb. 2012. “Why 

Do State Disability Application Rates Vary Over Time?” Center for Retirement Research 

at Boston College Working Paper No. 12-2.  

17. Dahl, Molly W. and Noah Myerson. 2010. “Social Security Disability Insurance: 

Participation Trends and Their Fiscal Implications.” Economic and Budget Issue Brief, 

Congressional Budget Office: Washington DC. 

18. Duggan, Mark, Perry Singleton, and Jae Song. 2007. “Aching to retire? The rise in the 

full retirement age and its impact on the social security disability rolls.” Journal of Public 

Economics, 91: 1327-1350. 

19. French, Eric. 2012. “The Effect of Disability Insurance Receipt on Labor Supply.” 

Working Paper, Federal Reserve Bank of Chicago.  

20. French, Eric and John Bailey Jones. 2004. “On the Distribution and Dynamics of Health 

Care Costs.” Journal of Applied Econometrics, 19(6): 705-721.  

21. French, Eric and John Bailey Jones. 2011. “The Effects of Health Insurance and Self-

Insurance on Retirement Behavior.” Econometrica, 79(3): 693-732.   

22. Gallipoli, Giovanni and Laura Turner. 2012. “Household Responses to Individual 

Shocks: Disability and Labour Supply.” Canadian Labour Market and Skills Researcher 

Network Working paper No. 23. 

23. Gourieroux, Christian, Alain Monfort, and Eric Renault. 1993. “Indirect Inference.” 

Journal of Applied Econometrics, 8:85-118. 



 

30 

 

24. Keane, Michael and Kenneth Wolpin. 1994. “The solution and estimation of discrete 

choice dynamic programming models by simulation and interpolation: Monte Carlo 

evidence.” Review of Economics and Statistics, 77: 648-672 

25. Li, Geng, Robert Schoeni, Sheldon Danziger, and Kerwin Charles. 2010. “New 

Expenditure Data in the Panel Study of Income Dynamics: Comparisons with the 

Consumer Expenditure Survey Data.” Monthly Labor Review, 133: 29-39. 

26. Liu, Su and Deborah Chollet. 2006. “Price and Income Elasticity of the Demand for 

Health Insurance and Health Care Services: A Critical Review of the Literature.” 

Mathematica Policy Research Report No 6203-042.  

27. Lockwood, Lee. 2012. “Incidental Bequests: Bequest Motives and the Choice to Self-

Insure Late-Life Risks.” Working Paper.  

28. Low, Hamish and Luigi Pistaferri. 2011. “Disability Risk, Disability Insurance, and Life 

Cycle Behavior.” NBER Working Paper No. 15962. 

29. Low, Hamish, Costas Meghir and Luigi Pistaferri. 2010. “Wage Risk and Employment 

Risk over the Life Cycle.” American Economic Review. 100(4): 1432-67. 

30. Maestas, Nicole and Na Yin. 2008. “Labor Supply Effects of the Interaction between the 

Social Security Disability and Retirement Programs at Full Retirement Age.” Working 

paper.  

31. Maestas, Nicole, Kathleen Mullen, and Alexander Strand. 2012. "Does Disability 

Insurance Receipt Discourage Work? Using Examiner Assignment to Estimate Causal 

Effects of SSDI Receipt." American Economic Review, forthcoming. 

32. Meghir, Costas and Luigi Pistaferri. 2004. “Income Variance Dynamics and 

Heterogeneity.” Econometrica, 72(1): 1-32. 

33. Meyer, Bruce and Wallace K. C. Mok. 2008. “Disability, Earnings, Income and 

Consumption”  Harris School Working Paper #06-10.  

34. Parsons, Donald O. 1980. “The Decline in Male Labor Force Participation.” Journal of 

Political Economy, 88(1): 117-34.  

35. Ringel, Jeanne S., Susan D. Hosek, Ben A. Vollaard, Sergej Mahnovski. 2002. The 

Elasticity of Demand for Health Care: A Review of the Literature and Its Application to 

the Military Health System. Santa Monica, CA: RAND Corporation. 



 

31 

 

36. Rutledge, Matthew S. 2011. “The Impact of Unemployment Insurance on Disability 

Insurance Applications and Allowance Rates.” Working Paper2011-17. Chestnut Hill, 

MA: Center for Retirement Research at Boston College. 

37. Social Security Administration. 2012, 2011, 2010. “Annual Statistical Report on the 

Social Security Disability Insurance Program.” Available at 

< http://www.ssa.gov/policy/docs/statcomps/SSDI_asr >.  

38. Social Security Administration. 2012. “The Red Book.” SSA Publication No. 64-030.  

39. van der Klaauw, Wilbert and Kenneth I. Wolpin. 2008. “Social Security and the 

Retirement and Savings Behavior of Low-income Households.” Journal of Econometrics, 

145: 21-42.  

40. von Wachter, Till, Jae Song and Joyce Manchester. 2011. “Trends in Employment and 

Earnings of Allowed and Rejected Applicants to the Social Security Disability Insurance 

Program.” American Economic Review, 101(7): 3308-29. 

41. Zayatz, Tim. 2011. “Social Security Disability Insurance Program Worker Experience: 

Actuarial Study No. 122.” SSA Pub. No. 11-11543. Baltimore, MD: SSA, Office of the 

Chief Actuary 



 

32 

 

Figure 1 Fitted six-month disability transition rates (L=0 if no disability, L=2 if severe disability)

 

 

 

0.0% 

1.0% 

2.0% 

3.0% 

4.0% 

5.0% 

24 27 30 33 36 39 42 45 48 51 54 57 60 

Pr(Lt=2|Lt-1=0) 

85.0% 

87.0% 

89.0% 

91.0% 

93.0% 

95.0% 

97.0% 

24 27 30 33 36 39 42 45 48 51 54 57 60 

Pr(Lt=0|Lt-1=0) 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

24 27 30 33 36 39 42 45 48 51 54 57 60 

Pr(Lt=2|Lt-1=1) 

25.0% 

30.0% 

35.0% 

40.0% 

45.0% 

50.0% 

55.0% 

60.0% 

24 27 30 33 36 39 42 45 48 51 54 57 60 

Pr(Lt=0|Lt-1=1) 

35.0% 

40.0% 

45.0% 

50.0% 

55.0% 

60.0% 

65.0% 

70.0% 

24 27 30 33 36 39 42 45 48 51 54 57 60 

Pr (Lt=2|Lt-1=2) 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

35.0% 

24 27 30 33 36 39 42 45 48 51 54 57 60 

Pr(Lt=0|Lt-1=2) 



 

33 

 

Table 1 Sample means by disability status  

Variable 
No 

disability 

Moderate 

disability 

Severe 

disability 

Age 40.2 45.0 47.7 

Married 0.72 0.75 0.62 

Family size 2.96 3.04 2.54 

Worked > 6 months last year 0.93 0.70 0.21 

Hourly wage| hours> 0 19.4 18.7 16.6 

Family income 59501 52879 33917 

Hours of work| hours> 0 2074 1828 1372 

Income from transfers 2272 6074 8685 

SSDI recipient 0.006 0.10 0.45 

Number of individuals 2757 260 211 

Number of person-year observations 17270 1598  1275 

Note: monetary values are in 2006$; all statistics are calculated with longitudinal weights.  

Table 2 Calibrated parameters 

Parameter Estimate 

Coefficient of Relative Risk Aversion ( ) 1.5 

(annualized) Time discount rate ( )  0.97  

Job offer probability per six-month period ( 1 ) 0.75 

(annualized) Gross interest rate ( )R  1.03 

Income replacement rate for UI benefit 0.8 

Maximum SNAP monthly benefit ( SNT ) $500 

Maximum SSI monthly benefit ( SSIT ) $600 

Standard deduction in net income calculation for SNAP and 

SSI (d) 
$140 

Monthly income threshold for the SNAP and SSI ( )y  $1500 

Note: , , ,  and SN SSIT T d y are parameters used to calculate program benefit amounts. The benefit 

formula for each program is described in Section A of the Appendix.  
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Table 3 Two-year sum of out of pocket medical care expenditure by age and health insurance  

Age 

group 
 Statistics 

Employer-

provided HI 
Medicare None  

23-44 
Mean $5086 $3010 $4150 

(SD) ($5880) ($5395) ($6629) 

45-64 
Mean $6174 $5129 $8398 

(SD) ($6623) ($7164) ($9815) 

65 and 

above 

Mean $6643 $6787 $10051 

(SD) ($8695) ($8290) ($13920) 

Note: monetary values are in 2006$; SD denotes standard deviation. 

Table 4 Variance and persistence of the residual component of (six-month) log medical 

expenditure  

Parameter  Estimate 
Standard 

Error 

Variance of permanent person-specific component 2

,( )f m  0.636 0. 022 

Variance of persistent component 2

,( )m  0.647 0. 037 

Variance of transitory component 2

,( )v m  0.472 0. 049 

Autocorrelation of persistent component (ρm) 0.557 0.047 

Note: The share of the non-transitory  component 

2 2

, ,

2 2 2

, , ,

( )
f m m

f m m m



 

 

  



 
= 0.731 
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Table 5 Log wage offer regression results  

 
  participation 

log hourly wage 

without selection 

log hourly wage 

with selection 

Moderate  
-0.220 -0.101 -0.158 

(0.015) (0.019) (0.024) 

Severe 
-0.682 -0.104 -0.318 

(0.018) (0.067) (0.090) 

Mills Ratio 
    0.188 

    (0.048) 

State-level UI 

generosity 
-0.000258 

    

(0.000198)     

Income 

transfer/100 
-0.00420 

    

(0.00197)     

 
      

N 19596 17227 17227 

Note: other controls include age, age squared, whether married, and year dummies; standard 

errors are in parentheses. 

Table 6 Variances of log wage offer 

Parameter Estimate 

Permanent shock ( 2

 ) 0.020 (0.002) 

Measurement error ( 2

 ) 0.033 (0.001) 

Note: standard errors are in parentheses.  
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Table 7 Parameters estimated by Indirect Inference 

Parameter 
 

Estimate 

  
 

Non-separable utility cost of working ( ) 
 

-0.310 

(0.0025) 

Utility cost of moderate disability 1( )  
 

-0.096 

(0.088) 

Utility cost of severe disability 2( )  
 

-0.386 

(0.015) 

Layoff probability 1( )  
 

0.098 

(0.001) 

Utility cost of labor force participation | L=0 0( )   
 

-0.025 

(0.0014) 

Utility cost of labor force participation | L=1 1( )  
 

-0.220 

(0.0033) 

Utility cost of labor force participation | L=2 2( )  
 

-0.791 

(0.0048) 

SSDI acceptance probability (per six month) | L=0 
 

0.0007 +0.00003*t 

(0.0014)   (0.00045)  

SSDI acceptance probability | L=1  
 

0.27 + 0.0001*t 

(0.0048)  (0.0078)  

SSDI acceptance probability | L=2  
 

0.47 + 0.005*t 

(0.0054)  (0.0017) 

SSDI reassessment probability ( )CDRP  
 

0.173 

(0.0036) 

  
 

Note: standard errors are in parentheses. L is 0 if no disability, 1 if moderate disability, 2 if 

severe disability. 
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Table 8 Model Fit 

A. Labor market participation by age group and disability status  

Age group 
No disability Moderate disability Severe disability 

Observed Predicted Observed Predicted Observed Predicted 

23-32 0.95 0.95 0.81 0.89 0.49 0.50 

33-42 0.96 0.96 0.80 0.85 0.30 0.30 

43-52 0.96 0.96 0.78 0.79 0.25 0.25 

53-62 0.85 0.82 0.58 0.53 0.14 0.13 

 

B. Share of SSDI recipients by age and disability status (in %) 

% of SSDI recipients Observed Predicted 

1| 2, 45DI

it itE L t    33.7 33.9 

1| 2, 45DI

it itE L t    58.6 56.0 

1| 1, 45DI

it itE L t    5.6 5.4 

1| 1, 45DI

it itE L t    14.2 14.2 

1| 0, 45DI

it itE L t    0.29 0.25 

1| 0, 45DI

it itE L t    1.03 1.06 

Note: t denotes age, Lit denotes work-limiting disability status (0 for no disability, 1 for moderate 

disability, and 2 for severe disability); DI

itE is 1if enrolled in SSDI, 0 otherwise). 

C. Composition of SSDI beneficiaries by age and disability status (in %) 

% of disability status Observed Predicted 

2 | 1, 45DI

it itL E t    67.2 67.9 

2 | 1, 45DI

it itL E t    71.9 70.0 

1| 1, 45DI

it itL E t    19.6 19.8 

1| 1, 45DI

it itL E t    19.6 20.7 

0 | 1, 45DI

it itL E t    13.2 12.3 

0 | 1, 45DI

it itL E t    8.4 9.3 
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D. Log consumption regression  

Coefficient estimates Observed Predicted 

Moderate disability
 

-0.04 -0.03 

Moderate*On SSDI
 

0.09 0.09 

Severe disability
 

-0.11 -0.04 

Severe disability*On SSDI
 

0.19 0.14 

On SSDI -0.03 -0.30 

Employed 0.12 0.11 

Notes: controls include age, age square, and transfer income  
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Table 9 Effects of access to Medicare benefits provided through SSDI enrollment 

  (1) (2) (3) 

  

Baseline 

(Medicare is 

available via 

SSDI) 

No Medicare  

via SSDI 

% 

difference 

Willingness to pay 0.00% -0.50% n/a 

( 1)AppFR DI   4.07% 3.57% -13.0% 

( )FR working  87.0% 87.7% 0.8% 

FR(working | L=1) 73.7% 76.2% 3.3% 

FR(working | L=2) 20.6% 21.5% 4.5% 

FR(DI=1 | L=1) 12.2% 11.6% -5.3% 

FR(DI=1 | L=2) 53.7% 53.6% -0.2% 

                     17.8% 15.8% -11.9% 

Note: In all specifications, Medicare coverage for individuals over age 65 is available. FR(A|B) 

denotes the fraction of the population satisfying A conditional on B. L is 1 if moderate disability, 

and 2 if severe disability. % Difference is calculated at the mid-point.  
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Table 10 Policy alternatives that equate SSDI spending to payroll tax income 

 

(1) (2) (3) (4) (5) 

Changes in 

policy 

parameter 

Willingness to  

pay 
( 1)FR DI   ( 1)AppFR DI 

 
( )FR working  

Baseline n/a n/a 5.24% 3.57% 87.0% 

Lowering acceptance 

probability 
27.80%↓ -0.82% 4.12% 3.33% 88.7% 

Increasing payroll tax 
8.1%↑ 

(from 7.65% to 

8.27%) 

-0.70% 5.29% 3.61% 86.9% 

Reducing SSDI cash benefit 22.80%↓ -0.19% 5.14% 3.47% 87.4% 

Increasing Medicare waiting 

period 

9 years↑ (from 

2 years to 11 

years) 

-0.20% 5.16% 3.51% 87.5% 

Note: FR(A) denotes the fraction of the population satisfying A.   
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Table 11 Value of Medicare to SSDI applicants 

  (1) (2) (3) (4) (5) (6) 

  

Baseline  
(Medicare is 

available via 

SSDI) 

No 

Medicare  

via SSDI 

% 

Difference  

Mandatory 

HI purchase  
(Medicare is 

available via 

SSDI) 

Mandatory HI 

purchase + No 

Medicare  via 

SSDI 

%  

Difference  

EPDV of lifetime welfare -24.23 -24.65 -1.7% -20.4 -20.86 -2.2% 

 
      

( )FR working  84.7% 85.6% 1.03% 85.6% 86.4% 0.98% 

( 1)AppFR DI   4.4% 3.8% -14.12% 3.9% 3.5% -11.47% 

( 1)FR DI   6.44% 6.41% -0.51% 6.4% 6.2% -3.15% 

EPDV of lifetime welfare (for 

the population as a whole) 
-24.09 -24.32 -0.9% -17.95 -17.68 -1.5% 

              Note: FR(A) denotes the fraction of the population satisfying A. 
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Table 12 Alternative specifications  

  (1) (2) (3) (4) (5) 

 
( 1)FR DI   ( 1)AppFR DI   ( )FR working  

WTP for Medicare 

benefits via SSDI 

WTP for  SSDI 

(including both cash 

and Medicare 

benefits) 
Baseline 5.24% 3.57% 87.0% 0.5% 1.1% 

No health insurance and medical 

expenditure process 
4.85% 3.12%       87.1% - 0.7% 

Less risk-averse ( 1)   1.33% 1.58% 93.9% 0.1% - 

More risk-averse ( 2)   4.51% 4.11% 60.0% 1.6% - 

Consumption floor ($2,000) 4.70% 3.19% 88.0% 0.5% - 

Consumption floor ($4,000) 5.75% 4.00% 85.7% 0.4% - 

More patient ( 1.00)   3.73% 2.79% 89.4% 0.8% - 

Less patient ( 0.95)   6.06% 3.94% 85.5% 0.3% - 

Note: The baseline specification is as follows: CRRA ( )  = 1.5; time discount rate ( )  = 0.98; consumption floor = $3,000; For the 

specification without health insurance and medical expenditure process, WTP for SSDI refers to WTP for SSDI cash benefits. 

FR(A) denotes the fraction of the population satisfying A. 



 

43 

 

Appendix 

A. Means-tested Welfare Programs 

Supplemental Nutritional Assistance Program (SNAP). The SNAP program (formerly and 

still commonly known as the Food Stamp program) is a means-tested welfare program that 

provides benefits to needy families. Due to computational complexity, I do not model actual 

SNAP benefit schedules for all states. Instead, I assume that 1) there is a single SNAP benefit 

scheme for all states; 2) only income is considered for means-testing (i.e., assets are ignored)
43

; 

3) there is no take-up decision: individuals enroll in SNAP if they are eligible. Following Low 

and Pistaferri (2011), net income to be considered for means-testing is defined to be:  

(A1) (1 )net DI

it it it it it it ity w hP DI E P d    
 

where d is the standard deduction in calculating net income for the SNAP benefit calculation. 

The SNAP benefit is given by  

(A2) 
0.3  1 

0

net SN

SN it it

it

T y if E
SN

otherwise

   
  
   

where 
SNT is the maximum level of the SNAP payment and SN

itE is the eligibility indicator for 

SNAP. 1 if y SN net

it itE y  where y is the income threshold for SNAP.  

Supplemental Security Income (SSI). SSI program is a means-tested program available 

to disabled or aged low income individuals. As of December 2009, 16.3% of SSDI recipients 

were also receiving an SSI benefit because their SSDI benefit plus other income was below the 

SSI threshold (SSA, 2010). The definition of disability and the screening process in the SSI 

program are similar to that of the SSDI program, and criteria for means-testing y are similar to 

those of the SNAP. Thus, I assume that an individual receives an SSI cash benefit if 1SN DI

it itE E  , 

and that the value of the SSI cash benefit is given by  

                                                 

43
 In reality, most households do not face an asset test (www.fns.usda.gov/snap/applicant_recipients/eligibility.htm). 

Even if a household is subject to an asset test, only liquid wealth is counted as assets.  However, I do not distinguish 

between liquid and non-liquid assets in my model. For example, housing wealth and cash savings are treated as the 

same. Thus, it is difficult to model an asset test in the current framework.  
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(A3) 
 1 

0

net SSI

SSI it it

it

T y if E
SSI

otherwise

  
  
 

 

where 
SSIT is the maximum level of the SSI payment for a couple. The indicator for receiving SSI 

before retirement at retirement age is SSI

itE  where SSI DI SN

it it itE E E . That is, an individual (before 

retirement age) can receive SSI benefit only when he receives SSDI and qualifies for a means-

tested program. 

B. Computation of taxes 

SSDI benefits are taxable income. Also, there are state and federal income taxes, too. I 

account for the tax on SSDI cash benefit and other income taxes because the payroll tax as well 

as the tax on SSDI cash benefit affects the incentive to apply for SSDI. Incomes from SNAP and 

SSI are not subject to tax. It is important to Social Security Disability Insurance (SSDI) benefit 

and unemployment insurance benefit because the taxation on those cash benefits can affect their 

life-cycle behavior, too. In the previous research, e.g., Low and Pistaferri (2010), only labor 

income was taxed. I define pre-tax income as  ( 1)T

it t it itY w h DI R A    . I assume that 

individuals are subject to the same tax rule.  Regarding the tax rule, I use the tax function used in 

French and Jones (2011). In their calculation, Rhode Island is chosen as a representative state. 

For the computation of federal taxes, they use the standard deduction, and the tax tables for the 

head of household as of 1998. The amounts of taxes, , is determined as 
T PY Y   . The 

following is the table of post-tax income by pre-tax income: 
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 Table A1: Post-tax income 

Pre-tax income ( TY ) Post-tax income ( PY ) Marginal tax rate 

[0, 6250) 0.9235 TY  0.0765 

[6250, 40200) 5771.88+0.7384( TY -6250) 0.2616 

[40200, 68400) 30840.56+0.5881( TY -40200) 0.4119 

[68400, 93950) 47424.98+0.6501( TY -68400) 0.3499 

[93950, 148250) 64035.03+0.6166( TY -93950) 0.3834 

[148250, 284700) 97515.41+0.5640( TY -148250) 0.4360 

284700 and above 174474.21+0.5239( TY -284700) 0.4761 

Source: French and Jones (2011) 

 

C. Social Security Disability Insurance 

Eligibility In the model, a worker is eligible to apply for SSDI when he satisfies two 

conditions: (1) he must be out of the labor force for one six-month period before applying; (2) 

he must have worked for at least 10 periods (20 quarters) if he is age 31 or older; if he is age 30 

or younger, he must have worked half the time between age 21 and the age of disability. For 

example, if he is disabled at age 27, he must have worked 6 periods (12 quarters).  

Cash benefit The SSDI benefit is determined by the same formula that is used to 

calculate Social Security retirement benefits (Old-Age and Survivors Insurance, OASI), but there 

is no penalty for early retirement in the SSDI program. The SSDI benefit is a function of an 

inflation-adjusted lifetime earning measure, called Average Indexed Monthly Earnings (AIME). 

The level of cash benefit is a major determinant of SSDI application in the model, so it is 

important to calculate AIME accurately. In the model, I calculate updated AIME using the 

worker’s earnings history. The formula for the monthly SSDI cash benefit is as follows: 
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(A4)

1

1 1 1 2

1 2 1 2 2

0.9  
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where itAIME is average indexed monthly earnings, and benefit bend points 1a and 2a  are scaled 

to reflect average nominal wage growth each year. In 2006, the monthly value of 1a  is $656, and 

the value of 2a is $3,955.  Regarding the calculation of AIME, I use the following formula for 

workers before retirement age: 

1 max

1 1 max

{ ( 1) min( , )}/ ,  t [1,70] 
(A5) 

max{ ,{ ( 1) min( , )}/ },  t [71,84]

t t t t

t t t t t

AIME AIME t a w h t

AIME AIME AIME t a w h t



 

    


    
  

where maxa is the maximum taxable earnings. maxa for a year-period is $94,200 in 2006. The cut-

off point at age 58 is to take into account that AIME is calculated based on the highest 35 years 

of earnings.  If a worker is retired, there is no change in AIME: 1t tAIME AIME     

The termination of SSDI status Individuals can leave the SSDI program for three 

reasons: (1) a recipient decides to go back to work and continues to earn more than the SGA 

limit after a trial work period; (2) he is rejected on reassessment; (3) he dies. A person who left 

the program for the first two reasons can always re-apply again as long as he satisfies the 

application requirements.    

D. The identification of the variances and AR(1) parameter of log out-of-pocket medical 

expenditure 

I estimate the variances and the AR(1) parameter using the following moments: 

(A7) 

2 2 2
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2 2
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it it f m m v m
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Note that I do not allow the variances 2 2 2

, , ,( , , )f m v m m   and the autocorrelation parameter ( )m  in 

equation (4) to be different within health insurance-disability-age groups. I standardize the 
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variance of m

it to be one, so the group-specific variance of out-of-pocket medical expenditure is 

determined by ( , , )it itHI L t . This approach is parsimonious and particularly useful when the 

sample is classified into several groups. 

E. Log wage offer process  

To account for selection into the labor force, I use Heckman’s two-stage estimation 

method. The selection equation is specified as a probit model:  

 (A8) * ' 1 2 '

1 2 3 4it it it it it itS X s s L s L R s       

where 
itR is a vector of variables assumed to affect labor force participation but not wages, and 

it is the residual. 1( )W W

it it itg     is the innovation to the persistent component of unobserved 

productivity found in equation (5).  

Following Low et al. (2010), the productivity risk will be estimated using the residual of 

the second-stage regression. I use the following moment conditions: 
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where 
2

 is the variance of permanent productivity shock, and 2

 is the variance of 

measurement error.  For more details about the identification of permanent productivity shock, 

see Low et  al. (2010).    

Spouse Income. To reduce computational burden, I model a simple exogenous spousal 

income process:  2

0 1 2ln sp sp sp sp

it itsp t t      
 
where sp

it is an i.i.d. error term assumed to be 

distributed as sp

it ~
2(0, )spN  . I use the FE approach to control for individual-specific unobserved 

heterogeneity.  

F. Solution method 
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I present the solution method prior to retirement. The Bellman equation can be written as 

follows:  

(A10)   1 1
, ,

max ( ) ( , ; ) ( 1, ) ( )
App

it it it

it it it it it it t it it
C DI P

V S U c P L t L E V S  
       

The period t state space after the realization of shocks and before choices are made is: 

(A11) 
1 1( , , , , , , , )DI DI w m

it it it it it it t it itS A L P q Dur AIME     

where DI

itq  is the length of work experience, which is used to determine eligibility for SSDI, 

DI

itDur is the duration of time receiving cash SSDI benefit, which determines eligibility for 

Medicare and the likelihood of SSDI reassessment, and m

it is a stochastic component of out-of-

pocket medical expenditure. To solve the model, I first calculate 
1t tEV 
 over a randomly selected 

subset of state points by Monte Carlo integration, and run a polynomial regression of 
1t tEV 
on 

the state variables.  Then I approximate
1t tEV 
for all other state space points using the estimated 

regression parameters. The approximated expected value of the next period’s value function is 

typically denoted by Emax. By substituting the Emax function for 
1t tEV 
 in equation (A10), I can 

obtain the optimal choices at age t. Repeating the procedure of calculating the Emax function and 

obtaining optimal choices using the Emax function for each age gives the solution to the lifetime 

utility maximization problem in equation (1).   

G. Variance correction for out-of-pocket medical expenditure 

In the PSID data, we only observe the sum of out-of-medical expenditure for two 

calendar years. But, the unit of time in my model is a six-month period. I account for the 

difference in the reference period by the procedure that I describe below. For the convenience of 

explanation, I treat the two-year measure to be one-year sum of four quarterly medical 

expenditures below and I suppress a subscript for an individual.  
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I define iP  to be the observed sum of out-of-medical expenditure for four consecutive 

calendar quarters in i th wave, and ijQ  for the unobserved out-of-pocket medical expenditure for 

quarter j in i th wave: 
4

1

 i ij

j

P Q


  

Ignoring the deterministic component, quarterly out-of-pocket medical expenditure 

consists of persistent component, a,  and transitory component, ω.

2 2

1Q  j {1,2,3,4} where ;  (0, );  (0, );0 1ij ij ij ij ij j ij ija a a N N               
 

Then the variance of out-of-pocket medical expenditure for a six-month period can be written as 

follows: 

2 2

1 2 3 4(A12) ( ) ( ) ( ) ( ) ( )i i i i aV Q V Q V Q V Q       where the variance of persistent component 

can be also expressed as 
2

2

21
a







. As it is obviously shown in the above equation, an 

underlying assumption is that the quarterly variance of out-of-pocket medical expenditure is 

constant within wave i. Using the above expression of the variance of quarterly out-of-pocket 

medical expenditure, we can express the variance of the observed sum of out-of-pocket medical 

expenditure in the following way:

 
4

2 2 2 3 2

1 2 3 4

1

(A13) ( ) ( ) { ( ) ( , )} 4( ) 2 { 2 3 }i i i i i ij ij ik a a

j j k

V P V Q Q Q Q V Q COV Q Q      
 

           

 

By re-arranging the above equation, we can express the variance of unobserved quarterly 

out-of-pocket medical expenditure in the following way: 

2 2 3 2 2

1

1 1
(A14) ( ) ( ) ( ) ( 2 3 )   j {1,2,3,4}

4 2
ij a aV Q V P              

Also, I construct covariance of observed out-of-pocket medical expenditures between 

different waves. For example, covariance between wave 1 and wave 2 and between wave 1 and 

wave 3 can be written as follows: 
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I omit the expressions of covariance between other waves to save space but they can be 

expressed in a similar way. By matching above variance and covariance of out-of-pocket medical 

expenditure observed in the data, I estimate 2 2,  ,  and a    . The estimation results are reported 

in Table 3. Alternatively, De Nardi et al.(2010) who use the AHEAD data, where medical 

expenditures are reported as a two-year average, multiply 1.424 to the residual variance of the 

log medical expenditure regression to correct for the two-year frequency variance.  

H. First-Stage Estimation Results 

H.1. Survival risk  

Figure A1 plots the death probability conditional on the previous period’s disability 

status. In all disability types, death probabilities increase exponentially with age. Individuals 

with severe disability status have a considerably higher probability of death in the next period. 

The calculation of death probability is as follows. 

The probability of being alive in period t depends on disability status in period t-1and 

age. The survival function (from period t-1 to period t) can be written as: 

(A16) 
1 1( | ) 1 Pr( | , )it it itt L death L t     

I do not directly compute the probability of death conditional on the last period’s disability status 

because the PSID data considerably underestimates mortality risk in old ages and has few 

observations over age 80 (French, 2005; Fonseca et al. 2009). I calculate equation (A16) using 

standard life tables in conjunction with Bayes’ rule following the approach of French (2005). I 

use the Bayes’ rule for two reasons: 1) the PSID underestimates death probability by 25% 

compared to National Center for Health Statistics (NCHS). 2) Some cells have too few 
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observations to directly calculate survival probability by age, disability status, and education 

group. Conditional death probability using Bayes’ rule in Eq (7) can be written as follows: 

 (A17) 1
1

1

Pr( | )
Pr( | , ) Pr( )

Pr( )

it it
it it it

it

L death
death L t death

L






   

Note that all elements in the above equation are calculated separately by education group 

but the notation is omitted because only the low-educated group is used in the paper. 

I first describe how I calculate Pr( )itdeath by education group. I assume that death 

probability (unconditional on education and health) is given by 

Pr( ) % Pr( | ) % Pr( | )t t t t t t tdeath higheduc death higheduc loweduc death loweduc    where 

%higheduc and %loweduc denote the share of high education group and the share of low 

education group among individuals with age t. Then education-specific death probability can be 

calculated as follows:  
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where 
Pr( | )

Pr( | )

t t
t

t t

death higheduc
A

death loweduc
 , and %higheduct and % loweduct are the shares of high 

education and low education for each age t respectively. I use this approach because I do not 

have At for every age. Otherwise, I do not need to calculate education-specific death probability 

this way. The NCHS reports education-specific number of deaths per 1,000 by four age groups in 

2007 (Xu et al., 2010).
44

 Assuming that At is relatively stable and linear, I linearly estimate At for 

each age using At for four age groups available in the NCHS report. The shares of each education 

group are obtained using the American Community Survey 2007 by each age. 1Pr( | )it itL death  

                                                 

44
 Micro-level death certificate data which contains education information is not publicly available yet.   
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and 1Pr( )itL   are estimated from the PSID data and I specify 1Pr( | )it itL death as multinomial 

logits.  

H.2. Disability risk     

Figure 2 plots predicted disability transition rates based on estimates of the following 

equation:
45
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The top left panel shows the probability of becoming severely disabled, given no 

disability at t-1. The probability of becoming disabled is increasing with age. The top right panel 

shows that the probability of remaining in the no disability state given no disability at t-1 is 

decreasing in age. The bottom panels show disability dynamics conditional on being severely 

disabled in the last period. The bottom left panel shows that the probability of remaining in the 

severe disability state is higher as a person becomes older. Similarly, the probability of returning 

to the no disability state is decreasing in age.  

H.3. Out-of-pocket medical expenditure risk 

Average medical expenditure rises with age regardless of health insurance type, and those 

in the no health insurance group have the highest average medical expenses at any given age. An 

important part of the value of health insurance comes from reduced volatility of medical 

expenditure so I also report the standard deviation of out-of-pocket medical expenditure in Table 

3. The standard deviation rises with age and the no health insurance group has the highest 

standard deviation at any give age.  

I fit the medical expenditure data using equation (4). I use a person-fixed effect approach 

to estimate the within-person variation of medical expenditure. In equation (4), the deterministic 

component of out-of-pocket medical expenditure is a function of disability status, health 

                                                 

45
 Figure A2 in the Appendix plots the distribution of work-limiting disability status by age, not conditional on the 

last period’s disability status. 
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insurance type, and age. The equation for the deterministic component of out-of-pocket medical 

expenditure is given by: 

(A20) 2

0 1 2 3 4 ,

{ 65, 65}

( , , ) ( 1) ( 2)it it it it HI a

HI a t t

m t HI L t t I L I L     
  

          

where HI is a categorical variable where HI ∈ {employer-provided health insurance, Medicare} . 

None is an omitted health insurance category. a is a binary indicator to differentiate the effects of 

Medicare on medical expenditure on the disabled and the elderly. The variance shifter σ(

, ,it itt HI L ) has the same specification. I fit equation (4) in two stages. First, I estimate equation 

(A18) using person-specific FE and then estimate the variance shifter using the residual of the 

first stage estimation.  

 Table A2. Coefficients of Log out-of-pocket medical expenditure regression  

Variable 
Level 

m(t,HI,L) 

Variance 

σ(t,HI,L) 

Employer-provided health insurance
 

0.32 -2.27 

Medicare -0. 57 -1.58 

Moderate disability
 

0. 04 0. 46 

Severe disability
 

0.20 0. 96 
Note: controls include age and age square, a dummy variable for age 65 and above, and interaction terms of the 

dummy variable for age 65 and health insurance type dummies; EPI denotes employer-provided health insurance.  

 

H.4 Wage Offer Process 

Table 5 reports estimates of the log wage offer equation, accounting using Heckman’s 

two-stage estimation method. The first column shows estimates of marginal effects from the 

participation probit. The exclusion restrictions are cash unemployment insurance (UI) payments 

and unearned income. The coefficients on the exclusion restriction variables and the Mills ratio 

are all significantly different from zero, and the signs are as expected. More generous UI benefits 

and higher income transfers reduce employment. The second and third columns show the log 

hourly wage offer estimates, with and without accounting for selection. Severe disability reduces 
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the offered wage by 32 percentage points (column 3) while moderate disability reduces it by 16 

percentage points, accounting for selection.  

Table 6 reports the estimated variances of the permanent and transitory productivity 

shocks.
 46

  These variances are calculated from the residuals of the log wage offer regression and 

account for selection into labor market participation.  

The estimation results for the log spouse income process are reported in the following: 

Table A3. Coefficients of Log (annual) spousal income process 

Variable Coefficient 

Age 0.258 

Age square/100 -0.360 

Constant 1.374 

  
Note: the regression result includes person-fixed effects. 

I. Indirect Inference 

In Indirect Inference, the auxiliary model does not produce consistent estimates of the 

parameters of interest,  . Instead, estimating the auxiliary model yields consistent estimates of 

auxiliary parameters, 0( )  , so called a pseudo-true value, where 0 is the true value of  . If a 

given set of structural parameters of interest can produce the auxiliary moments computed from 

simulated data capable of closely resembling auxiliary moments obtained from real data, this 

implies that the chosen set of parameter estimates are close to the true value of structural 

parameters of interest. The requirement for the auxiliary models is that they should be able to 

represent the key relationships in the data. The goal of Indirect Inference is to find the value of 

 which minimizes the weighted distance between the auxiliary parameters estimated on the 

simulated data and the auxiliary parameters estimated on the actual data: 

                                                 

46
 The variances are calculated from hourly wage data where the reference period is a year. To account for the six-

month time period in the model, I assume that a person receives a productivity shock with a probability of 0.5, 

following the approach of Low et al. (2010).  
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(A20) 
1 1

1 1
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where ˆ D is a vector of auxiliary moments estimated from the actual data and ˆ ( )S  is the 

corresponding set of moments in the simulated data. S is the number of simulations. The optimal 

weighting matrix, denoted by , is the inverse of the covariance matrix of the data moments, i.e., 

1ˆvar( )D   . To minimize the objective function, I use a variant of the Nelder-Mead simplex 

algorithm developed by Lee and Wiswall (2007).
47

  

J. Auxiliary moments 

There are four sets of auxiliary moments to identify utility function and SSDI policy 

parameters. The following arguments for identification are largely borrowed from Low and 

Pistaferri (2011).  

1. Proportion of SSDI beneficiaries by disability status and age group (23-44,45-62)  

The proportion of SSDI beneficiaries by disability status is determined by the acceptance 

probability, conditional on SSDI application. For example, a very high proportion of SSDI 

beneficiaries among young workers with severe work-limiting disability status implies that there 

must be a high probability of acceptance of SSDI application for those workers.   

2. Composition of SSDI beneficiaries by disability status age group (23-44, 45-62)  

These moments are related to the utility cost of labor market participation as a function of 

disability status and to the reassessment probability of SSDI status. First, the share of each 

disability status among the total SSDI recipients reflects the incentive to apply for SSDI 

conditional on not being disabled. If non-disabled individuals have a high disutility of working, 

then there would be many SSDI applicants who are not disabled. Second, the share of non-

disabled and moderately disabled workers among SSDI recipients reflects the frequency of SSDI 

status review. If the SSDI beneficiary pool is largely composed of severely disabled workers, this 

implies that the SSDI review probability is high.  

                                                 

47
 I thank Donghoon Lee for sharing his simplex routine for MPI.  
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3. Proportion employed classified by disability status and age group (23-32, 33-42, 43-52, 

53-62)  

These moments are closely related to the utility costs of working across different states of 

disability and a layoff probability. For example, a lower labor force participation rate among 

severely disabled workers implies that disutility of labor participation given severe disability is 

high. Also, if a young worker, who is less likely to quit due to low savings, is not working, it 

may be due to a high layoff probability.  

4. Coefficient estimates from the log consumption regression  

The following regression is used to identify the non-separable utility costs of disability and 

work,   and  : 
48
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First, the effect of working on consumption is captured by
6 . This coefficient helps to pin down 

the non-separable utility cost of working because working has a direct effect on the marginal 

utility of consumption. Second, coefficients 
1 through 

4 are related to the non-separable utility 

costs of disability, 
1 and

2 . The parameter 
3 1(or )  captures the effect of disability on 

consumption. Disability is not only related to the loss of labor income, but also related to a 

decrease in the marginal utility of consumption. 
4 2(or )  is the effect of disability on 

consumption when labor income is insured by the SSDI benefit. Thus, comparing 
3 1(or )  with 

 3 4 1 2or      helps to isolate the non-separable utility cost of severe (moderate) disability. 

In the regression, I use a person-fixed effect approach to estimate the within-person variation of 

consumption expenditure. 

      5. More discussion of the model fit 

                                                 

48
 The PSID asks consumption expenditure at the household level and thus

itc is adjusted by the number of adult-

equivalent family members using OECD equivalent scale.  
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Panel A reports employment rates by age and disability. The model replicates both the 

decline in participation with the degree of disability and with age. Particularly, the simulated 

moments match the observed moments for the severely disabled very well. However, the 

simulated employment rates of moderately and non- disabled workers aged between 53 and 62 

are 3-5 percentage points lower than the actual, and the simulated moments for moderately 

disabled workers aged between 23-42 are over-predicted by 5-8 percentage points.  

Panel B shows SSDI enrollment by disability status and age. The share of SSDI 

recipients rapidly increases with the degree of disability and age. About two thirds of older 

workers with severe disability are on the SSDI program, and about one third of younger workers 

with severe disability are on the SSDI program. Among the non-disabled, only 3 out of 1,000 

workers under age 45 are currently covered by SSDI, and 1 out of 100 workers aged 45 and over 

are on the SSDI. The model replicates the pattern of SSDI receipt by disability status and age 

quite well.  

Panel C shows the composition of SSDI recipients by disability status and age group. The 

data moments show that more than two thirds of SSDI recipients are severely disabled. However, 

the data also reveals that a non-negligible share of SSDI recipients have no work-limiting 

disability (8-13%). Given the very low acceptance probability of SSDI application by the non-

disabled workers, these non-disabled SSDI recipients must have recovered from their disability 

after entry to SSDI. The simulated moments capture the composition of SSDI recipients by 

disability status and age group very well.  

Panel D shows moments obtained from estimating the auxiliary log consumption 

equation. The data moments show that disability is associated with a drop in consumption 

expenditure, but the receipt of SSDI benefits prevents consumption expenditure from falling. The 

model generally replicates the signs and the magnitude of the coefficients, but the coefficient on 

the receipt of SSDI (for the non-disabled) is over-predicted in magnitude. 

K. Calculation of Willingness To Pay (WTP) 

Following Low et al. (2010), I use WTP instead of compensating variation (CV) wealth 

as a measure of welfare changes because the initial level of median assets for individuals at age 
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23 (the beginning period in the model) is only about $3,000. For example, if CV for a certain 

policy intervention exceeds the initial level of assets, e.g., $100,000, this implies that individuals 

start their life cycle with the debt of $97,000. However, the model incorporates the liquidity 

constraint (A>0) and the consumption floor which cancels any debt. Thus, it is difficult to 

interpret the implications of having CV exceeding the initial wealth level. Denote ex ante 

expected remaining lifetime utility in the baseline model as follows:  

 ( , , ; )
T

s t App

t baselise t s s s s

s t

EU E U c DI P L 



   

Then WTP, the proportion of consumption an individual is willing to pay to equate ex 

ante expected lifetime utility of the baseline model and that of a counterfactual regime is defined 

as follows:  
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L. Effects of Medicare benefits provided through SSDI 

Table A4.  

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  

Baseline 
(Medicare 

is available 

via SSDI) 

No 

Medicare  

via SSDI 

% 

Difference 

(not %p 

difference) 

Mandatory 

HI 

purchase 
(Medicare is 

available via 

SSDI)  

Mandatory 

HI purchase 

+ No 

Medicare  in 

SSDI 

% 

 Difference 

No 

employer-

provided 

HI   
(Medicare 

is available 

via SSDI) 

 No EPHI  

+ No 

Medicare 

in SSDI 

% 

Difference 

Willingness to pay 0.00% -0.50% n/a 0.00% -0.38% n/a 0.00% -0.73% n/a 

( 1| 1)AppFR DI L   7.53% 6.14% -20.3% 6.55% 5.84% -11.5% 9.79% 7.10% -31.0% 

( 1| 2)AppFR DI L   19.7% 18.6% -5.7% 18.7% 18.4% -1.5% 21.6% 19.2% -12.1% 

( )FR working  87.0% 87.7% 0.8% 87.8% 88.4% 0.6% 85.2% 86.7% 7.8% 

FR(working |L=1) 73.7% 76.2% 3.3% 75.7% 78.4% 3.5% 68.1% 73.2% 7.2% 

FR(working |L=2) 20.6% 21.5% 4.5% 21.0% 21.6% 2.8% 17.0% 18.7% 9.5% 

FR(DI=1 |L=1) 12.2% 11.6% -5.3% 12. 0% 10.1% -7.9% 15.7% 13.7% -13.8% 

FR(DI=1 |L=2) 53.7% 53.6% -0.2% 54.3% 53.7% -0.9% 57.6% 57.4% -0.3% 

                     17.8% 15.8% -11.9% 16.7% 14.4% -14.7% 20.8% 17.4% -17.8% 

Note: Columns (1), (4), and (7) include Medicare coverage after two years on SSDI. Columns (2), (5), and (8) show the simulation 

results when eliminating Medicare coverage in SSDI. In all specifications, Medicare coverage for individuals over age 65 is 

available. FR(A|B) denotes the fraction of the population satisfying A conditional on B. L is 1 if moderate disability, and 2 if 

severe disability. % Difference is calculated at the mid-point.  
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M. Indirect Inference estimates and simulated moments for the alternative specification 

without health insurance and medical expenditure process 

Table A5. Parameters estimated by Indirect Inference for the specifications with and without 

medical expenditure process.  

Parameter 
 

 

Estimate from 

baseline 

specification 

Estimate from no 

medical 

expenditure 

specification 

Non-separable utility cost of working ( ) 
 

-0.310 -0.404 

Utility cost of moderate disability 1( )  
 

-0.096 -0.206 

Utility cost of severe disability 2( )  
 

-0.386 -0.500 

Layoff probability 1( )  
 

0.098 0.112 

Utility cost of labor force participation | L=0 

0( )    
-0.025 -0.161 

Utility cost of labor force participation | L=1 

1( )   
-0.220 -0.359 

Utility cost of labor force participation | L=2 

2( )   
-0.791 -1.171 

SSDI acceptance probability | L=0 
 

0.0007+0.00003*t 0.0008+0.0000*t 

SSDI acceptance probability L=1  
 

0.27+0.0001*t 

 
0.30+0.0016*t 

SSDI acceptance probability | L=2  
 

0.47+0.005*t 0.43+0.0041*t 

SSDI reassessment probability ( )CDRP  
 

0.173 0.176 
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Figure A1 Fitted conditional probability of death by the previous period’s disability status

 

Figure A2 Distribution of disability status by age  
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